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Abstract

Some elementary observations are made about the non-unitary conformal field theory
of the free k-form in 2n space-time dimensions. The prototype is the free 1-form, aka the
free conformal scalar field. The Ward identities are written in terms of the intersection
form on currents. The charge-carrying and dual-charge-carrying vertex operators are
described. Some peculiarities are remarked in the construction of the theories on a
general conformal space-time manifold.
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1 The free scalar cft

The free conformal scalar field in d=2n dimensional euclidean space-time has classical action

S[φ] =

∫
ddx

1

2
φ(x)�nφ(x) � = −gµν∂µ∂ν (1.1)

φ(x) has scaling dimension 0. The shift by a constant,

φ(x)→ φ(x) + a (1.2)

is a global internal symmetry. The classical action can be written on an arbitrary 2n-manifold
such that it is

(1) covariant in the space-time metric gµν(x),
(2) conformally invariant, i.e., invariant under gµν(x)→ ef(x)gµν(x), and
(3) shift invariant.

The conformally invariant version of the operator �n was constructed in [1]. Its shift invari-
ance was established in [2] (or possibly earlier). The conformal field theory was discussed
in [3].

The Schwinger-Dyson equation

〈�nφ(x)φ(x0) 〉 = δd(x− x0) (1.3)

gives the for the euclidean 2-point function

〈φ(x)φ(x0) 〉 =

∫
ddp

(2π)d
eip(x−x0)

(p2)n
(1.4)

which is log-divergent at p = 0. The integral must be cut off near p = 0 and renormalized at
some infrared scale µ. The resulting 2-point function grows logarithmically at large distance

〈φ(x)φ(x0) 〉 −→ const(− lnµ|x− x0|) (1.5)

violating cluster decomposition.
We can attempt to cure this IR pathology by the strategy that works for the 2d theory [?].

First, the shift symmetry is made into a gauge symmetry. That is, only shift-invariant
quantities are observable. These are generated by the 1-form j(x) = dφ(x). The scalar field
φ(x) is no longer a local field in the quantum field theory. Rather, φ(x) is the multi-valued
integral of j(x) = dφ(x). At this point it seems appropriate to re-name the theory the free
conformal 1-form.

As in 2d, this is not a complete cure. The problem remains that the ground state is not
normalizable because the zero-mode of φ(x) is unbounded. The observable

eik[φ(x)−φ(x0)] = e
ik

x∫
x0

j(x)

(1.6)

has expectation value
〈 eik[φ(x)−φ(x0)] 〉 = δ(k) |x− x0|−k

2

(1.7)
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where the δ(k) factor comes from the integral over the unbounded zero-mode. Taking k → 0
gives 〈 1 〉 =∞ where 〈 1 〉 is the square of the norm of the ground state.

The second step of the cure is to modify the theory so that the zero-mode becomes
bounded. The scalar field φ(x) is made to take values in a circle of radius R. The iden-
tification φ(x) ∼ φ(x) + 2πR is made at each point x in space-time. The parameter k in
the observable (1.6) now takes discrete values k = m/R, m ∈ Z, and δ(k) is the discrete
delta-function, so δ(0) is finite. The resulting theory remains conformally invariant because
the shift symmetry commutes with the conformal group.

Such a construction can be carried out as a straightforward generalization of the familiar
case d = 2. The fundamental field is the 1-form j(x) satisfying dj = 0. Conjugate to j(x) is
the divergenceless 1-current

Jµ(x) = gµν�n−1jν(x) ∂µJ
µ(x) = 0 (1.8)

which can equally well be regarded as a closed (d−1)-form

j∗µ1···µd−1
(x) = εµ1···µd−1µ J

µ(x) dj∗ = 0 (1.9)

Charges are associated to integral (d−1)-cycles ξd−1 and dual charges are associated to
integral 1-cycles ξ1

Q∗(ξd−1) = i−1
∫
ξd−1

j∗ Q(ξ1) = i−1
∫
ξ1

j (1.10)

Q∗(ξd−1) generates the shift symmetry. Q(ξ1) measures the winding number around ξ1. A
multi-valued 0-form φ(x) is constructed by integrating dφ = j. A multi-valued (d−2)-form
φ∗(x) is constructed by integrating dφ∗ = j∗. The basic charged fields under the shift
symmetry are the vertex operators eik[φ(x)−φ(x0)] or, more generally, eik

∫
ξ0
φ for ξ0 an integral

0-cycle. The extended objects carrying dual charge (winding number) are the dual vertex
operators eik

∫
ξd−2

φ∗ which live on integral (d−2)-cycles ξd−2 in space-time.
Section 2 summarizes the mathematical language of forms and currents and some of the

basic results from [2] on conformally invariant differential operators. Section 3 describes
the charge structure of the free conformal 1-form cft. Section 4 explicitly constructs the
free 1-form cft on euclidean space-time and its conformal compactification Sd = Rd ∪ {∞}.
Section 5 generalizes to the free conformal k-form and sketches a formulation that does
not assume an orientation of space-time. Section 6 mentions some peculiar features of the
theories on a general conformal space-time.

