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1d quantum systems, critical in the bulk

for L/G>1
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boundary renormalization group flow
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Gradient formula for boundary entropy

boundary entropy
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implying second law of boundary thermodynamics
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The boundary behaves as an isolated system.



Supersymmetric 1d systems, critical in the bulk

a conserved fermionic super-charge

H = Q?

(Advertisement: in cond-mat/0505084 and 0505085, | argued that
circuits made of bulk-critical quantum wire, joined at boundaries
and junctions, would be ideal for asymptotically large-scale
quantum computing: the ¢ = 24 monster system in particular.)



A second gradient formula for supersymmetric systems

[DF & A. Konechny, in preparation]
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(the A? now restricted to the susy coupling constants)

implying positivity of the susy boundary energy

dlnz Olnz a@lnz_
A =5 =5 o

a_S b<

The boundary behaves as an isolated supersymmetric system.



Here, | will prove directly the positivity of the boundary energy
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equivalently, that In z decreases under the RG flow.




Local densities

energy and super-charge
L
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0
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0
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local conservation of super-charge
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Boundary energy and super-charge

h(t) = Iim/ dx H(t, x)
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[Q. a(t)]+ = 2h(t)

Olnz
- o8 = <h>




Separate Q into boundary and bulk parts at x = ¢
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locality implies A
[@buik(0), G(0)]+ =0
SO
(2h) = ([Q, 4(0)]+) = ([(0). a(0)]+)
but this equation is useless at ¢ = 0, because
([4(t), §(0)]+) is uv divergent at t = 0.

The boundary cannot be separated from the bulk, in general.



Use bulk super-conformal invariance

define
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Now take ¢ — 0:
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g(w) = / dt et ([a(t), 4(0)])
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which is uv-finite as long as dim[g(w)] < 1, i.e., dim[g] < 1.
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We have g(w) > 0 and g(w) =0 iff § =0, so
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with equality iff the boundary is critical (superconformal).
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The gradient formula
boundary operators
[Qa (llga(t)]-i- = ¢a(t)
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boundary beta-functions
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(62) = {[Q, $a(0)]4+) = ([Ge(t) + Quui(t), $a(0)]+)
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Some questions

[

. Why do we need bulk conformal invariance?
2. Why do we need canonical uv behavior in the boundary?
> no negative dimension boundary operators

> no strongly irrelevant boundary operators

3. Does the result apply to composite boundaries/junctions?

N

. Can Inz (and/or s) be bounded below?



Bulk conformal invariance and zeros of response functions
A L
0 Quun(t) = | o [-0x3(¢.0)] = (e,
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Define response functions
+o0 ) R
RE@) =% [ de e ((ij(e.c), 3a(0)L:)
0
R} (w) is analytic in the upper half-plane, R; (w) in the lower.
Use the conservation equation
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poles at
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