A conjecture on the Ricci flow

Daniel Friedan
friedan@physics.rutgers.edu
April 16, 2008

I’ll state the conjecture in a very specific form. There are several obvious avenues of generalization.

Has this conjecture already been studied? Is it foolish? If not, I wonder what are the chances of proving it? Could it provide a useful method of constructing Ricci solitons and families of flows between them?

Let \tilde{M}_4 be the space of AE metrics on \mathbb{R}^4 (going to a fixed euclidean metric g_E at infinity), modulo diffeomorphisms of \mathbb{R}^4 that go to the identity map at infinity.

Let M_4 be the connected component of \tilde{M}_4 that contains the flat euclidean metric g_E.

$$\pi_2(M_4) = \pi_1(\text{Diff}(S^4)) = \pi_5(S^4) = \mathbb{Z}/2\mathbb{Z}$$
(1)

(To resolve the singularity at the euclidean metric g_E, we have to do something like adjoining a frame at infinity to the space of metrics, before dividing by the diffeomorphism group.)

Choose an arbitrary representative in the nontrivial homotopy class G_0: $S^2 \to M_4$ $G_0(s) = g_E$ s = the south pole in S^2.

Run the Ricci flow pointwise on this 2-sphere of metrics $G_t(x) = G(x)_t$ $x \in S^2$ $t \geq 0$.

Conjecture

Under the Ricci flow, any 2-sphere of metrics in the nontrivial homotopy class ends as a trapped stable 2-sphere in the same homotopy class:

$$\lim_{t \to \infty} G_t = G_\infty \mod \text{Diff}(S^2)$$
(4)

where

1. $G_\infty(s) = g_E$, the euclidean metric.
2. $G_\infty(n)$ is a nontrivial fixed point (Ricci soliton), n being the north pole in S^2.
3. $G_\infty(S^2)$ is the unstable manifold of $G_\infty(n)$.
4. $G_\infty: S^2 \to M_4$ represents the nontrivial homotopy class.

The euclidean group of \mathbb{R}^4 acts on the manifold of all such trapped stable surfaces. Are they all equivalent under the euclidean group?

I’m also interested in the analogous conjecture for the Yang-Mills flow.

Let $\mathcal{M}_{YM,4}$ to be the asymptotically flat $SU(3)$ gauge fields on euclidean \mathbb{R}^4, modulo gauge equivalence, the connected component of the flat gauge field.

$$\pi_2(M_{YM,4}) = \pi_5(SU(3)) = \mathbb{Z}/2\mathbb{Z}$$
(5)

Run the Yang-Mills flow on a representative G_0 of the nontrivial homotopy class. The conjecture is that G_0 flows to a trapped stable 2-sphere, which is the unstable manifold of a solution of the Yang-Mills equation. The conformal group of \mathbb{R}^4 acts on the space of trapped stable 2-spheres.