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Abstract

A quasi Riemann surface is defined to be a metric abelian group Q along with an
epimorphism Q→ Z such that the integral currents in Q have properties analogous to
the integral currents in a Riemann surface, sufficient for expressing Cauchy-Riemann
equations on Q. The prototype is the metric abelian group Dint

0 (Σ) of integral 0-
currents in a Riemann surface Σ. There is a bundle Q(M) of quasi Riemann surfaces
naturally associated to each oriented conformal 2n-manifoldM , formed from the bundle
Dint
n−1(M)

∂−→ ∂Dint
n−1(M) of integral (n−1)-currents inM fibered over the integral (n−2)-

boundaries in M .
I suggest that complex analysis on quasi Rieman surfaces might be developed by

analogy with classical complex analysis on Riemann surfaces. I hope that complex
analysis on quasi Rieman surfaces can be used in constructing a new class of quantum
field theories in spacetimesM as quantum field theories on the quasi Riemann surfaces
Q(M) by analogy with the construction of 2d conformal field theories on Riemann
surfaces. The quasi Rieman surfaces Q(M) might also be useful for studying the
manifolds M .
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1 Introduction

A quasi Riemann surface is defined to be a metric abelian groupQ along with an epimorphism
Q→ Z such that the integral currents in Q have properties analogous to the integral currents
in a Riemann surface, sufficient for expressing Cauchy-Riemann equations on Q.

This note is based on an earlier paper [1] where the proposed definition of quasi Riemann
surface was motivated by considerations from quantum field theory. Here the notion of quasi
Riemann surface is presented without the quantum field theory motivation. The presentation
is entirely naive and formal; there is no attempt at rigor; there is no attempt to be precise
about topologies or domains of definition.

A summary of the quantum field theory project is given in [2]. The goal of the project is
to construct quantum field theories on quasi Riemann surfaces by imitating the construction
of 2d conformal field theories on Riemann surfaces. The latter is based on conformal tensor
analysis on Riemann surfaces, especially the Laurent expansions of meromorphic confor-
mal tensors and the Cauchy integral formula. An analogous technology is needed on quasi
Riemann surfaces.

The basic objects are the integral currents in manifolds and in metric spaces provided by
Geometric Measure Theory [3–5]. The metric abelian group Dint

k (X) of integral k-currents in
a manifold or metric space X is a certain metric completion of the abelian group of singular
k-chains in X. Part of the initial impetus to consider this mathematical material came from
Gromov’s comments on spaces of cycles in section 5 of [6] which referred to [4].

The main elements of the proposal are:

1. ForM an oriented 2n-dimensional conformal manifold and Σ a Riemann surface, there
is an analogy

Dint
j+n−1(M) ←→ Dint

j (Σ) j = 0, 1, 2 (1.1)

On each side there is a bilinear form, the intersection form, which gives the intersection
number of two currents with j1 + j2 = 2, and there is a conformally invariant Hodge
∗-operator in the middle dimension, j = 1, acting on the vector space of differential
forms dual to the currents.

2. The Cauchy-Riemann equations on a Riemann surface Σ can be expressed in terms
of the integral currents in Σ, the boundary operator ∂, the intersection form, and the
conformal Hodge ∗-operator acting in the middle dimension.

3. There are natural morphisms of metric abelian groups

Πj,k : Dint
j (Dint

k (M))→ Dint
j+k(M) (1.2)

(Their construction is a basic point where mathematical rigor is wanted.)

4. Dint
n−1(M) is regarded as a fiber bundle over the integral (n−2)-boundaries

Dint
n−1(M)

∂−−→ ∂Dint
n−1(M) Dint

n−1(M)∂ξ0 =
{
ξ ∈ Dint

n−1(M) : ∂ξ = ∂ξ0

}
(1.3)

The examples Q(M) of real quasi Riemann surfaces are the metric abelian groups

for n odd QZ∂ξ0 = Dint
n−1(M)Z∂ξ0 = ⊕

m∈Z
Dint
n−1(M)m∂ξ0 QZ∂ξ0

∂−−→ Z∂ξ0 (1.4)
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The examples of complex quasi Riemann surfaces are

for n even or odd QZ∂ξ0 = Dint
n−1(M)Z∂ξ0 ⊕ i∂Dint

n (M) QZ∂ξ0
∂−−→ Z∂ξ0 (1.5)

In both cases there is a chain complex of metric abelian groups

0
∂−−→ Z ∂−−→ Q2

∂−−→ Q1
∂−−→ Q0

∂−−→ Z ∂−−→ 0

Q0 = QZ∂ξ0 Q1 =Dint
n (M) or Dint

n (M)⊕ iDint
n (M)

(1.6)

with a nondegenerate intersection form and with an operator

J = εn ∗ ε2n = (−1)n−1 J2 = −1 (1.7)

acting on forms in the middle dimension, dual to Q1. This is the same structure as
found in the augmented chain complex of integral currents in a Riemann surface Σ

0
∂−−→ Z ∂−−→ Dint

2 (Σ)
∂−−→ Dint

1 (Σ)
∂−−→ Dint

0 (Σ)
∂−−→ Z ∂−−→ 0 (1.8)

The complexification (1.5) is needed when n is even because εn is then imaginary.

5. A version of tensor analysis on a metric abelian group Q is based on the integral
currents Dint

j (Q). The space of j-forms on Q is defined as Ωj(Q) = Hom(Dint
j (Q),R).

The tangent space TξQ at ξ ∈ Q is defined as the vector space of infinitesimal 1-
simplices at ξ. The cotangent space is the dual vector space T ∗ξQ = TξQ

∗.

