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Aside

Two topics I’m interested in at the moment:

The bundle G2 → S6 = G2/SU(3) and the Yang-Mills flow.

Using 1+1d quantum field theories for quantum computation.
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Quantum mechanics of a single degree of freedom

Start with one degree of freedom: q ∈ R.

The Hilbert space of states is H = L2(R), consisting of wave functions ψ(q).

The time evolution is generated by a hamiltonian operator H:

q(t) = e itHq e−itH H† = H, H ≥ 0

The Heisenberg algebra:

»
i
∂

∂q
, q

–
= i

The free particle hamiltonian:

H =
1

2

„
−∂

2

∂q2

«
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The harmonic oscillator

The harmonic oscillator hamiltonian:

H =
1

2

„
−∂

2

∂q2

«
+

1

2
E 2q2 E > 0

destruction/creation operators:

a =
1√
2

„
∂

∂q
+ Eq

«
a† =

1√
2

„
−∂
∂q

+ Eq

«

[a, a†] = E

H = a†a +
1

2
E [H, a†] = Ea† [H, a] = −Ea

eigenstates:

Hψn = (nE +
1

2
E)ψn aψ0 = 0, ψn = (a†)nψ0, n = 1, 2, · · ·
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N degrees of freedom in a line

0ε

↑
q(0ε)

↓

1ε

↑
q(1ε)

↓

2ε

↑
q(2ε)

↓

3ε

↑
q(3ε)

↓

x

↑
q(x)

↓

L− ε

↑
q(L− ε)
↓

L = Nε

↑
q(L)

↓

boundary condition: q(0) = q(L) (i.e., x ∈ εZN)

Hilbert space: H = ⊗
x

L2(R) = L2(RN) states: ψ(q(1ε), q(2ε), · · · , q(Nε))

hamiltonian: H =
1

ε

X
x

„
−1

2

∂2

∂q(x)2
+

1

2
[q(x)− q(x − 1)]2

«
(local !!!)

ZN translation symmetry: x 7→ x + εm (mod εN), q(x) 7→ q(x + εm)
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Equivalent to N harmonic oscillators

Fourier transform in ZN :

q̃k =
1√
N

X
x

e ikxq(x) p̃k =
1√
N

X
x

e−ikx i
∂

∂q(x)
k =

2πm

εN
=

2πm

L
∈ 1

ε
Z∗N

[pk , qk′ ] = iδk,k′

H =
X

k

1

2
p̃†k p̃k +

1

2
E 2

k q̃†k q̃k Ek =
1

ε
(2− 2 cos εk)1/2

ak =
1√
2

(−ipk + Ekqk) [ak , ak′ ] = 0 [ak
†, ak′ ] = Ekδk,k′

H =
X

k

„
ak
†ak +

1

2
Ek

«
[H, ak

†] = Ekak
† [H, ak ] = −Ekak

The ground state: akψ0 = 0 Hψ0 =
X

k

1

2
Ek ψ0

Note that E0 = 0. The zero-mode q̃0 is a “free particle”.
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The continuum limit

Send N →∞, ε→ 0 holding L = Nε fixed. Now x parametrizes the circle of length L.

The oscillators are indexed by

k =
2πm

εN
=

2πm

L
m ∈


−1

2
N, · · · , 1

2
N

ff
The oscillator energies become

Ek =
1

ε
(2− 2 cos εk)1/2 → |k| for |k| � 1

ε

The hamiltonian has a limit, once the ground state energy is subtracted,

H −
X

k

1

2
Ek → Hren =

X
k∈ 2π

L
Z

ak
†ak

In taking the limit, we have discarded the states with energy eigenvalues of order 1/ε.
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Quantum fields

Define
δ

δq(x)
=

1

ε

∂

∂q(x)
∆xq =

q(x)− q(x − ε)
ε

H = ε
X

x

"
−1

2

„
δ

δq(x)

«2

+
1

2
(∆xq)2

#
In the continuum limit, »

δ

δq(x)
, q(x ′)

–
→ δ(x − x ′)

∆xq → ∂q

∂x

q(x) and
δ

δq(x)
become operator-valued distributions on the circle, and

H −
X

k

1

2
Ek → Hren =

Z L

0

dx

"
−1

2
:

„
δ

δq(x)

«2

: +
1

2
:

„
∂q

∂x

«2

:

#
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Discussion

The continuum limit is physically motivated. We quite often investigate physical
systems in which many degrees of freedom are distributed locally in space, separated
by distances of order ε, much smaller than our experimental apparatus can probe.

With our limited resources, we cannot produce or detect the high energy states that
we discarded in taking the continuum limit.

Everything our instruments can detect will be described to good accuracy by a
continuum limit.

In the continuum limit, what we observe is described by an algebra of
operator-valued distributions Oα(x) smeared by smooth functions. A quantum
mechanics with such an algebra of observables (and satisfing a few additional
conditions) is a quantum field theory.

