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Geometry → 1+1d quantum field theory
I the space of Riemannian manifolds → the space of 1+1d qfts

I Ricci flow → renormalization group (rg) flow

I the space of submanifolds of Ricci-flat manifolds (and
Ricci-solitons) → the space of boundary qfts

I mean curvature flow of submanifolds → boundary rg flow

The boundary rg is a gradient flow. (A. Konechny & DF, 2003)

I hope to convey some of what quantum field theories are and
what we can say about them, in general.

The analogous result for the mean curvature flow is trivial
(gradient of submanifold volume).

Will the connection between geometric flows and rg flows prove
useful for either?
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Example: the 2d nonlinear model

the geometry:

I a manifold M with Riemannian metric g

the 1+1d quantum field theory (formally):

I a Hilbert space H = L2(Maps φ: R→ M) or (Maps S1 → M)

I a hamiltonian operator H on H

H =

∫
R

dx
[
∆φ(x) + g(∂xφ, ∂xφ)

]
I an algebra of local operators O(x), e.g.

Of (x) = f (φ(x)) f ∈ C∞(M)

time translation: O(x , t) = e itHO(x)e−itH
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Path integral formulation as 2d euclidean qft

τ = it e−itH = e−τH

path integral for e−βH :

e−βH(φβ, φ0) =

∫
φ: [0,β]×R→M

Dφ e−S(φ)

S(φ) =

∫ β

0
dτ

∫ ∞
−∞

dx [g(∂τφ, ∂τφ) + g(∂xφ, ∂xφ)]

partition function:

Z = tr e−βH =

∫
φ: S1×R→M

Dφ e−S(φ)
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Less formally: cutoff qft
Choose a unit Λ−1

0 of 2d distance: (ds)2 = Λ2
0[(dx)2 + (dτ)2].

Take x ∈ Z/Λ0 instead of R (or ZN/Λ0 instead of S1)

H =
⊗

x∈Z/Λ0

L2(M)

H =
∑
x

Λ−1
0

(
∆φ(x) + Λ2

0 dist2
g

[
φ(x), φ(x + Λ−1)

])
We can take Λ−1

0 → 0, at least perturbatively: replacing the metric
g with α′−1g , and expanding the path integral in powers of α′.

S(φ) =

∫ β

0
dτ

∫ ∞
−∞

dx
[
α′−1g(∂τφ, ∂τφ) + α′−1g(∂xφ, ∂xφ)

]
The path integral is then concentrated near the constant maps.
Transverse to the constants, it is a gaussian measure plus a small
perturbation (evaluated by Feynman diagram technology).
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The renormalization group (rg)

To take the limit Λ−1
0 → 0, we need to let α′−1g depend on Λ0,

−Λ0
d

dΛ0

(
α′−1gΛ0

)
= β

(
α′−1gΛ0

)
= − Ricci

(
α′−1gΛ0

)
+ O(α′)

β is a vector field on the space of Riemannian manifolds (a formal
power series in α′). It generates the (perturbative) rg flow.

Fix a unit of distance Λ−1. Hold α′−1gΛ fixed while Λ−1
0 → 0.

(We need stability in the past/ultraviolet to get a well-defined qft.)

The result is a continuum (perturbative) qft depending on

I (M, α′−1gΛ)

I the 2d metric ds2 = Λ2
[
(dx)2 + (dτ)2

]
and is invariant under the rg = simultaneous increase of the unit of
distance Λ−1 and flow of the target metric along β.
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The space of qfts

(cf. the space of Riemannian manifolds)

Parametrized locally by coordinates λi , the coupling constants,

H(λ) = H(0)−
∫

dx Λ λiOi (x)

Finitely many λi because unstable manifolds are finite dimensional.

Partition function
Z (Λβ, λ) = tr e−βH(λ)

Invariant under the rg flow generated by βi (λ), a vector field on
the space of qfts: (

−Λ
∂

∂Λ
+ βi (λ)

∂

∂λi

)
Z = 0
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Boundary conditions

Quantum field theory on a 1d space with boundary (the half-line)

0 x→ L
′

1

(L→∞)

The hamiltonian needs a boundary condition at x = 0
(and at x = L, but that boundary decouples in the limit L→∞).