6. The intersection form and the conformal Hodge ∗-operator of M are pulled back to
Q = QZ∂ξ0 using morphisms Πj : Dint

j (Q)→ Qj derived from the morphisms

Πj,n−1 : Dint
j (Dint

n−1(M))→ Dint
j+n−1(M) j = 0, 1, 2 (1.9)

The resulting structures on the Dint
j (Q), j = 0, 1, 2 are analogous to the structures on

the integral currents Dint
j (Σ) in a Riemann surface Σ that are sufficient for expressing

the Cauchy-Riemann equations.

7. A quasi Riemann surface is defined to be a metric abelian group Q, along with a
morphism Q→ Z, such that the integral currents Dint

j (Q) have these structures. The
set of morphisms

QZ∂ξ0
∂−−→ Z∂ξ0 (1.10)

form a bundle of quasi Riemann surfaces Q(M) → B(M) naturally associated to the
oriented conformal 2n-manifold M . (More precisely, the base B(M) is the space of
maximal infinite cyclic subgroups Z∂ξ0 ⊂ ∂Dint

n−1(M).)

8. A quantum field theory on M is to be constructed by putting a 2d conformal field
theory on each of the quasi Riemann surfaces QZ∂ξ0 . There is to be one such quantum
field theory on M for every ordinary 2d conformal field theory on Riemann surfaces.

This note consists of technical preliminaries (sections 2–5), the proposed version of tensor
analysis on metric abelian groups (section 6), the examples Q(M) (sections 7 and 8), and
the proposed definition of quasi Riemann surface (section 9). A companion note [7] collects
some questions, comments, and speculations and some remarks on complications that are
glossed over here.
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2 Integral currents in an oriented conformal 2n-manifold M

2.1 The manifold M

LetM be an oriented conformal manifold of even dimension 2n ≥ 2. For simplicity, letM be
compact and without boundary. The Hodge ∗-operator acting on smooth n-forms depends
only on the conformal structure

∗ : Ωsmooth
n (M)→ Ωsmooth

n (M) ∗ ωµ1...µn(x) =
1

n!
εµ1...µn

ν1...νn(x)ων1...νn(x)

∗2 = (−1)n
(2.1)

The conformal Hodge ∗-operator acting on n-forms is all that we use of the conformal
structure of M .

2.2 Currents and boundaries

A k-current ξ in M is a distribution on the smooth k-forms ω

ξ : ω 7→
∫
ξ

ω =

∫
M

ddx
1

k!
ξµ1···µk(x)ωµ1···µk(x) deg(ξ) = k (2.2)

Ddistr
k (M) is the real vector space of k-currents in M . The boundary operator on currents is

the dual of the exterior derivative on forms

∂ : Ddistr
k (M)→ Ddistr

k−1 (M)

∫
∂ξ

ω =

∫
ξ

dω (∂ξ)µ2···µk(x) = −∂µ1ξµ1···µk(x)

∂2 = 0

(2.3)

The Hodge ∗-operator acts on the distributional n-currents by∫
∗ξ
ω =

∫
ξ

∗ω ξ ∈ Ddistr
n (M) ω ∈ Ωsmooth

n (M) (2.4)

2.3 Singular currents

A k-simplex σ in M is represented by a k-current [σ]

σ : ∆k →M

∫
[σ]

ω =

∫
∆k

σ∗ω (2.5)

The space Dsing
k (M) of singular k-currents in M is the abelian group of currents generated

by the k-simplices in M , i.e., the currents representing the singular k-chains in M

σ =
∑
i

miσi , mi ∈ Z [σ] =
∑
i

mi[σi]

∫
[σ]

ω =
∑
i

mi

∫
∆k

σ∗i ω . (2.6)

The boundary operators on singular chains and on singular currents are compatible

∂[σ] = [∂σ] , ∂Dsing
k (M) ⊂ Dsing

k−1(M) (2.7)
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2.4 Integral currents

The metric abelian group Dint
k (M) of integral k-currents in M is the metric completion of

Dsing
k (M)

Dsing
k (M) ⊂ Dint

k (M) ⊂ Ddistr
k (M) (2.8)

with respect to the flat metric induced from the flat norm

dist(ξ1, ξ2)flat = ‖ξ1 − ξ2‖flat

‖ξ‖flat = inf
{

mass(ξ − ∂ξ′) + mass(ξ′), ξ′ ∈ Dsing
k+1(M)

}
mass(ξ) = k−volume(ξ) ξ ∈ Dsing

k (M)

(2.9)

The flat metric distance between ξ1 and ξ2 measures the effort needed to deform ξ1 to
ξ2 or, equivalently, to deform ξ1 − ξ2 to 0. The k-volume of a k-current depends on a
particular choice of Riemannian metric on M , but the resulting metric completion Dint

k (M)
is independent of the choice. The boundary of an integral current is an integral current

∂Dint
k (M) ⊂ Dint

k−1(M) (2.10)

2.5 The fiber bundle of integral k-currents

Regard
Dint
k (M)

∂−→ ∂Dint
k (M) (2.11)

as a fiber bundle with fibers

Dint
k (M)∂ξ0 =

{
ξ ∈ Dint

k (M) : ∂ξ = ∂ξ0

}
(2.12)

Dint
k (M)0 = Ker ∂ is the metric abelian group of integral k-cycles. For ∂ξ0 6= 0, the fiber
Dint
k (M)∂ξ0 is the space of relative integral k-cycles, i.e., relative to ∂ξ0.