Can we say anything about what quantum field theories are possible?
The only substantial progress on this question has been for qfts in 1+1 dimensions
(1 space dimension and 1 time).
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Discussion (cont.)

So far, we have discussed the most trivial example, the free massless scalar field in
1+1 dimensions.

It is exactly solvable, H being quadratic in Heisenberg operators, so we can take the
continuum limit explicitly.

We have effective techniques – perturbation theory – for studying hamiltonians that
are close to free (i.e., close to quadratic).

First, a trivial generalization: qi (x) i = 1, · · · , n

H =
1

ε

X
x

nX
i=1

„
−1

2

∂2

∂qi (x)2
+

1

2

h
qi (x)− qi (x − 1)

i2«
=

1

ε

X
x

„
−1

2
δij ∂

∂qi (x)

∂

∂qj(x)
+

1

2
δij∆xqi ∆xqj

«

H is the sum of n free massless scalar hamiltonians. The Hilbert space is the tensor
product of n free massless scalar Hilbert spaces.
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The path integral

The free particle, H = 1
2

“
− ∂

2

∂q2

”
, as path integral

〈qT |e−TH |q0〉 =

Z
Dq e−S(q) S(q) =

Z T

0

dτ
1

2
(∂τq)2

over paths q(τ) from q(0) = q0 to q(T ) = qT .

This is just the path integral for the heat kernel.

Analytically continue in T to get the real time evolution operator e−itH .

Derivation:

〈qT |e−TH |q0〉 =

Z
dqT−δ · · ·

Z
dq2δ

Z
dqδ

〈qT |e−δH |qT−δ〉 · · · 〈q3δ|e−δH |q2δ〉〈q2δ|e−δH |qδ〉〈qδ|e−δH |q0〉

〈qτ+δ|e−δH |qτ 〉 = exp

»
− δ

2

“qτ+δ − qτ
δ

”2
–
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The path integral (2)

Path integral for the harmonic oscillator, H = 1
2

“
− ∂

2

∂q2

”
+ 1

2
E 2q2,

〈qT |e−TH |q0〉 =

Z
Dq e−S(q) S(q) =

Z T

0

dτ

„
1

2
(∂τq)2 +

1

2
E 2q(τ)2

«

For the free massless scalar field,

〈qT |e−TH |q0〉 =

Z
Dq e−S(q) S(q) =

Z T

0

dτ ε
X

x

„
1

2
(∂τq)2 +

1

2
(∆xq)2

«

Now the integral is over paths τ 7→ q(x , τ) for each x , i.e., an integral over all maps
(x , τ) 7→ q(x , τ).

Write this in the continuum

S(q) =

Z T

0

dτ

Z L

0

dx

„
1

2
∂τq∂τq +

1

2
∂xq∂xq

«
(leaving the cutoff ε implicit).
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The path integral (3)

or, writing xµ = (x , τ),

S(q) =

Z
d2x

1

2
γµν∂µq∂νq

where γµν is the 2d metric:

(ds)2 = γµνdxµdxν = (dx)2 + (dτ)2

A property that was hidden in the hamiltonian formalism becomes manifest:

2d euclidean symmetry

1 + 1d Poincaré symmetry after analytic continuation to real time

more generally, 2d covariance: γµν(x , τ)

relativistic quantum field theory
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Perturb n free massless scalars

For n free massless scalar fields qi (x , τ),

S(q) =

Z
d2x

1

2
δij γ

µν ∂µqi ∂νqj

We want to investigate the possible continuum limits of small, non-quadratic,
perturbations S → S + ∆S . The perturbations should be local in the qi (x , τ) and
covariant in 2d.

∆S =

Z
d2x qk1 · · · (∂µ1 · · · q

i1 ) · · ·

Further limit perturbations by requiring them to be dimensionless (to be justified later).

Dimensional analysis:
1
ε
xµ is a number, so dim(xµ) = −1

ε∂µ is a number, so dim(∂µ) = +1

S(q) is a number, so dim(S) = 0

therefore dim(qi ) = 0

So ∆S can contain any number of qi , and exactly two derivatives ∂µ.
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The general dimensionless perturbation

S(q) =

Z
d2x

1

2

„
δij + gij,kqk +

1

2!
gij,k1k2 qk1 qk2 + · · ·

«
γµν ∂µqi ∂νqj

The numbers gij,k1k2··· are called coupling constants.

Define the q-dependent matrix

gij(q) = δij + gij,kqk +
1

2!
gij,k1k2 qk1 qk2 + · · ·

so

S(q) =

Z
d2x

1

2
gij(q) γµν ∂µqi ∂νqj

This is covariant in Rn. The matrix gij(q) is a Riemannian metric on Rn

(ds)2 = gij(q)dqi dqj
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The general nonlinear model

Now it is more or less obvious that we should regard Rn as a coordinate patch on a
general n-dimensional manifold M.