Example: d-branes in the nonlinear model

Choose a submanifold N ⊂ M. Boundary condition at x = 0:
require φ(0) ∈ N.

N parametrizes boundary qfts associated with the given bulk qft
parametrized by (M, α′−1g).

N flows under the rg by a vector field on N in the normal bundle:
the mean curvature vector field k I (φ) plus O(α′) corrections.
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The space of qfts with boundary condition

For a given bulk qft, the space of possible boundary conditions is
parametrized by the boundary coupling constants λa that couple to
operators Oa localized at the boundary, x = 0.

H = H(0)− λaOa

Under the rg, the λa flow along a vector field βa.

δλa ∼ normal vector fields v I (φ) on N

δλaOa ∼ v I (φ(0)) α′−1gIJ∂xφ
J(0)

βa ∼ k I (φ) + O(α′)

The space of boundary qfts forms a bundle over the space of bulk
qfts. The rg flow on the boundary qfts is a lift of the rg flow on
the bulk qfts.
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The space of boundary qfts

Specialize to bulk fixed point qfts, βi = 0, the bulk conformal field
theories (cf. the Ricci-flat manifolds and Ricci-solitons).

The space of boundary conditions are the boundary qfts.

Only the boundary coupling constants λa flow.

The boundary qfts describe a certain class of quantum wires – bulk
critical – for use in quantum circuits. Boundaries are the simplest
form of circuit junction.

Proposal (DF, cond-mat/0505084, 0505085)

Circuits made of bulk-critical quantum wires, joined at boundaries
and junctions, would be ideal for asymptotically large-scale
quantum computers (esp. the c = 24 Monster-symmetric bulk cft).
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Equilibrium at temperature T = 1/β

equilibrium density matrix: ρβ = Z−1e−βH Z = tr e−βH

entropy: S = tr (−ρβ ln ρβ) =
(

1− β ∂∂β
)

ln Z

expectation values: 〈O〉 = tr ρβO 〈O(t)〉 = 〈O〉

correlation functions:

〈O1(t)O2(0)〉 = Z−1 tr
(
e−βHe itHO1e−itHO2

)
analytic in τ = it, 0 < Re τ < β

KMS condition: 〈O1(t − iβ)O2(0)〉 = 〈O2(0)O1(t)〉

connected correlation functions: 〈O1O2〉c = 〈O1O2〉 − 〈O1〉〈O2〉
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0 x→ L
′

1

(L→∞)

Bulk conformal invariance (i.e., bulk rg fixed point) implies

ln Z = ln z(Λβ, λ) +
πc

6

L

β
+ ln z ′

L

β
� 1

(c is the central charge of the Virasoro algebra of the bulk cft.)

So

S = s(Λβ, λ) +
πc

3

L

β
+ s ′

L

β
� 1

s is the boundary entropy. It carries all the dependence on the
boundary coupling constants λa (the boundary condition at x = 0),

∂S

∂λa
=

∂s

∂λa
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Boundary gradient formula

∂s

∂λa
= −gab(λ)βb(λ)

gab(λ) a positive-definite metric on the space of boundary qfts

gab(λ) = β

∫ β

0
dτ [1− cos (2πτ/β)] 〈Oa(−iτ)Ob(0)〉c

s decreases along the flow (2nd law of boundary thermodynamics)

β
∂s

∂β
= Λ

∂s

∂Λ
= βa ∂s

∂λa
= −βagabβ

b ≤ 0
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Comments

s is not the entropy of a density matrix (∃ examples with s < 0).

We have not succeeded in putting a lower bound on s:

I no universal lower bound

I no lower bound per bulk cft

I no lower bound for a given boundary qft (rg trajectory)

The proof of the gradient formula depends on a strong assumption:
essentially that the rg trajectory emerges from an ultraviolet
(ancient) fixed point. This assumption is physically reasonable, but
we do not understand why it should be necessary.

rg-covariance of the metric seems to need a slightly stronger
assumption (maybe not physically reasonable).
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The proof

∂as = ∂aS = ∂a

(
1− β∂

∂β

)
ln Z =

(
1− β∂

∂β

)
β〈Oa〉

= −β2∂

∂β
〈φa〉 = β2〈H Oa〉c

The hamiltonian is local:

H =

∫ ∞
0

dx E(x , t) .