2.6 The intersection form

The bilinear intersection form is defined almost everywhere on pairs of currents in M , van-
ishing unless the degrees of the two currents add up to the dimension of M

IM(ξ1, ξ2) =

∫
M

ddx
1

k1!k2!
εµ1···µk1ν1···νk2 (x) ξ

µ1···µk1
1 (x) ξ

ν1···νk2
2 (x) k1 + k2 = 2n

IM(ξ1, ξ2) = 0 k1 + k2 6= 2n

(2.13)

The intersection form is independent of the conformal structure; it depends only on the
orientation of M . The intersection form on integral currents gives the integer intersection
number

IM(ξ1, ξ2) ∈ Z (where defined) ξ1 ∈ Dint
k1

(M) ξ2 ∈ Dint
k2

(M) (2.14)

The intersection form on the integral cycles is defined everywhere and depends only on the
homology classes of the cycles.
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2.7 The chain complex of integral currents

For n ≥ 2 we use only a portion of the middle of the chain complex of integral currents

Dint
n+2(M)

∂−−→ Dint
n+1(M)

∂−−→ Dint
n (M)

∂−−→ Dint
n−1(M)

∂−−→ Dint
n−2(M) (2.15)

When n = 1, M is a two-dimensional conformal manifold, i.e., a Riemann surface, which we
write Σ instead of M . We augment its integral chain complex at both ends

0
∂−−→ Dint

3 (Σ)
∂−−→ Dint

2 (Σ)
∂−−→ Dint

1 (Σ)
∂−−→ Dint

0 (Σ)
∂−−→ Dint

−1(Σ)
∂−−→ 0 (2.16)

where we set

Dint
−1(Σ) = Z η ∈ Dint

0 (Σ)
∂7−−→

∫
η

1 ∈ Dint
−1(Σ)

Dint
3 (Σ) = Z 1 ∈ Dint

3 (Σ)
∂7−−→ Σ ∈ Dint

2 (Σ)

(2.17)

In particular
∂δz = 1 (2.18)

where δz ∈ Dint
0 (Σ) represents the point z ∈ Σ, i.e., δz is the Dirac delta-function at z.

In order to maintain a uniform terminology over all n, we call Dint
0 (Σ) the space of integral

0-currents and we call Ker ∂ = Dint
0 (Σ)0 the space of integral 0-cycles. It is perhaps more

usual to write the chain complex without augmentation

0
∂−−→ Dint

2 (Σ)
∂−−→ Dint

1 (Σ)
∂−−→ Dint

0 (Σ)
∂−−→ 0 (2.19)

Then Dint
0 (Σ) is called the space of integral 0-cycles and, for η ∈ Dint

0 (Σ), the integer ∂η
defined in (2.17) is called the degree of η.

3 Integral currents in spaces of integral currents

The integral currents in a complete metric space were constructed in [5]. So we take as given
the metric abelian group Dint

j (Dint
k (M)) of integral j-currents in the complete metric space

Dint
k (M).

3.1 The morphisms Πj,k : Dint
j (Dint

k (M))→ Dint
j+k(M)

Following comments in section 5 of [6] which refer to [4], we write Csing
k (M) for the space

of singular k-chains in M and Csing
j (Csing

k (M)) for the space of singular j-chains in Csing
k (M).

The product ∆j ×∆k of the j-simplex with the k-simplex is a singular (j+k)-chain so there
is a natural morphism

Πsing
j,k : Csing

j (Csing
k (M))→ Csing

j+k(M) (3.1)

We suppose that Πsing
j,k respects the flat metrics so gives a natural morphism of metric abelian

groups
Πj,k : Dint

j (Dint
k (M))→ Dint

j+k(M) (3.2)
In particular

Π0,kδξ = ξ (3.3)
where δξ ∈ Dint

0 (Dint
k (M)) is the 0-current representing the point ξ ∈ Dint

k (M).
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3.2 Πj,k and ∂

From
∂(∆j ×∆k) = ∂∆j ×∆k + (−1)j∆j × ∂∆k (3.4)

it follows that
∂Πj,k = Πj−1,k∂ + (−1)jΠj,k−1∂∗j,k (3.5)

where
∂∗j,k : Dint

j (Dint
k (M))→ Dint

j (Dint
k−1(M)) (3.6)

is the push-forward of the boundary map ∂ : Dint
k (M)→ Dint

k−1(M).

3.3 Translation invariance

Let Tξ be translation by ξ in the abelian group Dint
k (M)

Tξ : Dint
k (M)→ Dint

k (M) Tξ : ξ′ 7→ ξ + ξ′ (3.7)

Tξ acts on currents in Dint
k (M) by pushing forward

Tξ
∗ : Dint

j (Dint
k (M))→ Dint

j (Dint
k (M)) (3.8)

From Π0,kδξ = ξ it follows that Π0,k is translation-invariant in the sense that

Π0,kT
ξ
∗ = TξΠ0,k (3.9)

The Πj,k for j ≥ 1 are translation-invariant in the sense that

Πj,kT
ξ
∗ = Πj,k j ≥ 1 (3.10)

This follows from the fact that a map from ∆j × ∆k to M which is constant on ∆k is
represented by 0 as a (j+k)-current in M if j ≥ 1.

4 Modify conformal Hodge-∗ and the intersection form to be independent of n

Some trivial modifications can be made to the conformal Hodge ∗-operator and to the in-
tersection form IM(ξ1, ξ2) so that their properties on (j+n−1)-currents become the same for
all n. When pulled back to Dint

j (Dint
n−1(M)) along Πj,n−1 their properties on j-currents in

Dint
n−1(M) will then be the same for all n. To accomplish this for both even and odd values

of n requires using the complex currents

Ddistr
k (M,C) = Ddistr

k (M)⊗ C (4.1)

Choose a root εn of the equation

ε2n = (−1)n−1 ε1 = 1 (4.2)
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then define

deg′(ξ) = deg(ξ)− (n− 1) = k − n+ 1 ξ ∈ Ddistr
k (M,C) (4.3)

J = εn ∗ acting on Ddistr
n (M,C) (4.4)