The path integral is an integral over maps (x , τ) 7→ q(x , τ) ∈ M

〈qT |e−TH |q0〉 =

Z
Dq e−S(q) S(q) =

Z
d2x

1

2
gij(q) γµν ∂µqi ∂νqj

Z
Dq =

Y
(x,τ)

Z
M

dvol(q(x , τ))

H =

Z
dx

„
−1

2
g ij(q)

∇
∇qi (x)

∇
∇qj(x)

+
1

2
gij∂xqi∂xqj

«

H = ⊗
x

L2(M)

Again, everything is understood to be cutoff at distance ε.

The question is: can we take the continuum limit ε→ 0?
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The general nonlinear model (2)

Introduce a parameter α′ ≈ 0,Z
Dq e−S(q) S(q) =

Z
d2x

1

2

1

α′
gij(q) γµν ∂µqi ∂νqj

The path integral is dominated by the constant maps q(x , τ) = q0 ∈ M.

Write q(x , τ) = q0 + δq(x , τ)Z
Dq e−S(q) =

Z
M

dq0

Z
Dδq e−S(q0+δq)

S(q0 + δq) =

Z
d2x

1

2

1

α′
gij(q0 + δq) γµν ∂µδqi ∂νδqj

Scale δqi → (α′)1/2δqi to see that this is a free theory plus small perturbations.

We have effective techniques (Feynman diagrams) for systematically evaluating the path
integral as a formal power series in α′.

[Simple example: M = S1 (or M = T n). Each fluctuation integral is free, only the
zero-mode integral is nontrivial. This example is an excellent exercise.]
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The renormalization group flow

Imagine increasing ε slightly, ε→ ε+ ∆ε. The claim is that we can make a compensating
change in the action, S → S + ∆S , so that everything we can observe remains the same.

Start with our original path integral, with cutoff ε and action S(φ). Imagine integrating
out a small fraction 2∆ε/ε of the integration variables qi (x , τ). We are left with an
integral over the remaining variables qi (x , τ), but with a slightly modified action S + ∆S .
Now our integration variables are slighlty less dense on the x , τ surface. Essentially, the
cutoff is now ε+ ∆ε. But nothing observable in the path integral has changed.

In principle, S + ∆S contains all possible local interactions. Dimensional analysis tells us
that terms with more than two derivatives ∂µ are suppressed by positive powers of ε, so
we are justified in ignoring them. In the Feynman diagram expansion – the formal power
series in α′ – this dimensional analysis is rigorous.

So

S + ∆S = S(q) =

Z
d2x

1

2

»
1

α′
gij(q) + ∆

1

α′
gij(q)

–
γµν ∂µqi ∂νqj

∆
1

α′
gij(q) =

„
∆ε

ε

«
βij(q)
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The renormalization group flow (2)

We have constructed a flow

ε
∂

∂ε

1

α′
gij(q) = βij(q)

such that, if we increase ε and move our coupling constants along the flow, nothing
observable changes.

There exists a continuum limit if the flow can be run backwards, all the way to ε = 0.
The only circumstance where we know this can be done is when the flow goes backwards
to a fixed point βij = 0 (“ultraviolet safety”). (We can always define the continuum limit
order by order in α′.)

βij can be calculated as a formal power series in α′, to all orders. It is a polynomial in the
derivatives of gij(q), covariant on M, so each term in the formal power series must be a
polynomial in the curvature tensor and its covariant derivatives

ε
∂

∂ε

1

α′
gij = βij = Rij +

1

2
α′RiklmRkjm

j + O(α′
2
)

A slightly subtlety: the fixed point equation is actually βij = ∇i vj +∇jvi since a change
of metric that is just a reparametrization of the qi is just a change of variables in the
functional integral.
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The Ricci flow

The Ricci flow

d

dt
gij = Rij

was used by Perelman (following on Hamilton and Thurston) to prove the Poincaré
conjecture in n = 3 dimensions.

The renormalization group flow for the general nonlinear model

ε
∂

∂ε

1

α′
gij = Rij +

1

2
α′RiklmRkjm

j + O(α′
2
)

looks closely related. But note that it does not go to the Ricci flow when α′ → 0. We
would need to define

t =
1

α′
ln ε

Then the rg flow becomes

d

dt
gijgij = Rij +

1

2
α′RiklmRkjm

j + O(α′
2
)

which does become the Ricci flow in the limit α′ → 0.
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Elaborations

more 2d symmetry (2d supersymmetry)

1d boundaries and boundary couplings (boundary conditions)
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An analytic version of Riemannian manifold?

geometric objects =⇒ analytic objects

Riemannian manifolds =⇒ 1+1d quantum field theories

Can any mathematical use be made of this?
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