2 Mathematical preliminaries

Space-time is a manifold M of even dimension d = 2n. It has a conformal riemannian struc-
ture, i.e., a riemannian metric gµν(x) defined up toWeyl transforms gµν(x)→ ef(x)gµν(x). For
simplicitly, M is assumed to be compact. The basic example is the d-sphere Sd = Rd ∪{∞}
which is the conformal compactification of euclidean space-time. For convenience, we as-
sume M to be oriented. The assumption of an orientation can be avoided at the cost of
some minor complications (see section 5.1).
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2.1 Forms and currents

The basic fields of the theory will be differential forms on M . Correlation functions in
quantum field theory are distributions, so the differential forms in the correlation functions
are to be integrated against smooth “smearing functions”. The natural “smearing functions”
for k-forms are the k-currents (k-vector-valued densities)

ξk(x) = ξµ1···µkk (x) ddx (2.1)

The “smearing” — the pairing between a k-form ωk(x) and a k-current ξk(x) — will be
written variously

(ωk, ξk) = ωk(ξk) =

∫
ξk

ωk =

∫
ωkµ1···µk(x)

1

k!
ξµ1···µkk (x) ddx (2.2)

The smearing currents ξµ1···µkk (x) ddx should be smooth in x. However, correlation functions
are nonsingular except at coincident points, more general distributional smearing currents
can be used as long as account is taken of the singularities at coincident points. A special
kind of distributional k-current is the generalized Dirac delta-function ξk(x) localized on an
oriented k-submanifold Nk in space-time, defined by∫

ξk

ωk =

∫
Nk

ωk (2.3)

where the rhs is the integral of the k-form ωk(x) over the oriented k-submanifold Nk. The
current ξk(x) is said to represent the oriented submanifold Nk. More generally, there is a
distributional k-current representing any integral k-chain Nk in space-time, defined by the
same formula (2.3).

The space of k-forms and the space of k-currents

Ωk = the space of k-forms Dk = the space of k-currents (2.4)

are formally dual to each other under the pairing (2.2)

Dk = (Ωk)∗ Ωk = (Dk)∗ (2.5)

The boundary operator ∂ on currents is dual to the exterior derivative d on forms,

d : Ωk → Ωk+1 ∂ : Dk+1 → Dk ∂ = d∗ d = ∂∗
∫
∂ξk+1

ωk =

∫
ξk+1

dωk (2.6)

(dωk)µ0···µk = ∂µ0ω
k
µ1···µk − ∂µ1ω

k
µ0µ2···µk + · · · (∂ξk+1)

µ1···µk(x) = −∂µ0ξ
µ0µ1···µk
k+1 (x) (2.7)

The boundary operator on currents agrees with the usual boundary operator on oriented
submanifolds and integral chains.
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2.2 The intersection form on currents

The orientation of M is expressed by two invariants (which are inverses of each other)

εµ1···µd ddx (ddx)−1εµ1···µd (2.8)

The latter gives the bilinear intersection form on currents

I(ξk, ξd−k) =

∫
M

1

k!(d− k)!
ξµ1···µkk (x) ξ

µk+1···µd
d−k (x) εµ1······µd d

dx (2.9)

When ξk and ξd−k are distributional currents representing oriented submanifolds or integral
chains in general position, i.e., such that the integral (2.9) makes sense, then I(ξk, ξd−k) is the
integer intersection number. The intersection form satisfies an integration by parts formula

I(∂ξk, ξd−k+1) = (−1)kI(ξk, ∂ξd−k+1) (2.10)

and a symmetry formula

I(ξd−k, ξk) = (−1)k(d−k)I(ξk, ξd−k) (2.11)

2.3 Currents as axial forms, forms as axial currents

We are using the mathematical language in which k-forms are integrated over oriented k-
submanifolds which are represented by distributional k-currents. In physics usage, a 1-
current ξµ1 (x) ddx is integrated over a hypersurface (with a choice of normal direction) to
give a flux. More generally, a k-current is integrated over a co-oriented (d−k)-submanifold
Nd−k to give a generalized flux. The co-orientation is an orientation of the normal bundle
of the submanifold. Co-oriented (d−k)-submanifolds are then represented by distributional
k-forms.