Separate into boundary and bulk energies: H = hε(t) + Hε(t)

hε(t) =

∫ ε

0
dx E(x , t) Hε(t) =

∫ ∞
ε

dx E(x , t)

β−2∂as = 〈hε(t)Oa(0)〉c + 〈Hε(t)Oa(0)〉c
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Fourier transform:

fa(ω) =

∫ ∞
−∞

dt e iωt〈hε(t)Oa(0)〉c

Fa(ω) =

∫ ∞
−∞

dt e iωt〈Hε(t)Oa(0)〉c

2πδ(ω)β−2∂as = fa(ω) + Fa(ω)

Bulk conformal invariance implies a sum rule:∫
dω

2π

[
(2π/β)2

ω2 + (2π/β)2

](
1− e−βω

βω

)
Fa(ω) = 0

from which

∂s

∂λa
=

∫
dω

2π

[
(2π/β)2

ω2 + (2π/β)2

](
1− e−βω

βω

)
fa(ω)
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Invert the F.T. and analytically continue to τ = it to get

∂s

∂λa
= β

∫ β

0
dτ [1− cos (2πτ/β)] 〈hε(−iτ)Oa(0)〉c

We can substitute hε(t) = −βaOa(t) as suggested by

β
∂ ln z

∂β
= −〈βhε〉 = Λ

∂ ln z

∂Λ
= βa ∂ ln z

∂λa
= βa〈βOa〉

with this substitution

∂s

∂λa
= β

∫ β

0
dτ [1− cos (2πτ/β)] 〈−βbOb(−iτ)Oa(0)〉c = −gabβ

b
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The sum rule
Bulk conformal invariance implies chiral energy flow:

E(x , t) = ER(x − vt) + EL(x + vt) x > 0 (v = 1)

Locality:

[ER(x−t), Oa(0)] = 0 x−t > 0, [EL(x+t), Oa(0)] = 0 x+t > 0

so we can construct analytic response functions

R+
a (ω) =

∫
dt e iω(t−x)〈[iER(x−t), Oa(0)]〉 analytic for Im ω ≥ 0

R−a (ω) =

∫
dt e iω(t+x)〈[iEL(x+t), Oa(0)]〉 analytic for Im ω ≤ 0

The F.T. of the KMS condition gives

Fa(ω) =
1

i(1− e−βω)

[
R+

a (ω)

ω + i0+
+

R−a (ω)

ω − i0+

]
(R±a (0) = 0).
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So the sum rule is∫
dω

2π

[
(2π/β)2

ω2 + (2π/β)2

]
1

iβω

[
R+

a (ω)

ω + i0+
+

R−a (ω)

ω − i0+

]
= 0

and follows from the vanishing formulas

R+(2πi/β) = R−(−2πi/β) = 0

which we get by using first KMS

〈ER(x − t)Oa(0)〉c =

∫
dω

2πi
e−iω(t−x) R+(ω)

1− e−βω

=
∞∑

n=1

en(t−x)2π/βR+
a (2πin/β)

then the bulk quantization (where −x is imaginary time, τ space)

〈ER(x + iτ)Oa(0)〉c = 〈B|Oa(0)ER(x + iτ)|0〉

= 〈B|Oa(0)
∞∑

n=2

en(−iτ−x)2π/βLn|0〉
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The chiral energy currents
The qft depends on the (arbitrary) 2d metric

(ds)2 = γµν(x , t)dxµdxν = γtt(dt)2 +γxtdxdt +γtxdtdx +γxx(dx)2

The energy-momentum (stress-energy) tensor

〈Tµν(x , t) · · ·〉c = 2
∂

∂γµν(x , t)
〈· · ·〉c

2d coordinate-independence

∂µTµν = 0

bulk conformal invariance is Tµ
µ (x , t) = 0, x > 0

H =

∫
dx Ttt(x , t)

ER(x − t) =
1

2
(Ttt − Txt) EL(x + vt) =

1

2
(Ttt + Txt)
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