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Abstract

This is a project to develop a wide expanse of new quantum field
theories in 2n-dimensional space-time manifolds.

For every 2d qft, there is to be a qft of extended objects in every
2n-dimensional space-time manifold M .

The quantum fields live on “quasi Riemann surfaces”, which are
certain spaces of integral (n−1)-currents in M . The notion of
integral current comes from Geometric Measure Theory.

The quasi Riemann surfaces are complete metric spaces
with analytic properties precisely analogous to Riemann surfaces.

The new qfts are to be constructed on the quasi Riemann surfaces
exactly as 2d qfts are constructed on ordinary Riemann surfaces.

Local fields in space-time will be obtained by restricting to small
extended objects.

2 / 30



References

DF, Quantum field theories of extended objects
arXiv:1605.03279 [hep-th]

and references therein

DF, Quasi Riemann surfaces
in preparation

3 / 30



The line of thought

1. Re-write the abelian U(1) gauge theory of the free n-form in
2n dimensions as a 2d cft, the c=1 gaussian model, on certain
spaces of integral (n−1)-currents.

2. These “quasi Riemann surfaces” have precisely the analytic
properties of ordinary Riemann surfaces.

3. Recall ancient history — all of 2d cft is constructed from the 2d
gaussian model, and all of non-conformal 2d qft.

4. Envision extending all the constructions of 2d cft from ordinary
Riemann surfaces to quasi Riemann surfaces,
thereby constructing a cft of (n−1)-dimensional extended
objects in 2n dimensions for every 2d cft.
Then envision extending all the constructions of non-conformal
2d qft to obtain a non-conformal qft of extended objects for
each non-conformal 2d qft.
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Marketing

We know a huge variety of 2d cft’s and qft’s. We can do explicit,
exact calculations in very many of them.

The plan is to make a cft of extended objects in 2n dimensions for
for every one of these 2d cft’s (and a qft from every 2d qft).

They are to be constructed by a completely new technique for
making quantum field theories in 2n dimensions, which at the
same time incorporates all the techniques of 2d cft and 2d qft.

Some of these will equal known 2n-dimensional qft’s. Almost all of
them are likely to be new. In the former case, there will be new
techniques for calculating in known qft’s. In the latter, there will
be new qft’s.

So I’m offering a new playground of qft in 2n dimensions — an
opportunity to develop a new technology for doing qft — a rich
collection of foundational technical problems to solve.
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Marketing (2)

I do not have any physical applications in mind. But there are
indications that some of these theories will have nonabelian local
gauge symmetry in 2n=4 dimensions.
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The manifold M

The euclidean space-time M is
• a manifold of dimension 2n
• oriented
• with a conformal structure (euclidean signature)
• compact and without boundary (for simplicity)

The basic example is M = S2n = R2n ∪ {∞}.

The Hodge ∗-operator acting on n-forms is conformally invariant

(∗ω)ν1···νn(x) = ωµ1···µn(x)
1

n!
εµ1···µnν1···νn(x)

and satisfies
∗2 = (−1)n

Nothing else of the conformal structure will be used.

(Better to say “space with Hodge-∗ in the middle dimension”
instead of “manifold with conformal structure”.)
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The free n-form classical field theory

F (x) is an n-form on M .

In 2n=4 dimensions, F (x) is the 2-form electromagnetic field.

The classical equations of motion

dF = 0, d(∗F ) = 0

allow deriving (n−1)-form gauge potentials (locally, at least)

dA = F, dA∗ = ∗F

defined up to (n−2)-form gauge symmetries f , f∗

A→ A+ df, A∗ → A∗ + df∗

(will quantize tomorrow)

8 / 30



Extended objects in the free n-form theory

The basic fields of extended objects are

Vp,p∗(ξ) = eip
∫
ξ A+ip∗

∫
ξ A
∗

An extended object ξ is some kind of “subspace in M ” over which
the (n−1)-forms A and A∗ can be integrated.