Given an orientation of the space-time M , these two languages are exactly equivalent.
The mathematical language seems simpler to apply in a general setting, so we assume an
orientation and translate physics k-currents to (d−k)-forms.

Given an orientation of the space-timeM , an co-orientation of a submanifold is equivalent
to an orientation. So there is an equivalence between k-forms and (d−k)-currents, where the
equivalence changes sign with a change of the space-time orientation. A (d−k)-form is an
axial k-current.

Given an orientation of M , the integral of a k-current ξk(x) over a (co-)oriented (d−k)-
submanifold Nd−k is ∫

ξd−k

ξk(x) = I(ξk, ξd−k) (2.12)

where ξd−k is the distributional (d−k)-current that represents the submanifold Nd−k. On the
rhs, the distributional current ξk(x) is integrated against the smooth current ξd−k(x). For
example, suppose M = Rd and Nd−k is the hyperplane spanned by xk+1, . . . , xd. Then

I(ξk, ξd−k) =

∫
ξ1,...,kk (x) dxk+1 · · · dxd (2.13)
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which is indeed the integral of the (d−k)-current over the hyperplane.
Stokes theorem for currents has the form∫

ξd−k+1

div ξk =

∫
∂ξd−k+1

ξk div : Dk → Dk−1 (2.14)

which is
I(div ξk, ξd−k+1) = I(ξk, ∂ξd−k+1) = (−1)kI(∂ξk, ξd−k+1) (2.15)

therefore the divergence operator is

div ξk = (−1)k∂ξk (div ξk)
µ1···µk−1(x) = ∂µkξ

µ1···µk
k (x) (2.16)

The orientation-dependent equivalence between k-currents and (d−k)-forms is

ε : Dk → Ωd−k
∫
ξd−k

εξk =

∫
ξd−k

ξk (εξk, ξd−k) = I(ξk, ξd−k)

ε−1 : Ωd−k → Dk
∫
ξd−k

ωd−k =

∫
ξd−k

ε−1ωd−k (ωd−k, ξd−k) = I(ε−1ωd−k, ξd−k, )

(εξk)µk+1···µd(x) =
1

k!
ξµ1···µkk (x) εµ1···µd (ε−1ωd−k)µ1···µk(x) ddx =

1

k!
ωd−kµk+1···µd(x) εµ1···µd ddx

(2.17)
The divergence on currents is equivalent to the exterior derivative on forms

div = ε−1dε (2.18)

The symmetry formula becomes

(εξk, ε
−1ωk) = (−1)k(d−k)(ξk, ω

k) (2.19)

2.4 Conformally invariant differential operators

So far only the orientation ofM has been used to construct the intersection form on currents
and the equivalence between k-currents and (d−k)-forms.

Now the conformal structure The conformal structure has played no role to this point
Branson, Thomas and Gover, A. Rod, Conformally invariant operators, differential forms,

cohomology and a generalisation of q-curvature, arXiv:math/0309085
Ek = the space of k-forms
Ek = the space of k-currents
Ck = the space of closed k-forms
Ck = (Ck)∗ = Ek/∂Ek+1

For k ≤ n, there is a conformally invariant differential operator, formally self-adjoint,

Lk : Ek → Ek order(Lk) = d− 2k (2.20)

Lk = δMkd (2.21)
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where
Mk : Ck → Ck (2.22)

is conformally invariant.
There is an elliptic complex (the kth de Rham detour complex)

E0 d−→ · · · d−→ Ek−1 d−→ Ek Lk−→ Ek
d−→ Ek−1 · · ·

d−→ E0 (2.23)

Hk
L(M) is the cohomology in degree k. There is an injection Hk(M)→ Hk

L(M).

3 The 1-form cft

1. Start with a 1-form field j(x) with canonical scaling dimension 1 and satisfying the
equation of motion

dj = 0 (3.1)

There is an associated dimensionless generalized charge (the winding number)

Q∗(ξ1) =

∫
ξ1

j dim(Q∗) = −1 + dim(j) = 0 (3.2)

for every 1-cycle ξ1 in space-time (e.g., the 1-submanifolds without boundary). The charge
Q∗(ξ1) depends only on the homology class of ξ1 because dj = 0.