IM〈 ξ̄1, ξ2 〉 = ε−1
n (−1)

1
2

(deg′(ξ2)−1)(deg′(ξ2)+2n) IM(ξ̄1, ξ2) (4.5)

where ξ̄ is the complex conjugate of the current ξ. These satisfy (wherever defined) a set of
properties that make no mention of n

IM〈 ξ̄1, ξ2 〉 6= 0 only if deg′(ξ1) + deg′(ξ2) = 2 (4.6)

IM〈 ξ̄1, ξ2 〉 = −IM〈 ξ̄2, ξ1 〉 (4.7)

IM〈 ∂ξ1, ξ2 〉 = −IM〈 ξ̄1, ∂ξ2 〉 (4.8)

J acts on the deg′(ξ) = 1 subspace (4.9)

J2 = −1 (4.10)

IM〈 Jξ1, Jξ2 〉 = IM〈 ξ̄1, ξ2 〉 deg′(ξ1) = deg′(ξ2) = 1 (4.11)

IM〈 ξ̄, Jξ 〉 > 0 deg′(ξ) = 1, ξ 6= 0 (4.12)

We call IM〈 ξ̄2, ξ1 〉 the skew-hermitian intersection form because of property (4.7). The
number εn is real when n is odd so we can restrict to real currents. Then we call IM〈 ξ1, ξ2 〉
the skew intersection form.

When n = 1, when M is a Riemann surface Σ, the skew intersection form extends
uniquely to Dint

3 (Σ)×Dint
−1(Σ) = Z× Z by

IΣ〈 1, 1 〉 = IΣ〈 1, ∂δz 〉 = −IΣ〈 ∂1, δz 〉 = −IΣ〈Σ, δz 〉 = IΣ〈 δz,Σ 〉 = ε−1
1 IΣ(δz,Σ) = 1 (4.13)

5 Cauchy-Riemann equations

Let Σ be a Riemann surface with local real coordinates x = (x1, x2) and local complex
coordinate z = x1 + ix2. J = ∗ acts on 1-forms by

Jdz = idz Jdz̄ = −idz̄ (5.1)

A fundamental solution of the Cauchy-Riemann equations

F (x0, x)µdx
µ = F (z0, z)dz =

dz

z − z0

+ · · · (5.2)

is a 1-form in z and a function of z0 which satisfies

F (J − i) = 0
∂

∂z̄
F (z0, z) = πδ2(z − z0) (5.3)
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Regard F as a complex form (defined almost everywhere)

F : Dint
0 (Σ)×Dint

1 (Σ)→ C (5.4)

F (ξ̄0, ξ1) =

∫
Σ

d2x0

∫
Σ

d2x ξ0(x0) F (x0;x)µ ξ
µ
1 (x) (5.5)

(The integral currents in Σ are real so complex conjugation acts trivially and is only written
for the sake of later generalization.) Write F (ξ̄0, ξ1) also for the linear extension to a form
on the complex currents (defined almost everywhere)

F : Ddistr
0 (Σ,C)⊗Ddistr

1 (Σ,C)→ C Ddistr
j (Σ,C) = Ddistr

j (Σ)⊗ C (5.6)

The Cauchy-Riemann equations (5.3) become

F (ξ̄0, ∂ξ2) = 2πiIΣ〈 ξ̄0, ξ2 〉 ξ0 ∈ Dint
0 (Σ) ξ2 ∈ Dint

2 (Σ) (5.7)

F (ξ̄0, (J − i)ξ1) = 0 ξ0 ∈ Ddistr
0 (Σ,C) ξ1 ∈ Ddistr

1 (Σ,C) (5.8)

The Cauchy-Riemann equations are thus expressed in terms of the integral currents, the
skew-hermitian intersection form, and the J operator acting on complex currents.

(The Cauchy-Riemann equations should be written locally on neighborhoods U ⊂ Σ,
substituting U for Σ in the above.)

6 Construct forms and tangent vectors from the integral currents

The aim is to develop conformal tensor analysis on a metric abelian group Q such as the
QZ∂ξ0 of equations (1.4) and (1.5), in analogy with conformal tensor analysis on Riemann
surfaces. We want to lift the skew-hermitian intersection form IM〈 ξ̄1, ξ2 〉 and the operator
J from the manifold M to the metric space Q = QZ∂ξ0 via the maps

Πj,n−1 : Dint
j (Q)→ Dint

j+n−1(M) (6.1)

To do this we need a construction of forms on Q. But there is no smooth manifold structure
available on Q in which to construct forms. What is available are the currents in Q con-
structed in [5]. The j-currents in a complete metric space such as Q are constructed in [5]
not as distributions on j-forms but rather as linear functionals on (j+1)-tuplets of Lipschitz
functions. Only the metric structure of Q is used; there is no need of a smooth structure.
We want to pull back forms from M to Q via the maps Πj,n−1 between spaces of integral
currents, so we construct the forms from the integral currents. We take the integral currents
Dint
j (Q) as the foundation for tensor analysis on Q. Essential use is made of the abelian

group structure of Q. This construction of tensor analysis works as well for any space that
looks locally like a metric abelian group. For a manifold M it reproduces the usual forms
and the usual tensor analysis.
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6.1 Forms on Q

Define a j-form on Q to be a homomorphism of abelian groups

ω : Dint
j (Q)→ R ω(η1 + η2) = ω(η1) + ω(η2) (6.2)

satisfying some topological or metric regularity condition. The regularity condition will
presumably depend on the application. Here we proceed formally, hoping that the formal
structure will in the end provide criteria for precise definitions.
Dint
j (Q) is generated as a metric abelian group by the arbitrarily small j-simplices in Q,

so a j-form on Q is determined by its values on the infinitesimal j-simplices in Q, i.e., by
local data on Q. The space of j-forms