Example in 2n=4 dimensions: ξ = the 1-dimensional euclidean
world-line of a dyon of electric charge p and magnetic charge p∗.

What exactly are the (n−1)-dimensional extended objects ξ?

They should include the (n−1)-submanifolds. And what else?

I emphasize that we want the extended objects for the free n-form.
We are not concerned with extended objects for any other theory.
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U(1)× U(1) gauge symmetry

A and A∗ are gauge potentials for the compact gauge group U(1)

(A1, A
∗
1) is equivalent to (A2, A

∗
2) if, for all ξ,∫

ξ
(A1 −A2) ∈ 2πRZ and

∫
ξ
(A∗1 −A∗2) ∈ 2πR∗Z

which is to say
∫
ξ A ∈ S

1
R and

∫
ξ A
∗ ∈ S1

R∗

So eip
∫
ξ A+ip∗

∫
ξ A
∗
lies in the charge lattice p, p∗ ∈ Z/R× Z/R∗.

The U(1) condition is consistent with taking integer linear
combinations of the ξ, but not real linear combinations.

So the extended objects form an abelian group.

Compare lattice U(1) gauge theory, where the space of extended
objects is the abelian group generated by the (n−1)-placquettes.

Abelian-ness of the n-form gauge theory is essential.
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Extended objects as currents

I will use ‘current’ in the mathematical sense, specifically in the
sense of Geometric Measure Theory (GMT).

The k-currents are the distributions (linear functionals) on k-forms

ω 7→
∫
ξ
ω =

∫
M
ωµ1···µk(x) ξµ1···µk(x)ddx

Certainly, an extended object ξ is some kind of (n−1)-current,
something over which we can integrate (n−1)-forms A, A∗.

We want k-currents that are delta-functions on k-dimensional
objects in M . (Think lines of current as 1-dimensional objects.)
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Singular currents

The oriented k-simplex ∆k is the basic k-dimensional object:
(0) point, (1) line interval, (2) triangle, (3) tetrahedron, . . .

An oriented k-simplex in M gives a k-current

σ : ∆k →M ,

∫
[σ]
ω =

∫
∆k

σ∗ω

[σ] is the characteristic δ-function localized on σ(∆k) ⊂M .

Dsing
k (M) =

{
integer linear combinations

∑
imi[σi]

}
is the abelian

group of singular k-currents. It includes the k-submanifolds.

The singular k-current is the physical object in M , the linear
functional on k-forms, independent of how it is made out of
k-simplices as

∑
imi[σi].
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The boundary operator on currents

The boundary operator on currents is defined as the dual of the
exterior derivative on forms (Stokes’ theorem by definition)

Ddistr
k (M)

∂−−→ Ddistr
k−1 (M) ,

∫
∂ξ
ω =

∫
ξ
dω

(∂ξ)µ2···µk(x) = −∂µ1ξµ1µ2···µk(x)

d2 = 0 =⇒ ∂2 = 0

The boundary of a singular current is a singular current

Dsing
k (M)

∂−−→ Dsing
k−1(M)

On submanifolds, ∂ is the usual boundary operator.
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Figure 1
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Figure 2
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Integral currents

GMT puts a certain metric on Dsing
k (M) and then takes the metric

completion to get the integral currents

Dsing
k (M) ⊂ Dint

k (M) ⊂ Ddistr
k (M)

Dint
k (M)

∂−−→ Dint
k−1(M)

The additional currents, the limits of Cauchy sequences, are fractal.

Take the space of extended objects to be Dint
n−1(M).