2. Construct (locally) the 0-form φ(x) as the solution of

dφ = j ∂µφ(x) = jµ(x) dim(φ) = dim(j)− 1 = 0 (3.3)

φ(x) is determined by (3.3) up to a constant shift

φ(x)→ φ(x) + a (3.4)

3. Impose the identification at each point x

φ(x) ∼ φ(x) + 2πR (3.5)

4. Construct the dual (d−1)-form j∗(x)

j∗(x) = �n−1i−1∗j j∗µ1···µd−1
(x) = �n−1 i−1εµ1···µd−1

ν jν(x) dim(j∗) = dim(j)+2(n−1) = d−1
(3.6)

5. Impose the second equation of motion

dj∗ = 0 (3.7)

This is equivalent to �nφ = 0 because

dj∗ = 0 ⇐⇒ 0 = i∗dj∗ = −�n−1∂µjµ = �nφ (3.8)
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There is an associated dimensionless charge

Q(ξd−1) =

∫
ξd−1

j∗ dim(Q) = −(d− 1) + dim(j∗) = 0 (3.9)

for every (d−1)–cycle ξd−1 in space-time (e.g., the (d− 1)-submanifolds without boundary).
The charge Q(ξd−1) depends only on the homology class of ξd−1 because dj∗ = 0.

6. Construct a (d−2)-form φ∗(x) locally by integrating j∗

dφ∗ = j∗ dim(φ∗) = dim(j∗)− 1 = d− 2 (3.10)

where φ∗(x) is defined up to (d−3)-form gauge transformations a∗(x)

φ∗ → φ∗ + da∗ (3.11)

Note that all of the forms j, φ, j∗, φ∗ have canonical scaling dimensions.

7. Construct the free quantum theory by writing the Schwinger-Dyson equations for the
2-point correlation functions 〈 j∗(x)φ(x′) 〉 and 〈φ∗(x) j(x′) 〉. This is done in the following
sections. The S-D equation for 〈 j∗(x)φ(x′) 〉 is

〈 iQ(∂ξd)

∫
ξ0

φ 〉 = I(ξd, ξ0) (3.12)

The S-D equation for 〈φ∗(x) j(x′) 〉 is

〈 iQ∗(∂ξ2)
∫
ξd−2

φ∗ 〉 = I(ξd−2, ξ2) (3.13)

In (3.12), ξd is an arbitrary d-chain (e.g. a d-submanifold) whose boundary is the (d−1)-
cycle ∂ξd, and ξ0 is a 0-cycle (a sum of points with integer coefficients). In (3.13), ξ2 is a
2-chain (e.g. a 2-submanifold) with boundary the 1-cycle ∂ξ2, and ξd−2 is a (d−2)-cycle. In
both (3.12) and (3.13), I(ξd−k, ξk) is the intersection number.

8. The S-D equation (3.12) says that the charge Q(∂ξd) generates the shift of
∫
ξ0
φ when

ξd intersects ξ0. For example, take ξd to be a ball in space-time, so ∂ξd−1 is the boundary
(d−1)-sphere. Take ξ0 to be the Dirac delta-function δx′ concentrated at a point x′ inside
the ball ξd. Then I(ξd, ξ0) = 1 and (3.12) becomes

〈 iQ(∂ξd) φ(x′) 〉 = 1 (3.14)

In the radial quantization around the center of the ball, this becomes the operator equation

[iQ(∂ξd), φ(x′)] = 1 (3.15)

which is to say that the charge operator Q(∂ξd) generates the shift of φ(x′)

eiaQ(∂ξd)φ(x′)e−iaQ(∂ξd) = φ(x′) + a (3.16)
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9. The second S-D equation (3.13) says that the generalized charge Q∗(∂ξ2) generates
the shift of

∫
ξd−2

φ∗ when ξd−2 intersects ξ2, which is to say when the 1-cycle ∂ξ2 links ξd−2.
For example, take ξ2 to be a disk so ∂ξ2 is the boundary circle. The extended charge Q∗(∂ξ2)
measures the winding of φ(x) around the circle ∂ξ2.

10. φ(x) is dimensionless, so we can exponentiate it to construct the vertex operators

Vp(x) = eipφ(x) (3.17)

The S-D equation (3.12) implies the operator product formula

Q(∂ξd) Vp(x) = pVp(x) (3.18)

when x is inside ∂ξd. So Vp(x) carries charge Q = p.