Ωj(Q) = Hom(Dint
j (Q),R) (6.3)

is a real vector space. The exterior derivative is the dual of the boundary operator

d : Ωj(Q)→ Ωj+1(Q) dω(ξ) = ω(∂ξ) d2 = 0 (6.4)

6.2 Currents in Q

Define the j-currents in Q to be the real linear functions on j-forms

Dj(Q) = Ωj(Q)∗ ξ : ω 7→ (ω, ξ) ∂ : Dj(Q)→ Dj−1(Q) ∂ = d∗ (6.5)

Again this is a formal definition. We expect Dj(Q) to be a linear subspace of the distribu-
tional j-currents in Q constructed in [5]

Dj(Q) ⊂ Ddistr
j (Q) (6.6)

Dint
j (Q) is generated by the arbitrarily small integral j-currents so we can identify Dj(Q)

with the space of infinitesimal integral j-currents, something akin to or even equal to the
Gromov-Hausdorff tangent space

Dj(Q) = TG-H
0 (Dint

j (Q)) (6.7)

6.3 The tangent and cotangent bundles of Q

The infinitesimal j-simplices at a point ξ ∈ Q form a vector space Tj,ξQ because Q is an
abelian group. Call this the space of tangent j-vectors at ξ. The vector spaces Tj,ξQ are the
fibers of a vector bundle TjQ → Q. The dual vector spaces T ∗j,ξQ = Tj,ξQ

∗ are the fibers
of a vector bundle T ∗j Q → Q. The tangent bundle is TQ = T1Q. The cotangent bundle is
T ∗Q = T ∗1Q. All of these vector bundles are product bundles because Q is an abelian group

Tj,ξQ = Tj,0Q TjQ = Q× Tj,0Q T ∗j,ξQ = T ∗j,0Q T ∗j Q = Q× T ∗j,0Q (6.8)

The j-forms on Q are the sections of T ∗j Q

Ωj(Q) = Γ(T ∗j Q) (6.9)
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The rest of this subsection goes into these points in a bit more detail.
Let t = (t1, . . . , tj) be coordinates for Rj. Let Ra be the dilation

Ra(t) = (at1, at2, . . . , atj) a > 0 (6.10)

For j = 0 define
T0,ξQ = Rδξ ⊂ D0(Q) (6.11)

For j ≥ 1 parametrize the j-simplex ∆j as the j-cube [0, 1]j ⊂ Rj. Define a j-simplex at ξ to
be a map σ : [0, 1]j → Q with σ(0) = ξ. The tangent j-vector to σ at t = 0 is the j-current
Dσ(0) given by

(ω,Dσ(0)) = lim
ε↓0

ε−jω([σRε]) ω ∈ Ωj(Q) = Hom(Dint
j (Q),R) (6.12)

Dσ(0) ∈ Dj(Q) = Ωj(Q)∗ (6.13)

Dσ(0) should be the same as the distributional j-current

Dσ(0) = lim
ε↓0

ε−j[σRε] ∈ Ddistr
j (Q) (6.14)

Define the space of tangent j-vectors at ξ to be

Tj,ξQ = {Dσ(0) : σ a j-simplex at ξ} ⊂ Dj(Q) (6.15)

Tj,ξQ is a vector space because

D(σRa)(0) = ajDσ(0) D(σ1 + σ2)(0) = Dσ1(0) +Dσ2(0) (6.16)

where the abelian group structure of Q is used to add j-simplices

(σ1 + σ2)(t) = σ1(t) + σ2(t) (6.17)

Tj,ξQ might be characterized as the distributional j-currents in Q supported strictly on ξ.
Define the space of cotangent j-vectors at ξ to be the dual vector space

T ∗j,ξQ = Tj,ξQ
∗ (6.18)

which is the space of equivalence classes

T ∗j,ξQ = Ωj(Q)/Nj,ξ(Q) (6.19)

of j-forms modulo the null subspace under the pairing with the tangent j-vectors at ξ

Nj,ξ(Q) = {ω ∈ Ωj(Q) : (ω,Dσ(0)) = 0 , ∀Dσ(0) ∈ Tj,ξQ} (6.20)

The projections on the quotients are the evaluation maps

Ωj(Q)→ T ∗j,ξQ ω 7→ ω(ξ) (6.21)
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representing the j-forms as the sections of the bundle of cotangent j-vectors

Ωj(Q) = Γ(T ∗j Q) (6.22)

in the appropriate sense of section.
The translation operators T ξ identify all the j-tangent vector spaces and all the j-

cotangent vector spaces

Tj,ξQ = T ξ∗ (Tj,0Q) T ∗j,ξQ = T ξ∗(T ∗j,0Q) (6.23)

so the vector bundles can be written as product bundles

TjQ = Q× Tj,0Q T ∗j Q = Q× T ∗j,0Q (6.24)

The j-cotangent space can be identified with the translation-invariant j-forms

T ∗j,0Q = Ωj(Q)inv =
{
ω ∈ Ωj(Q) : T ξ∗ω = ω ∀ξ ∈ Q

}
(6.25)

6.4 dΠj,n−1 : TjQ→ Dj+n−1(M)

The morphism
Πj,n−1 : Dint

j (Q)→ Dint
j+n−1(M) (6.26)

acts on the infinitesimal j-simplices in Q as a translation-invariant linear map

dΠj,n−1 : TjQ→ Dj+n−1(M) (6.27)

dΠ1,n−1 identifies each tangent space TξQ with the linear space Dn(M)

dΠ1,n−1 : TξQ
∼−→ Dn(M) ⊂ Ddistr

n (M) (6.28)

where Dn(M) is the space of infinitesimal integral n-currents in M as in section 6.2 above.
Dn(M) is a dense linear subspace of Ddistr

n (M) consisting (at least roughly) of the n-currents
in M that are strictly supported on an integral (n−1)-current. The crucial point is that
Dn(M) is closed under the conformal Hodge ∗-operator