We go to the metric completion in order to get a mathematically
well-defined calculus of differential forms on the space of extended
objects (about which more a bit later).
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The flat metric

dist(ξ1, ξ2) = ‖ξ1 − ξ2‖flat

‖ξ‖flat = inf
ξ′

[
(k+1)-volume(ξ′) + k-volume(ξ − ∂ξ′)

]
The flat norm ‖ξ‖flat measures how easy it is to deform ξ → 0.
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Recall the 2d gaussian model

the 2d gaussian model = the free 1-form in 2n=2 dimensions

F , A, A∗ are written j, a 1-form, and φ, φ∗, 0-forms (scalar fields).

j = dφ, ∗j = dφ∗, φ(x) ∈ S1
R , φ∗(x) ∈ S1

R∗

The vertex operators (which live at points x) are

Vp,p∗(x) = eipφ(x)+ip∗φ∗(x), p, p∗ ∈ Z/R× Z/R∗

The global U(1)× U(1) symmetry is

φ→ φ+ a, φ∗ → φ+ a∗, Vp,p∗(x)→ Vp,p∗(x) eipa+ip∗a∗

(tomorrow: complex coordinate z = x1 + ix2, chiral 1-forms,
quantization, RR∗ = 1 )
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The free n-form as 2d gaussian model

Define scalar fields on Dint
n−1(M)

φ(ξ) =

∫
ξ
A φ∗(ξ) =

∫
ξ
A∗

The extended object fields now take the form

Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ)

Under a gauge transformation A→ A+ df , A∗ → A∗ + df∗

φ(ξ)→ φ(ξ) +

∫
ξ
df , φ∗(ξ)→ φ∗(ξ) +

∫
ξ
df∗

∫
ξ
df =

∫
∂ξ
f = a(∂ξ) ,

∫
ξ
df∗ =

∫
∂ξ
f∗ = a∗(∂ξ)

so
Vp,p∗(ξ) −→ Vp,p∗(ξ) e

ipa(∂ξ)+ip∗a∗(∂ξ)
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The free n-form as 2d gaussian model (2)

If we fix an (n−2)-boundary ∂ξ0 and consider only the ξ that have
the same boundary ∂ξ = ∂ξ0,

Dint
n−1(M)∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ = ∂ξ0

}
then the generators are just two numbers, independent of ξ,

a(∂ξ) = a(∂ξ0), a∗(∂ξ) = a∗(∂ξ0)

The gauge symmetry becomes a global U(1)× U(1)

Vp,p∗(ξ)→ Vp,p∗(ξ) e
ipa(∂ξ0)+ip∗a∗(∂ξ0)

It begins to look like there could be a 2d gaussian model on each
Dint
n−1(M)∂ξ0 .
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The bundle Q(M)→ PB(M)

Dint
n−1(M)m∂ξ0 sees the same U(1)× U(1) generators, since

a(m∂ξ0) =

∫
m∂ξ0

f = ma(∂ξ0) , a∗(m∂ξ0) =

∫
m∂ξ0

f∗ = ma∗(∂ξ0)

so combine them (in a disconnected sum)

Dint
n−1(M)Z∂ξ0 = ⊕

m∈Z
Dint
n−1(M)m∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ ∈ Z∂ξ0

}
These will be the “quasi Riemann surfaces”. Each is an abelian
group and a complete metric space. They are parametrized by the
“integer lines”

PB(M) =
{
maximal Z∂ξ0 ⊂ ∂Dint

n−1(M)
}

Collectively, they form the bundle of “quasi Riemann surfaces”

Q(M)→ PB(M) , Q(M)Z∂ξ0 = Dint
n−1(M)Z∂ξ0

On each fiber Q(M)Z∂ξ0 there will be a 2d gaussian model.
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Three reasons for the metric completion

For brevity, write Q for any one of the fibers

Q = Q(M)Z∂ξ0 = Dint
n−1(M)Z∂ξ0

By construction, by the metric completion, Q is an abelian group
and a complete metric space.