11.
∫
ξd−2

φ∗ is dimensionless, so we can exponentiate it to construct the dual generalized
vertex operators

Vp∗(ξd−2) = e
ip∗

∫
ξd−2

φ∗ (3.19)

which live on (d− 2)-cycles ξd−2. The S-D equation (3.13) implies the operator product
formula

Q∗(∂ξ2) Vp∗(ξd−2) = p∗Vp∗(ξd−2) (3.20)

when ∂ξ2 has linking number 1 with ξd−2. So Vp∗(ξd−2) carries generalized charge Q∗ = p∗.
We construct φ(x′) in the presence of a dual vertex operator Vp∗(ξd−2) by integrating the

1-form j along a path to x′ from some base-point x

φ(x) Vp∗(ξd−2) =

∫ x′

x

j Vp∗(ξd−2) (3.21)

so φ(x) is multi-valued around any loop ∂ξ2 that links with ξd−2, shifting around the loop
by ∫

∂ξ2

j Vp∗(ξd−2) = Q∗(∂ξ2) Vp∗(ξd−2) = p∗Vp∗(ξd−2) (3.22)

The integral of j = dφ around a 1-cycle must be 2πR times an integer winding number, so

p∗ = 2πRm∗ m∗ ∈ Z (the winding number) (3.23)

12. The product Vp∗(ξd−2)Vp(x′) should be single-valued. If we move x′ around a loop
∂ξ2 that links ξd−2, we pick up a factor which can be evaluated using the S-D equation (3.12)

e
〈 ip∗

∫
∂ξ2

j ipφ(x′) 〉
= eip

∗pI(ξ2,δx′ ) = eip
∗p (3.24)

so we get the Dirac quantization condition

p∗p ∈ 2πZ (3.25)
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Since p∗ = 2πRm∗, the charges of the Vp(x) must lie in the dual lattice

p = mR−1 m ∈ Z (3.26)

13. The general class of gauge-invariant observables is formed by operator products of
the vertex operators and dual vertex operators.

14. It remains to write the stress-energy tensor Tµν(x) in terms of j(x) and j∗(x) and
derive the conformal properties of the vertex operators and the dual vertex operators

15. The partition function on a general space-time manifold M must include a sum
over charge sectors Q(ξd−1) = m(ξd−1)/R associated to each (d−1)-homology class [ξd−1] in
M , and a sum over dual charge sectors Q∗(ξ1) = m∗(ξ1)R associated to each 1-homology
class [ξ1] in M .

16. Everything about the construction of the theory from j is manifestly conformal
invariance except equation (3.6) for j∗(x). Counting powers of the metric gµν , � ∼ g−1

and ∗ acting on 1-forms goes as gn−1, so j∗ ∼ g0. Thus Weyl invariance of the theory is
given by the existence of a Weyl-invariant covariant operator (�n−1i−1∗)cov from 1-forms to
(d−1)-forms which is equal to �n−1i−1∗ in flat space-time.

3.1 Forms and charges

3.2 Ward identities

3.3 Vertex operators

4 The 1-form cft on Sd

In the following sections we derive the smeared Schwinger-Dyson equation (3.12) for 〈 j∗(x)φ(x′) 〉,

〈 i
∫
∂ξd

j∗
∫
ξ0

φ 〉 = I(ξd, ξ0) (4.1)

and S-D equation (3.13) for 〈 j(x)φ∗(x′) 〉,

〈 i
∫
∂ξ2

j

∫
ξd−2

φ∗ 〉 = I(ξd−2, ξ2) ∂ξd−2 = 0 (4.2)

These equations are to hold for arbitrary smooth smearing currents, so they are equivalent
to differential equations on the unsmeared 2-point functions, which is the usual form for the
Schwinger-Dyson equations. Actually, we will derive the differential equations, then smear
with currents to get (4.1) and (4.2). These differential equations determine the 2-point
functions completely on euclidean space-time, and therefore determine the free quantum
theory completely. The S-D equations are independent of the space-time metric, so they
define the quantum field theory on any space-time manifold.
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4.1 2-point functions

The Schwinger-Dyson equation for 〈 j∗(x)φ(x′) 〉
Euclidean symmetry determines 〈 j∗(x)φ(x′) 〉 up to normalization,

〈 j∗µ1···µd−1
(x)φ(x′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
εµ1···µd−1σ p

σ (4.3)

Calculate

〈 ∂1j∗2···d(x)φ(x′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
ip1ε2···d1 p

1 =

∫
ddp

(2π)d
eip(x−x

′)

p2
(−iε12···d) p21 (4.4)

so

〈 dj∗µ1···µd(x)φ(x′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
(−iεµ1···µd)p2 (4.5)

giving the S-D equation

〈 idj∗µ1···µd(x)φ(x′) 〉 = δd(x− x′)εµ1···µd (4.6)