∗Dn(M) = Dn(M) (6.29)

The germ of a proof of this is given in Appendix 1 of [1]. The argument makes essential
use of fractal integral n-currents which are the limits of Cauchy sequences of singular n-
currents with respect to the flat metric. This is one of the two main motivations for using
the integral currents. The other is the (presumed) existence of the maps Πj,k. Assuming
(6.29), the conformal Hodge ∗-operator acts on the tangent spaces of Q

∗ : TξQ→ TξQ (6.30)
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7 The real examples Q(M) for n odd

Assume n odd. Let Q be one of the metric abelian groups

Q = Dint
n−1(M)Z∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ ∈ Z∂ξ0

}
∂ξ0 ∈ ∂Dint

n−1(M) (7.1)

with Z∂ξ0 a maximal cyclic subgroup of ∂Dint
n−1(M). That is, ∂ξ0 = N∂ξ′0, N ∈ Z, only if

N = ±1.

7.1 A chain complex ⊕j Qj analogous to ⊕j Dint
j (Σ)

For each Q construct a chain complex of metric abelian groups analogous to the augmented
chain complex (2.16) of integral currents Dint

j (Σ) in a Riemann surface Σ

0
∂−−→ Q3

∂−−→ Q2
∂−−→ Q1

∂−−→ Q0
∂−−→ Q−1

∂−−→ 0 (7.2)

Q0 = Q ⊂ Dint
n−1(M) Q1 = Dint

n (M) Q2 = Dint
n+1(M)/Q⊥0

Q−1 = Z∂ξ0 ⊂ Dint
n−2(M) Q3 = Dint

n+2(M)/Q⊥−1 Q−1
∼= Z Q3

∼= Z
(7.3)

where Q⊥0 and Q⊥−1 are the orthogonal complements in the skew intersection form of M

Q⊥0 =
{
ξ ∈ Dint

n+1(M) : IM〈 ξ′, ξ 〉 = 0 ∀ξ′ ∈ Q0

}
(7.4)

Q⊥−1 =
{
ξ ∈ Dint

n+2(M) : IM〈 ξ′, ξ 〉 = 0 ∀ξ′ ∈ Q−1

}
(7.5)

The Qj form a chain complex because Q−1 = ∂Q0 so ∂Q⊥−1 = Q⊥0 by the integration by parts
property (4.8) of the skew intersection form IM〈 ξ1, ξ2 〉.

7.2 The skew form I〈 ξ1, ξ2 〉 on ⊕j Qj

By construction, IM〈 ξ1, ξ2 〉 defines (almost everywhere) an integer-valued form

I〈 ξ1, ξ2 〉 ∈ Hom(⊕j Qj ×⊕j Qj,Z) (7.6)

satisfying (where defined)

I〈 ξ1, ξ2 〉 = 0 unless deg′(ξ1) + deg′(ξ2) = 2 (7.7)
where deg′(ξ) = j for ξ ∈ Qj

I〈 ξ1, ξ2 〉 = −I〈 ξ2, ξ1 〉 (7.8)

I〈 ∂ξ1, ξ2 〉 = −I〈 ξ1, ∂ξ2 〉 (7.9)

I〈 ξ1, ξ2 〉 is nondegenerate (7.10)
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7.3 The J operator

Define real vector spaces
Ωj = Hom(Qj,R) Dj = Ω∗j (7.11)

analogous to the vector spaces Ωj(Σ) and Dj(Σ) of forms and currents on a Riemann surface
constructed from its integral currents as in section 6 above. In particular

Ω1 = Hom(Dint
n (M),R) D1 = Dn(M) ⊂ Ddistr

n (M) (7.12)

Recall the definition J = εn∗ with ε2n = (−1)n−1 and the assumption that ∗Dn(M) = Dn(M).
Now we have the final elements of the analogy:

J2 = −1 on D1 (7.13)

I〈 Jξ1, Jξ2 〉 = I〈 ξ1, ξ2 〉 ξ1, ξ2 ∈ D1 (7.14)

I〈 ξ, Jξ 〉 > 0 ξ 6= 0 ∈ D1 (7.15)

where I〈 ξ1, ξ2 〉 is extended from Q1 to D1 by linearity. Note that the positivity condition
(7.15) cannot be literally true. The vector space D1 = Dn(M) needs to be extended in some
natural way to become large enough to include a dense set of L2 vectors.

7.4 A morphism of chain complexes Π: ⊕j Dint
j (Q)→ ⊕j Qj

There is a morphism of chain complexes of metric abelian groups,

Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q)
∂

> 0

· · ·

0

Π4

∨
∂

> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
∂

> 0

(7.16)

where the top complex is augmented on the right by

Dint
−1(Q) = Q−1 = Z∂ξ0 ∂ : δξ ∈ Dint

0 (Q) 7→ ∂ξ ∈ Z∂ξ0 (7.17)

The morphism maps are

Πj = 0 j ≥ 4 Πj =

{
Πj,n−1 j = 0, 1

πj ◦ Πj,n−1 j = 2, 3
Π−1 = 1 (7.18)

where πj is the projection on the quotient space

πj : Dint
j+n−1(M)→ Qj = Dint

j+n−1(M)/Q⊥2−j j = 2, 3 (7.19)

In particular
Π0 : Dint

0 (Q)→ Q δξ 7→ ξ (7.20)
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To see that Π is a morphism of chain complexes first verify explicitly

∂Π0 = Π−1∂ (7.21)

Then note that
∂Πj = Πj−1∂ j ≥ 1 (7.22)

because the operator ∂∗j,n−1 in equation (3.5) vanishes on Dint
j (Q) for j ≥ 1 because ∂ takes

Q to the discrete set Z∂ξ0 and there are no nonzero j-currents in a discrete set if j ≥ 1.