(1) GMT gives a construction of integral currents in any complete
metric space, so a well-defined calculus of integral j-currents in Q,

Dint
j (Q)

∂−−→ Dint
j−1(Q)

from which we can define the dual j-forms on Q

Ωj(Q) = Hom(Dint
j (Q),R) , Ωj(Q)

d−−→ Ωj+1(Q)
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Three reasons for the metric completion (2)

(2) There are natural maps

Πj : Dint
j (Q)→ Dint

j+n−1(M) , Πj−1∂ = ∂Πj

Their dual maps pull back forms from M to Q

Π∗j : Ωj+n−1(M)→ Ωj(Q) , dΠ∗j−1 = Π∗jd

These come from writing ∆j ×∆k as a sum of (j+k)-simplices.
So a j-parameter family of k-simplices in M is a (j+k)-current.
So there are natural maps

Πj,k : Dint
j (Dint

k (M))→ Dint
j+k(M)

Setting k = n− 1 gives Πj .
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Three reasons for the metric completion (3)

(3) A ∗ operator can be defined on 1-forms on Q that is
compatible with the Hodge-∗ operator on n-forms on M ,

∗Π∗1 = Π∗1 ∗

This is proved (more or less) in the paper, making essential use of
the metric completion (a fractal construction called there the
“Game of Thrones” construction).
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The free n-form as 2d gaussian model (3)

The classical n-form theory on M now is the classical 2d gaussian
model on Q = Dint

n−1(M)∂ξ0 .

We have mathematically well-defined 1-forms and 0-forms on Q
which are the pull backs of the n-forms and (n−1)-forms on M

j = Π∗1F , ∗j = Π∗1(∗F ) , φ = Π∗0A , φ∗ = Π∗0A
∗

and we have mathematically well-defined classical equations of
motion

j = dφ , ∗j = dφ∗

and vertex operators

Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ)
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Gauge symmetry

Each fiber of the bundle Q(M)→ PB(M) carries a 2d gaussian
model with a global U(1)× U(1) symmetry.

The collection of these U(1)× U(1) symmetries is a local gauge
symmetry in the bundle of 2d theories over the base PB(M).

All gauge invariant expectation values can be calculated in any
single fiber.

The huge local gauge symmetry on PB(M) reduces to the
ordinary local space-time U(1)× U(1) gauge symmetry on M .

A major motivation of this project is the prospect of putting a 2d
qft with nonabelian global symmetry on each of the fibers.

The collection of nonabelian global 2d symmetries is a nonabelian
local symmetry over PB(M), which ought to/might give a
nonabelian local gauge symmetry on space-time.
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Tomorrow

Define the intersection form on currents in M ,

IM (ξ1, ξ2) 6= 0 only if k1 + k2 = 2n

Pulled back to Q,

Π∗IM (η1, η2) 6= 0 only if j1 + j2 = 2

just as in a 2-manifold.

The currents in Q intersect like the currents in a 2-manifold, and
there is a ∗-operator on 1-forms. Thus “quasi Riemann surface”.

These are taken as the defining structures that make Q a “quasi
Riemann surface”.
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Tomorrow (2)

Express quantization of the free n-form by the Schwinger-Dyson
equation, which is written in terms of the ∗-operator and
IM (ξ1, ξ2).

Then pull the S-D equation back to Q where it is identical to the
S-D equation of the quantum 2d gaussian model, written in terms
of the ∗-operator and Π∗IM (η1, η2).

So the quantum n-form on M is the quantum 2d gaussian model
on Q.

On a Riemann surface, the S-D equation of the 2d gaussian model
is just the Cauchy-Riemann equation

∂̄(1/z) = πiδ2(z)

that forms the basis for complex analysis on Riemann surfaces.

The formally identical S-D equation on Q should likewise form the
basis for complex analysis on the quasi Riemann surfaces.
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Tomorrow (3)

We have the 2d gaussian model and the Cauchy-Riemann equation
on the quasi Riemann surfaces Q.

So now we have the essential tools to carry out all the
constructions of 2d cft on the quasi Riemann surfaces.

Then we will have new cft’s of extended objects in space-time, and
can begin their study.