We can write (4.6)

〈 i∗dj∗(x)φ(x′) 〉 = δd(x− x′)

which agrees with (1.3) since i∗dj∗ = �nφ. Thus the normalization of (4.3) is correct.
Smear the S-D equation (4.6) against a d-current ξd(x) and a 0-current ξ0(x′) to get

〈 i
∫
ξd

dj∗
∫
ξ0

φ 〉 = I(ξd, ξ0) (4.7)

or, equivalently,

〈 i
∫
∂ξd

j∗
∫
ξ0

φ 〉 = I(ξd, ξ0) (4.8)

which is (4.1), the first of the two smeared S-D equations to be derived.
The 2-point function 〈φ∗(x)j(x′) 〉
Euclidean symmetry implies, up to normalization,

〈φ∗µ1···µd−2
(x)jν(x

′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
εµ1···µd−2νσ (−pσ) (4.9)

To check the normalization, evaluate

〈 dφ∗µ1···µd−1
(x)jν(x

′) 〉 = 〈 ∂µ1φ∗µ2···µd−1
(x)jν(x

′) 〉 − 〈 ∂µ2φ∗µ1µ3···µd−1
(x)jν(x

′) 〉+ · · ·+ 〈 ∂µd−1
φ∗µ1···µd−2

(x)jν(x
′) 〉

=

∫
ddp

(2π)d
eip(x−x

′)

p2
i
[
pµ1εµ2···µd−1νσ − pµ2εµ1µ3···µd−1νσ + · · ·+ pµd−1

εµ1···µd−2νσ

]
(−pσ)

Now derive the identity

pµ1εµ2···µd−1νσ − pµ2εµ1µ3···µd−1νσ + · · ·+ pµd−1
εµ1···µd−2νσ = εµ1···µd−1σpν − εµ1···µd−1νpσ (4.10)
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by contracting both sides with 1
(d−1)!ε

µ1···µd−1σ
′ because both sides are completely antisym-

metric in µ1 · · ·µd−1
(δµ1ν δ

σ′

σ − δµ1σ δσ
′

ν )pµ1 = δσ
′

σ pν − δσ
′

ν pσ (4.11)

Substitute the identity (4.10) in (??) to get

〈 dφ∗µ1···µd−1
(x)jν(x

′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
i−1
(
εµ1···µd−1σp

σpν − εµ1···µd−1νp
2
)

(4.12)

Now use (4.3) to calculate

〈 j∗µ1···µd−1
(x) dφν(x

′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
i−1εµ1···µd−1σ p

σpν (4.13)

which differs from (4.12) only by a contact term

〈 j∗µ1···µd−1
(x) dφν(x

′) 〉 − 〈 dφ∗µ1···µd−1
(x)jν(x

′) 〉 = i−1εµ1···µd−1νδ
d(x− x′) (4.14)

so the normalization of (4.9) is correct. It gives the correct 2-point function away from
coincident points.

We see from (4.14) that we cannot have both of

〈 j∗(x) j(x′) 〉 = 〈 dφ∗(x) j(x′) 〉 〈 j∗(x) j(x′) 〉 = 〈 j∗(x) dφ(x′) 〉 (4.15)

There is an unavoidable contact term ambiguity in 〈 j∗(x) j(x′) 〉. Smearing (4.14) against
currents gives

〈 i
∫
ξd−1

j∗
∫
ξ1

dφ 〉 − 〈 i
∫
ξd−1

dφ∗
∫
ξ1

j 〉 = I(ξd−1, ξ1) (4.16)

which should have an interpretation as the chiral anomaly.

The Schwinger-Dyson equation for 〈φ∗(x)j(x′) 〉
The equation of motion dj = 0 implies that 〈φ∗(x)dj(x′) 〉 vanishes up to a contact

term, which is the Schwinger-Dyson equation for 〈φ∗(x)j(x′) 〉. However, equation (4.9) for
〈φ∗(x)j(x′) 〉 gives

〈φ∗µ1···µd−2
(x)djν1ν2(x

′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
i−1
[
εµ1···µd−2ν1σpν2 − (ν1 ↔ ν2)

]
pσ (4.17)

which is not a pure contact term. However, because of the gauge symmetry φ∗ → φ∗ + da∗,
we should only expect a contact term up to a gauge transformation. Re-write the identity
(4.10)

