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1d quantum systems, critical in the bulk
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Gradient formula for boundary entropy

boundary entropy
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1− β∂

∂β

)
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gradient formula
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implying second law of boundary thermodynamics
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The boundary behaves as an isolated system.



Supersymmetric 1d systems, critical in the bulk

a conserved fermionic super-charge

H = Q̂2

(Advertisement: in cond-mat/0505084 and 0505085, I argued that
circuits made of bulk-critical quantum wire, joined at boundaries
and junctions, would be ideal for asymptotically large-scale
quantum computing: the c = 24 monster system in particular.)



A second gradient formula for supersymmetric systems

[DF & A. Konechny, in preparation]

∂ ln z

∂λa
= −gS

abβ
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(the λa now restricted to the susy coupling constants)

implying positivity of the susy boundary energy
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b ≤ 0

The boundary behaves as an isolated supersymmetric system.



Here, I will prove directly the positivity of the boundary energy

Λ
∂ ln z

∂Λ
= β

∂ ln z

∂β
≤ 0

equivalently, that ln z decreases under the RG flow.



Local densities

energy and super-charge

H =

∫ L

0
dx H(t, x)

Q̂ =

∫ L

0
dx ρ̂(t, x)

[Q̂, ρ̂(t, x)]+ = 2H(t, x)

local conservation of super-charge

∂t ρ̂(t, x) + ∂x ̂(t, x) = 0



Boundary energy and super-charge

h(t) = lim
ε→0

∫ ε

0
dx H(t, x)

q̂(t) = lim
ε→0

∫ ε

0
dx ρ̂(t, x)

[Q̂, q̂(t)]+ = 2h(t)

−∂ ln z

∂β
=
〈
h
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Separate Q̂ into boundary and bulk parts at x = ε

q̂ε(t) =

∫ ε

0
dx ρ̂(t, x) Q̂bulk(t) =

∫ L

ε
dx ρ̂(t, x)

Q̂ = q̂ε(t) + Q̂bulk(t)

locality implies
[Q̂bulk(0), q̂(0)]+ = 0

so 〈
2h
〉

=
〈
[Q, q̂(0)]+

〉
=
〈
[q̂ε(0), q̂(0)]+

〉
but this equation is useless at ε = 0, because〈
[q̂(t), q̂(0)]+

〉
is uv divergent at t = 0.

The boundary cannot be separated from the bulk, in general.



Use bulk super-conformal invariance

define

gε(ω) =

∫ ∞
−∞

dt e iωt
〈
[q̂ε(t), q̂(0)]+

〉
G±ε (ω) = ±

∫ ±∞
0
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〈
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〉
so

2πδ(ω)
〈
2h
〉

= gε(ω) + G+
ε (ω) + G−ε (ω)

bulk super-conformal invariance implies

G+
ε (iπ/β) = 0 = G−ε (−iπ/β)

so ∫
dω

2π
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so 〈
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Now take ε→ 0:

g(ω) =

∫ ∞
−∞

dt e iωt
〈
[q̂(t), q̂(0)]+

〉
β
∂ ln z

∂β
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∫
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which is uv-finite as long as dim[g(ω)] < 1, i.e., dim[q̂] < 1.

We have g(ω) ≥ 0 and g(ω) = 0 iff q̂ = 0, so

β
∂ ln z

∂β
≤ 0

with equality iff the boundary is critical (superconformal).



The gradient formula

boundary operators

[Q̂, φ̂a(t)]+ = φa(t)

∂ ln z
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q̂ = −2βaφ̂a

h =
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2
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〈
φa

〉
=
〈
[Q̂, φ̂a(0)]+

〉
=
〈
[q̂ε(t) + Q̂bulk(t), φ̂a(0)]+

〉
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∫ ∞
−∞
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〈
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〉
=

∫ ∞
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〈
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〉
= −2βbgab(ω)
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∂ ln z
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〈
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〉

gS
ab = 2β

∫
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∫
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0
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Some questions

1. Why do we need bulk conformal invariance?

2. Why do we need canonical uv behavior in the boundary?
I no negative dimension boundary operators
I no strongly irrelevant boundary operators

3. Does the result apply to composite boundaries/junctions?

4. Can ln z (and/or s) be bounded below?



Bulk conformal invariance and zeros of response functions

∂tQ̂bulk(t) =

∫ L

ε
dx [−∂x ̂(t, x)] = ̂(t, ε)

Define response functions

R±a (ω) = ±
∫ ±∞

0
dt e iωt−δ|t|〈[i ̂(t, ε), φ̂a(0)]+

〉
R+

a (ω) is analytic in the upper half-plane, R−a (ω) in the lower.

Use the conservation equation

G±a,ε(ω) = ±
∫ ±∞

0
dt e iωt−δ|t|〈[Q̂bulk(t), φ̂a(0)]+

〉
=

R±a (ω)

ω ± iδ



τ = it, 0 < τ < β

〈
̂(−iτ, ε) φ̂a(0)

〉
=

∫
dω

2πi

e−ωτ

1 + e−ωβ
[
R+(ω) + R−(ω)

]
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ωn =
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β
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2
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so〈
̂(−iτ, ε) φ̂a(0)

〉
= β−1

∑
n

e−ωnτ
[
θ(n)R+(ωn)− θ(−n)R−(ωn)

]
but

j(−iτ, x) = AG (x + iτ) + ĀG (x − iτ)

so
R+

a (iπ/β) = 0 = R−a (−iπ/β)


