A conjecture on the Ricci flow

Daniel Friedan

friedan@physics.rutgers.edu

April 16, 2008

I'll state the conjecture in a very specific form. There are several obvious avenues of generalization.

Has this conjecture already been studied? Is it foolish? If not, I wonder what are the chances of proving it? Could it provide a useful method of constructing Ricci solitons and families of flows between them?

Let $\tilde{\mathcal{M}}_4$ be the space of AE metrics on \mathbb{R}^4 (going to a fixed euclidean metric g_E at infinity), modulo diffeomorphisms of \mathbb{R}^4 that go to the identity map at infinity.

Let \mathcal{M}_4 be the connected component of $\tilde{\mathcal{M}}_4$ that contains the flat euclidean metric g_E .

$$\pi_2(\mathcal{M}_4) = \pi_1(\text{Diff}(S^4)) = \pi_5(S^4) = \mathbb{Z}/2\mathbb{Z}$$
(1)

(To resolve the singularity at the euclidean metric g_E , we have to do something like adjoining a frame at infinity to the space of metrics, before dividing by the diffeomorphism group.)

Choose an arbitrary representative in the nontrivial homotopy class

$$G_0: S^2 \to \mathcal{M}_4 \qquad G_0(s) = g_E \qquad s = \text{the south pole in } S^2.$$
 (2)

Run the Ricci flow pointwise on this 2-sphere of metrics

$$G_t(x) = G(x)_t \qquad x \in S^2 \qquad t \ge 0.$$
(3)

Conjecture

Under the Ricci flow, any 2-sphere of metrics in the nontrivial homotopy class ends as a trapped stable 2-sphere in the same homotopy class:

$$\lim_{t \to \infty} G_t = G_\infty \mod \operatorname{Diff}(S^2) \tag{4}$$

where

- 1. $G_{\infty}(s) = g_E$, the euclidean metric.
- 2. $G_{\infty}(n)$ is a nontrivial fixed point (Ricci soliton), n being the north pole in S^2 .
- 3. $G_{\infty}(S^2)$ is the unstable manifold of $G_{\infty}(n)$.
- 4. $G_{\infty}: S^2 \to \mathcal{M}_4$ represents the nontrivial homotopy class.

The euclidean group of \mathbb{R}^4 acts on the manifold of all such trapped stable surfaces. Are they all equivalent under the euclidean group?

I'm also interested in the analogous conjecture for the Yang-Mills flow.

Let $\mathcal{M}_{YM,4}$ to be the asymptotically flat SU(3) gauge fields on euclidean \mathbb{R}^4 , modulo gauge equivalence, the connected component of the flat gauge field.

$$\pi_2(\mathcal{M}_{\mathrm{YM},4}) = \pi_5(SU(3)) = \mathbb{Z}/2\mathbb{Z}$$
(5)

Run the Yang-Mills flow on a representative G_0 of the nontrivial homotopy class. The conjecture is that G_0 flows to a trapped stable 2-sphere, which is the unstable manifold of a solution of the Yang-Mills equation. The conformal group of \mathbb{R}^4 acts on the space of trapped stable 2-spheres.