εµ1···µd−2ν1σpν2 = εµ1···µd−2ν1ν2pσ+

+
(
pµ1εµ2···µd−2ν1ν2σ − pµ2εµ1µ3···µd−2ν1ν2σ + · · · − pµd−2

εµ1···µd−3ν1ν2σ + pν1εµ1···µd−2ν2σ

)
or

εµ1···µd−2ν1σpν2−(ν1 ↔ ν2) = εµ1···µd−2ν1ν2pσ+
(
pµ1εµ2···µd−2ν1ν2σ − pµ2εµ1µ3···µd−2ν1ν2σ + · · · − pµd−2

εµ1···µd−3ν1ν2σ

)
(4.18)
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Substitute in the Schwinger-Dyson equation (4.17) to get

〈φ∗µ1···µd−2
(x)djν1ν2(x

′) 〉 = i−1εµ1···µd−2ν1ν2δ
d(x− x′)

+

∫
ddp

(2π)d
eip(x−x

′)

p2
i−1
(
pµ1εµ2···µd−2ν1ν2σ − pµ2εµ1µ3···µd−2ν1ν2σ + · · · − pµd−2

εµ1···µd−3ν1ν2σ

)
pσ

(4.19)

which we can write as a contact term plus a gauge term,

〈φ∗µ1···µd−2
(x)djν1ν2(x

′) 〉 = i−1εµ1···µd−2ν1ν2δ
d(x− x′) + 〈 da∗µ1···µd−2

(x)djν1ν2(x
′) 〉 (4.20)

with

〈 a∗µ2···µd−2
(x)djν1ν2(x

′) 〉 =

∫
ddp

(2π)d
eip(x−x

′)

p2
εµ2···µd−2ν1ν2σ (−pσ) (4.21)

Smeared against currents, this is

〈 i
∫
ξd−2

φ∗
∫
∂ξ2

j 〉 = I(ξd−2, ξ2) + 〈 i
∫
∂ξd−2

a∗
∫
ξ2

dj 〉 (4.22)

Taking ξd−2 to be a (d−2)-cycle, we get the gauge-invariant equation

〈 i
∫
ξd−2

φ∗
∫
∂ξ2

j 〉 = I(ξd−2, ξ2) ∂ξd−2 = 0 (4.23)

which is the second Schwinger-Dyson equation (4.2) that was to be derived.

4.2 Conformal invariance

4.3 Ward identities

5 Generalization to the free k-form cft

There is an immediate generalization to a free conformal k-form, 1 ≤ k ≤ n:

1. Start with a k-form field j(x) of scaling dimension k satisfying the equation of motion
dj = 0.

2. The generalized charges Q∗(ξk) =
∫
ξk
j live on k-cycles.

3. Integrate j = dφ to get a (k−1)-form φ defined up to (k−2)-form gauge transformations
φ→ φ+ da.

4. Impose the identifications, for all ξk−1,∫
ξk−1

φ ∼
∫
ξk−1

φ+ 2πR (5.1)

5. Construct the dual (d−k)-form j∗ = �n−ki−1∗j (which presumably can be made co-
variant and Weyl invariant).
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6. Impose the second equation of motion dj∗ = 0.

7. The generalized charges Q(ξd−k) =
∫
ξd−k

j∗ live on (d−k)-cycles.

8. Integrate j∗ = dφ∗ to get a (d−k−1)-form φ∗ defined up to (d−k−2)-form gauge
transformations φ∗ → φ∗ + da∗.

9. Write Schwinger-Dyson equations

〈 iQ(∂ξd−k+1)

∫
ξk−1

φ 〉 = I(ξd−k+1, ξk−1) 〈 iQ∗(∂ξk+1)

∫
ξd−k−1

φ∗ 〉 = I(ξd−k−1, ξk+1)

(5.2)
for arbitrary cycles ξk−1 and ξd−k−1 and arbitrary boundaries ∂ξd−k+1 and ∂ξk+1.

10. The vertex operator Vp(ξk−1) = e
ip

∫
ξk−1

φ lives on (k−1)-cycles ξk−1. It has generalized
charge Q(∂ξd−k+1) = p for every (d−k)-boundary ∂ξd−k+1 that links ξk−1.

11. The dual vertex operator Vp∗(ξd−k−1) = e
ip∗

∫
ξd−k−1

φ∗ lives on (d−k−1)-cycles ξd−k−1.
It has generalized charge Q∗(∂ξk+1) = p∗ for every k-boundary ∂ξk+1 that links ξd−k−1.

12. Note the gauge invariance of the vertex operators and the dual vertex operators. For
coherence, the treatment above of the case k = 1 should be revised because the Vp(x) =
eip(x) are not invariant under the “gauge” symmetry φ(x) → φ(x) + a of the equation
dφ = j. Instead, we should use the gauge-invariant vertex operators Vp(ξ0) = e

ip
∫
ξ0
φ

with ξ0 a 0-cycle in the sense that its boundary
∫
ξ0

1 vanishes.