A cornucopeia of lovely problems.

29 / 30



Side comment

The homotopy groups of Q are given by homology groups of M ,

πj(Q) = Hj+n−1(M)

In particular
H1(Q) = π1(Q) = Hn(M)

If H1(Q) is non-trivial, then φ and φ∗ will be multi-valued on Q,
just as in the 2d gaussian model on a Riemann surface Σ with
non-trivial H1(Σ).

On M , the obstruction to solving for A globally is Hn(M).
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The intersection form on currents

The natural bilinear intersection form on currents in M is

IM (ξ1, ξ2) =

∫
M
ξ
µ1···µk1
1 (x)

εµ1···µk1ν1···νk2 (x)

k1! k2!
ξ
ν1···νk2
2 (x) d2nx

• non-zero only if k1 + k2 = 2n
• well-defined on pairs of smooth currents
• well-defined on almost all pairs of integral currents

(then giving the integer intersection number)

We want the S-D equations to look the same for all n. But the
properties of ∗ and IM (ξ1, ξ2) depend on n. In particular,

∗2 = (−1)n =

{
−1 for n odd
+1 for n even

To cope: complexify the currents (details suppressed) and modify ∗
and IM (ξ1, ξ2) slightly, so their properties become n-independent.
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Structures on complex currents in M

Define so that pulled back to Q their properties are n-independent:

J = εn∗ , IM 〈 ξ̄1, ξ2 〉 = εn,k2−nIM (ξ̄1, ξ2)

ε2n = (−1)n−1, εn,m = (−1)nm+m(m+1)/2 ε−1
n

(For n odd, εn is real. Then all currents can be taken real.)

Properties:

• J2 = −1 (almost-complex structure)

• IM 〈 ξ̄1, ξ2 〉 6= 0 only if (k1 − n+ 1) + (k2 − n+ 1) = 2

• IM 〈 ξ̄1, ξ2 〉 is densely defined and nondegenerate

• IM 〈 ξ̄1, ξ2 〉 = − IM 〈 ξ̄2, ξ1 〉 (skew-hermitian)

• IM 〈 ∂ξ1, ξ2 〉+ IM 〈 ξ̄1, ∂ξ2 〉 = 0 (integration by parts)

• IM 〈 ξ̄1, Jξ2 〉 on n-currents is hermitian and positive definite
(i.e., on k-currents with k − n+ 1 = 1)
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Schwinger-Dyson equation of the free n-form

Change basis to the chiral fields F±, A±

P± =
1

2

(
1± i−1J

)
, F± = P±F , dA± = F±

The euclidean adjoints are (F , A are now complex)

F †± = F∓ , A†± = A∓ .

The Schwinger-Dyson equation is the same for all n,

〈
∫
ξ̄0

A†α

∫
ξ2

dFβ〉 = −2πiγαβIM 〈 ξ̄0, ξ2 〉

γ++ = 1 , γ−− = −1 , γ+− = γ−+ = 0

The lhs is the 2-point function 〈A†α(x) dFβ(y) 〉 smeared against
the (0+n−1)-current ξ0 and the (2+n−1)-current ξ2.
The rhs is a δ-function in space-time smeared against the same
currents.
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The S-D equation pulled-back to Q
Pulled back to Q = Dint

n−1(M)Z∂ξ0 the S-D equation becomes
formally identical to the S-D equation of the 2d gaussian model on
a Riemann surface Σ

〈
∫
η̄0

φ†α

∫
η2

djβ〉 = −2πiγαβIQ〈 η̄0, η2 〉

where η0 is a 0-current and η2 is a 2-current, and

IQ〈 η̄0, η2 〉 = Π∗IM 〈 η̄0, η2 〉 = IM 〈Π0η0,Π2ξ2 〉

IQ〈 η̄0, η2 〉 takes the place of IΣ〈 η̄0, η2 〉, the intersection form of
the Riemann surface. (Think of η0 a point, η2 a disk.)