7.5 Translation invariance of Π

Translations in Q act as automorphisms of the two chain complexes

Tξ
∗ : Dint

j (Q)→ Dint
j (Q) Tξ : Qj → Qj ξ ∈ Q (7.23)

where T ξ acts as translation on Q0 = Q and acts trivially on the Qj for j ≥ 1. On
Dint
−1(Q) = Q−1

T ξ = Tξ
∗ : ∂ξ0 7→ ∂ξ0 + ∂ξ (7.24)

The morphism Π is translation-invariant

ΠjT
ξ
∗ = TξΠj ξ ∈ Q (7.25)

7.6 Pull back the skew form I〈 ξ1, ξ2 〉 to a skew form IQ〈 η1, η2 〉 on ⊕j Dint
j (Q)

Pull back the skew form I〈 ξ1, ξ2 〉 from ⊕j Qj along the morphism Π to get a skew form
IQ〈 η1, η2 〉 on Dint(Q) = ⊕j Dint

j (Q) defined almost everywhere

IQ〈 η1, η2 〉 = Π∗I〈 η1, η2 〉 = I〈Πj1η1,Πj2η2 〉 η1, η2 ∈ ⊕j Dint
j (Q)

IQ ∈ Hom(⊕j Dint
j (Q)×⊕j Dint

j (Q),Z) (defined almost everywhere)
(7.26)

satisfying (wherever defined)

IQ〈 η1, η2 〉 6= 0 only if deg(η1) + deg(η2) = 2 (7.27)

IQ〈 η1, η2 〉 = −IQ〈 η2, η1 〉 (7.28)

IQ〈 ∂η1, η2 〉 = −IQ〈 η1, ∂η2 〉 (7.29)

IQ〈 η1,T
ξ
∗η2 〉 = IQ〈 η1, η2 〉 deg(η2) ≥ 1 ξ ∈ Q (7.30)

7.7 Pull back J along dΠ1

The morphism map Π1 is Π1,n−1 : Dint
1 (Q) → Dint

n (M). Its derivative identifies the tangent
spaces TξQ with D1 = Dn(M) so J acts on the TξQ and on the dual cotangent spaces T ∗ξQ

dΠ1 : TξQ→ D1 JdΠ1 = dΠ1J JdΠ∗1 = dΠ∗1J (7.31)
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The J operator thereby acts on Ω1(Q), the space of 1-forms on Q, and on the 1-currents
D1(Q)

J : Ω1(Q)→ Ω1(Q) J : D1(Q)→ D1(Q) (7.32)

inheriting the properties (7.13–7.15)

J2 = −1 on D1(Q) (7.33)

IQ〈 Jη1, Jη2 〉 = I〈 η1, η2 〉 η1, η2 ∈ D1(Q) (7.34)

IQ〈 η, Jη 〉 ≥ 0 η 6= 0 (7.35)

where again the last property makes sense on an appropriate extension of D1(Q).

7.8 Cauchy-Riemann equations on Q

Now we have the ingredients to write Cauchy-Riemann equations on Q analogous to the
Cauchy-Riemann equations on a Riemann surface Σ in the form of equations (5.7-5.8). A
fundamental solution FQ(η0, η1) is a complex bilinear form (almost everywhere defined)

FQ ∈ Hom(Dint
0 (Q)×Dint

1 (Q),C) (7.36)

FQ(η0, ∂η2) = 2πiIQ〈 η0, η2 〉 η0 ∈ Dint
0 (Q) η2 ∈ Dint

2 (Q) (7.37)

FQ(η0, (J − i)η1) = 0 η0 ∈ D0(Q,C) η2 ∈ D2(Q,C) (7.38)

where in the last equation FQ(η0, η1) is extended by linearity to the complex currents
Dj(Q,C) = Dj(Q)⊗ C.

There is the possibility of imposing the additional condition that the fundamental solution
FQ(η0, η1) is the pullback of a form F (ξ0, ξ1) on Q0 × Q1 (which amounts to a translation-
invariance condition)

F ∈ Hom(Q0 ×Q1,C) , FQ = Π∗F , FQ(η0, η1) = F (Π0η0,Π1η1) (7.39)

F (ξ0, ∂ξ2) = 2πiI〈 ξ0, ξ2 〉 (7.40)

F (ξ0, (J − i)ξ1) = 0 (7.41)

8 The complex examples Q(M) for n even or odd

Now let n be even or odd. The operator J = εn∗ is imaginary when n is even so the tangent
spaces TξQ will have to be complex in order for J to act. Let Q be one of the metric abelian
groups

Q = Dint
n−1(M)Z∂ξ0 ⊕ i∂Dint

n (M) ∂ξ0 ∈ ∂Dint
n−1(M) (8.1)

When n is odd complex conjugation will be an automorphism, which will allow restricting
to the real part of Q, recovering the real examples described in the previous section.