13. The partition function of the qft on a general space-time manifold M is a sum over
charge sectors Q(ξd−k) = m(ξd−k)R

−1 associated to to the (d−k)-homology classes
[ξd−k] of M , and over dual charge sectors Q∗(ξk) = 2πRm∗(ξk)associated to the k-
homology classes [ξk].

5.1 Orientation-independent formulation

6 Peculiarities on general conformal space-times

6.1 Zero and negative eigenvalues

6.2 The partition function on M = (S1)d)

Consider the free conformal scalar φ(x) ∼ φ(x) + 2πR. For simplicity, take M = (S1)d, the
d-torus. Let the lengths of the S1 be β = (β1, . . . , βd).

The partition function will be

Z(β) = Zfluctuations(β)
∑
w

e−S[φw] (6.1)

where the φw are the classical minima of S[φ] with winding numbers w1, w2, . . . , wd around
the S1

φw(τ, ~x) = 2πR
∑
i

wiβ
−1
i τi wi ∈ Z (6.2)
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For d > 2,
S[φw] = 0 (6.3)

so Z(β) =∞.
To get a meaningful partition function, we have to introduce chemical potentials θ −

(θ1, . . . , θd) for the winding numbers

Z(β, θ) = Zfluctuations(β)
∑
w

e−S[φw]+i
∑
i θiwi (6.4)

Then
Z(β, θ) = Zfluctuations(β)δd(θ) (6.5)

6.3 j∗(x) is not conformally invariant

1. Whether or not φ(x) takes values in a circle, it is likely that there exist compact
riemannian space-times for which the covariant version of �n has negative eigenvalues,
so the functional integral over the fluctuations of φ(x) cannot be defined because the
covariant version of the quadratic action functional S[φ] is not bounded below.

2. When φ(x) takes values in a circle, φ(x) ∼ φ(x)+2πR, the partition function is infinite
on a space-time of the form S1 ×Md−1, because the classical solutions φ0 have action
S[φ0] = 0 for all winding numbers, so the sum over winding modes diverges.

The construction given here is incomplete in two respects:

1. The correlation functions of the free quantum field theory can be calculated once the
2-point functions of the currents are known. Here, we construct the two-point function
〈 j∗(x) j(x′) 〉 on any space-time manifold. Then 〈 j∗(x) j∗(x′) 〉 can be obtained by
applying the appropriate differential operator. But we only construct 〈 j(x) j(x′) 〉 on
the d-sphere. It remains to construct it on an arbitrary space-time manifold.

2. The partition function remains to be constructed.

Only the local construction is given here. It gives a sensible conformal field theory in
euclidean space-time. However, it is not obvious that the construction can be extended to
the d-sphere or to other compact space-times. The extension to the d-sphere will depend on
the behavior of the theory at infinity in euclidean space-time. The underlying problem is
the non-unitarity of the theory.

There is a well-known example in d=2: the non-unitary 2-d cft of the massless periodic
scalar with modified stress-energy tensor T (z) = −(∂φ)2 +Q∂2φ. It has sensible correlation
functions on the plane, but there is a background charge Q at infinity. The partition function
on the 2-sphere is zero. The non-zero correlation functions on the 2-sphere are of products
of fields whose total charge is equal to Q.

Consider the basic case k = 1, the free conformal 1-form. The 〈 j∗(x)j(x′) 〉 2-point
function goes as

〈 j∗(x)j(x′) 〉 ∼ |x− x′|−d −→
x→∞
|x|−d (6.6)
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But j∗(x) has scaling dimension d− 1, so it should go as |x|−2(d−1). It looks as if there could
be a background field at infinity of dimension 2− d.

Another, probably related, discrepancy is in the operator products of the currents with
the stress-energy tensor,

Tµν(x) j(x′) ∼ |x− x′|−dj(x) + · · · (6.7)

but
Tµν(x) j∗(x′) ∼ |x− x′|−2(d−1)j(x) + · · · (6.8)

We can still expect j∗(x) to transform covariantly as a (d−1)-form under conformal sym-
metries. When we calculate an infinitesimal conformal transformation of j∗ by integrating
a conformal vector field against the Tµνj∗ ope, we might expect that only sub-leading terms
contribute, giving the covariant conformal transformation of j∗. But the “anomalous” leading
terms in the ope should have some implications.
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