Unsmeared, the 2d S-D equation (for α = β = +) is

∂z̄〈φ†+(w) j+(z) 〉 = πiδ2(z − w)

which is the Cauchy-Riemann equation for 1/(z − w).
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Aside: the Dirac quantization condition RR∗ = 1

The Dirac quantization condition RR∗ = 1 is derived from the
requirement that the correlation functions of the Vp,p∗(ξ) should be
single valued.

The derivation can be carried out on Q exactly as for the 2d
gaussian model on a Riemann surface Σ.

Pick a point ξ and a small disk D in Q, such that

IQ〈 [ξ], [D] 〉 = IM 〈 ξ,Π2[D] 〉 6= 0

The boundary ∂D of the disk is a closed path in Q.

The monodromy of Vp,p∗(ξ)Vp′,p∗′(ξ′) as ξ′ moves around the
closed path ∂[D] can be calculated from the S-D equation on Q.

The monodromy is trivial iff R = R∗.

In M , the (n−1) current ξ intersects the (n+1)-current Π2D. The
(n−1) current ξ′ sweeps out the n-boundary ∂Π2D.
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Definition of quasi Riemann surface

A quasi Riemann surface is
an abelian group and a complete metric space Q
with a linear operator J on 1-forms
and a skew-hermitian form IQ〈 η̄1, η2 〉 on currents

such that

• J2 = −1 (almost-complex structure)

• IQ〈 η̄1, η2 〉 6= 0 only if j1 + j2 = 2

• IQ〈 η̄1, η2 〉 is densely defined (but not non-degenerate)

• IQ〈 η̄1, η2 〉 = − IQ〈 η̄2, η1 〉 (skew-hermitian)

• IQ〈 ∂η1, η2 〉+ IQ〈 η̄1, ∂η2 〉 = 0 (integration by parts)

• IQ〈 η̄1, Jη2 〉 on 1-currents is hermitian and non-negative
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Definition of quasi Riemann surface (2)

Divide out the Dint
j (Q) by the null spaces of IQ〈 η̄1, η2 〉

Qj = Dint
j (Q)/Nj

so IQ〈 η̄1, η2 〉 becomes non-degerate on ⊕
j
Qj .

(This is the physical equivalence relation on currents in Q.)

For Q = Dint
n−1(M)Z∂ξ0 this is dividing by null spaces of IM 〈 ξ̄1, ξ2 〉

Q−1 = Z∂ξ0 ⊂ Dint
n−2(M) , Q0 = Q = Dint

n−1(M)Z∂ξ0

Q1 = Dint
n (M)

Q2 = Dint
n+1(M)/Q⊥0 , Q3 = Dint

n+2(M)/Q⊥−1
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Definition of quasi Riemann surface (3)

The Qj form a chain complex

0 > Q3
∂
> Q2

∂
> Q1

∂
> Q0

∂
> Q−1 > 0

= = =

Z Q Z
endowed with almost-complex structure J and skew-hermitian
intersection form IQ〈 η̄1, η2 〉

which is formally identical to the chain complex of integral currents
Dint
j = Dint

j (Σ) in a Riemann surface Σ (augmented at both ends)

0 > Dint
3

∂
> Dint

2
∂
> Dint

1
∂
> Dint

0
∂
> Dint

−1 > 0

= =

Z Z
endowed with its almost-complex structure J and skew-hermitian
intersection form IΣ〈 η̄1, η2 〉.
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Quasi holomorphic curves in Q

A “quasi holomorphic curve” is a map C : Σ→ Q from a Riemann
surface Σ to Q that preserves the J-operators and the
skew-hermitian forms.