Now let the chain complex ⊕j Qj be

0
∂−−→ Q3

∂−−→ Q2
∂−−→ Q1

∂−−→ Q0
∂−−→ Q−1

∂−−→ 0 (8.2)
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Q0 = Q Q1 = Dint
n (M)⊕ iDint

n (M) Q2 =
[
Dint
n+1(M)⊕ iDint

n+1(M)
]
/Q0

⊥

Q−1 = Z∂ξ0 Q3 =
[
Dint
n+2(M)⊕ iDint

n+2(M)
]
/Q−1

⊥ Q−1
∼= Z Q3

∼= Z⊕ iZ
(8.3)

where Q⊥0 and Q⊥−1 are the orthogonal complements now in the skew-hermitian intersection
form IM〈 ξ̄1, ξ2 〉 defined in equation (4.5)

Q⊥0 =
{
ξ ∈ Dint

n+1(M)⊕ iDint
n+1(M) : IM〈 ξ̄′, ξ 〉 = 0 ∀ξ′ ∈ Q0

}
(8.4)

Q⊥−1 =
{
ξ ∈ Dint

n+2(M)⊕ iDint
n+2(M) : IM〈 ξ̄′, ξ 〉 = 0 ∀ξ′ ∈ Q−1

}
(8.5)

The vector space D1 of infinitesimal elements of Q1 is now the complex vector space

D1 = Hom(Q1,R)∗ = Dint
n (M)⊕ iDint

n (M) (8.6)

so J = εn∗ acts on D1 for n even or odd. By construction, IM〈 ξ̄1, ξ2 〉 gives an almost
everywhere defined nondegenerate skew-hermitian form I〈 ξ̄1, ξ2 〉 on ⊕jQj with values in
Z⊕ iZ

I ∈ Hom(⊕j1 Qj1 ×⊕j2 Qj2 ,Z⊕ iZ) (8.7)

satisfying properties inherited from properties (4.6-4.12) of IM〈 ξ̄1, ξ2 〉.
Again there is a morphism of chain complexes of metric abelian groups

Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q) > 0

0

Π4

∨
> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
> 0

(8.8)

as in equations (7.16-7.22) for the real case. Again Π1 induces isomorphisms of vector spaces

dΠ1 : TξQ→ D1 , dΠ∗1 : Ω1 → T ∗ξQ (8.9)

so J acts on TξQ and on T ∗ξQ and on Ω1(Q). Again the skew-hermitian form I〈 ξ̄1, ξ2 〉 pulls
back to a skew-hermitian form IQ〈 η̄1, η2 〉 on ⊕jDint

j (Q). Again the properties (4.6-4.12) are
inherited from M . Again Cauchy-Riemann equations on Q can be expressed in terms of J
and IQ〈 η̄1, η2 〉.

For every complex quasi Riemann surface there is an underlying real quasi Riemann
surface which has the same morphism (8.8) of chain complexes, the same J operator, and
the real part Re I〈 ξ̄1, ξ2 〉 as the skew form on⊕jQj. The complex quasi Riemann surfaces are
the real quasi Riemann surfaces with additional structure: multiplication by i and complex
conjugation.

9 Definition of quasi Riemann surface

Finally we try to define quasi Riemann surface. The definition should encompass all the
examples Q(M) as narrowly as possible, providing structure sufficient to express Cauchy-
Riemann equations.

A complex quasi Riemann surface is a metric abelian group Q along with a morphism
Q

∂−−→ Z and an automorphism ξ 7→ ξ̄ (called complex conjugation) with ∂ξ̄ = ∂ξ. A real
quasi Riemann surface is one where complex conjugation acts trivially ξ̄ = ξ.
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Let the augmented integral chain complex of Q be

· · · ∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q)
∂

> 0 (9.1)

Dint(Q) = ⊕
j=−1
Dint
j (Q) Dint

−1(Q) = Z ∂δξ = ∂ξ ξ ∈ Q (9.2)

Complex conjugation acts on Dint(Q) as the push-forward of complex conjugation on Q.
There is a skew-hermitian form

IQ ∈ Hom(Dint(Q)×Dint(Q),A) A = Z⊕ iZ (complex case) or Z (real case) (9.3)

defined almost everywhere, satisfying

IQ〈 η̄1, η2 〉 6= 0 only if deg(η1) + deg(η2) = 2 (9.4)

IQ〈 η̄1, η2 〉 = − IQ〈 η̄2, η1 〉 (9.5)

IQ〈 ∂η1, η2 〉 = −IQ〈 η̄1, ∂η2 〉 (9.6)

IQ〈 η̄1,T
ξ
∗η2 〉 = IQ〈 η̄1, η2 〉 deg(η2) ≥ 1 ξ ∈ Q . (9.7)

There is a linear operator J equivalently described as

J : TξQ→ TξQ J : T ∗ξQ→ T ∗ξQ ξ ∈ Q (9.8)

J : D1(Q)→ D1(Q) J : Ω1(Q)→ Ω1(Q) (9.9)

satisfying on the tangent spaces Tξ(Q)

J2 = −1 (9.10)

IQ〈 Jη1, Jη2 〉 = IQ〈 η̄1, η2 〉 (9.11)

IQ〈 η̄, Jη 〉 > 0 η 6= 0 (9.12)

JT ξ∗ = T ξ∗J (9.13)

Given this structure we define metric abelian groups

Qj = Dint
j (Q)/Dint

2−j(Q)⊥ j = −1, 0, 1, 2, 3 (9.14)

so there is a morphism of chain complexes

· · · Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q) > 0

0

Π4

∨
> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
> 0

(9.15)

with Πj = 0, j ≥ 4. Impose as additional condition on IQ〈 η̄1, η2 〉

Q0 = Q Π0δξ = ξ ξ ∈ Q (9.16)
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IQ〈 η̄1, η2 〉 descends to a nondegenerate skew-hermitian form I〈 ξ̄1, ξ2 〉 on ⊕jQj and J acts
on the vector space D1 of infinitesimal elements of Q1.

Finally, the morphisms

Πj,k : Dint
j (Dint

k Q))→ : Dint
j+k(Q) (9.17)

should descend to morphisms

ΠQ
j,k : Dint

j (Qk)→ Qj+k ΠQ
j,0 = Πj (9.18)
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