The basic example, for Q = Q(Σ) = Dint
0 (Σ),

C : z ∈ Σ 7→ [z] ∈ Dint
0 (Σ)

Pulled back along C, the fields of the n-form theory on Q become
ordinary conformal fields of the ordinary 2d gaussian model on Σ,
because C preserves the calculus of forms and the S-D equations.
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Local quasi holomorphic curves

A local qhc is a qhc with Σ = D, the unit disk.

For each local qhc, we have the radial quantization, Virasoro
algebras, and operator product expansion of the 2d cft on D.

The set of all this local 2d cft data on the collection of all local
qhc’s is the local data of the cft on Q.

Operator products of fields V1(ξ1) and V2(ξ2) on Q are seen locally
as a collection of 2d operator products on each of the local qhc’s.

Mathematically, the local properties of functions on Q will be
expressed as the local properties as a function of one complex
variable on each of the local qhc’s.

11 / 15



Some mathematical questions and speculations

1. Speculation: quasi Riemann surfaces are classified up to
isomorphism by the Jacobian, i.e., the homology data in the
middle dimension, H1(Q) = Hn(M) as a lattice.

For M = S2n = R2n ∪ {∞}, the Jacobian is trivial, so the
conjecture says that the quasi Riemann surfaces are
isomorphic for all n,

Dint
0 (S2)Z∂ξ′0 ' D

int
n−1(S2n)Z∂ξ0

2. Speculation: every quasi Riemann surface Q is isomorphic to
the integral currents Dint

0 (Σ) in some 2-dimensional conformal
space Σ.

That is, a unique 2-dimensional space Σ can be reconstructed
from the Qj , the J-operator, and the skew-hermitian
intersection form IQ〈 η̄1, η2 〉.
What are these spaces Σ when the Jacobian is not that of a
Riemann surface?
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Some mathematical questions and speculations (2)

3. What are the automorphism groups of the quasi Riemann
surfaces?

If the above speculations are correct, then the automorphism
group will depend only on the Jacobian. The automorphism
groups will be very rich.

For example, the automorphism group of the quasi Riemann
surface associated to S2, the quasi Riemann surface with
trivial Jacobian, will include the conformal symmetry groups
of all the S2n.

4. How much of complex analysis can be done on quasi Riemann
surfaces Q, based on the Cauchy-Riemann equation written in
terms of J and IQ〈 η̄1, η2 〉 and/or the quasi holomorphic
curves in Q?

5. What can be said about the set of local quasi holomorphic
curves in Q? in particular, for the basic case M = S2n?
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To do

1. Extend the 2d gaussian model from a Riemann surface Σ to
the quasi Riemann surface of integral 0-currents in Σ,
Q(Σ) = Dint

0 (Σ).

This requires renormalizing the vertex operators Vp,p∗(ξ) for
arbitrary 0-currents ξ.

If the mathematical speculations are correct, then the
divergence to be subtracted should be interpreted as the
physical dimension for the 0-current ξ. The values of these
physical dimensions should include all the dimensions (n−1 of
the singular (n−1) currents in 2n dimensions, for every n.

2. Try to do the same in the n-form theory, renormalizing the
Vp,p∗(ξ) for arbitrary integral (n−1)-currents ξ.
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To do (2)

3. Investigate the nonabelian SU(2)× SU(2) global symmetry in
the 2d gaussian model on Q at the self-dual coupling R = R∗.

Does the nonabelian local symmetry in the bundle
Q(M)→ PB(M) translate into a nonabelian local
SU(2)× SU(2) gauge symmetry in space-time?

4. Try to extend other 2d cfts from a Riemann surface Σ to the
quasi Riemann surface of 0-currents in Σ, Q(Σ) = Dint

0 (Σ).

Try to imitate on Q(Σ) the usual operations on 2d cfts, such
as orbifolding, current algebra, chiral fermions, etc..

5. Try to imitate the usual operations on 2d cfts on a general
quasi Riemann surface Q, in particular on the Q(M)Z∂ξ0 .

6. What local cft’s on M are obtained on restriction to the small
(n−1)-dimensional extended objects?
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