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Abstract

This is a naive description of a mathematical object to be used in quantum field theory
— a metric abelian group with geometric structure analogous to a Riemann surface, suitable
for writing an analog of the Cauchy-Riemann equation. Examples are certain abelian groups
of singular (n−1)-currents in a conformal 2n-manifold. The project is to develop complex
analysis on these “quasi Riemann surfaces” in analogy with ordinary Riemann surfaces, to
be used to construct quantum field theories on quasi Riemann surfaces in analogy with
conformal field theories on Riemann surfaces, forming a new class of constructable quantum
field theories on 2n-manifolds. The prototype is the quantum field theory of the free n-form
F (x) satisfying dF = d∗F = 0. On the quasi Riemann surfaces it becomes the 2d conformal
field theory of the free 1-form. The exposition here is unrigorous, aiming to attract interest
in developing complex analysis on quasi Riemann surfaces.
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1. Currents in a conformal 2n-manifold

The goal is to formulate an analog of analysis in one complex variable on certain spaces of
singular (n−1)-currents in a conformal 2n-manifold, to be used in constructing quantum field
theories on those spaces of currents in analogy with 2d conformal field theories on Riemann
surfaces [1, 2].

M = a smooth 2n-manifold with orientation and conformal structure
(for simplicity n is odd, M is compact without boundary, H̃n−1(M) = 0)

Ωsmooth
k M = the smooth real k-forms on M

Ddistr
k M = the distributional k-currents in M = (Ωsmooth

k M)∗

Dsing
k M = the abelian group of singular k-currents in M ,

generated by the k-simplices ∆k →M in M
The pairing between a k-current ξ and a k-form ω is∫

ξ
ω =

∫
M

1

k!
ωµ1···µk(x) ξµ1···µk(x) d2nx (1.1)

The boundary operator on currents is dual to the exterior derivative on forms∫
∂ξ
ω =

∫
ξ
dω (∂ξ)µ2···µk(x) = −∂µ1ξµ1···µk(x) ∂2 = 0 (1.2)

A k-simplex σ in M is represented by a k-current [σ]

σ : ∆k →M

∫
[σ]
ω =

∫
∆k

σ∗ω (1.3)

Dsing
k M is the abelian group of currents generated by the k-simplices in M , i.e., the currents

representing the singular k-chains in M . The bilinear intersection form on currents

IM (ξ1, ξ2) =

∫
M

1

k1!
ξ
µ1···µk1
1

1

k2!
ξ
ν1···νk2
2 εµ1···µk1ν1···νk2 d

2nx k1 + k2 = 2n (1.4)

is defined almost everywhere, vanishes unless k1 + k2 = 2n, and depends only on the orien-
tation of M (which can be written (d2nx)−1εµ1···µ2n). The intersection form satisfies

IM (ξ2, ξ1) = (−1)k1k2IM (ξ1, ξ2) IM (∂ξ1, ξ2) = (−1)k1IM (ξ1, ∂ξ2) (1.5)

The intersection form on singular currents gives the integer intersection number (when de-
fined). The Hodge ∗-operator on n-forms and on n-currents is conformally invariant

∗ωµ1···µn(x) =
1

n!
εµ1···µn

ν1···νn(x)ων1···νn(x)

∫
∗ξ
ω =

∫
ξ
∗ω ∗2 = (−1)n

IM (ξ, ∗ξ′) = IM (ξ′, ∗ξ) IM (ξ, ∗ξ) > 0 ξ 6= 0 deg(ξ) = deg(ξ′) = n

(1.6)

For n odd, ∗2 = −1 so the n-currents form a Hilbert space with complex structure J = ∗
and hermitian inner product 〈 ξ, ξ′ 〉 = IM (ξ, Jξ′).
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2. Cauchy-Riemann equation on a Riemann surface in terms of
j-currents, j = 0, 1, 2

When n = 1, M is a Riemann surface. Write Σ instead of M . The augmented chain
complex of singular j-currents in Σ is

Dsing
2 Σ Dsing

1 Σ Dsing
0 Σ Z 0∂ ∂ ∂ ∂

ξ ∈ Dsing
0 Σ

∂7−−−→
∫
ξ

1

(2.1)

which is embedded in the augmented chain complex of distributional j-currents Ddistr
j Σ.

The intersection form and the conformal Hodge ∗-operator on j-currents satisfy

IΣ(ξ1, ξ2) = 0 unless j1 + j2 = 2

IΣ(ξ2, ξ1) = (−1)j1j2IΣ(ξ1, ξ2) IΣ(∂ξ1, ξ2) = (−1)j1IΣ(ξ1, ∂ξ2)

J = ∗ on Ddistr
1 Σ J2 = −1

for deg(ξ) = deg(ξ′) = 1, IΣ(ξ, Jξ′) = IΣ(ξ′, Jξ) IΣ(ξ, Jξ) > 0 ξ 6= 0

(2.2)

A fundamental solution of the Cauchy-Riemann equation

dz G(z, z′) dz′ G(z, z′) = G(z′, z)

∂z̄G(z, z′) = −π∂zδ2(z − z′) G(z, z′) =
1

(z − z′)2
+ holomorphic

(2.3)

is determined up to products of holomorphic 1-forms. It can be regarded as a symmetric
complex bilinear form on 1-currents

G(ξ, ξ′) =

∫
ξ

∫
ξ′
dz G(z, z′) dz′ (2.4)

The Cauchy-Riemann equation can be expressed in terms of ∂, J , and IΣ(ξ1, ξ2)

G(ξ, ξ′) = G(ξ′, ξ) G(ξ, ξ′) = G(P+ξ, P+ξ
′) P+ =

1

2
(1 + i−1J)

G(ξ, ∂ξ2) = −2πiIΣ(P+ξ, ∂ξ2)
(2.5)

3. (n−1+j)-currents, j = 0, 1, 2, in a conformal 2n-manifold (for n odd)

For simplicity take n odd. The general case is discussed in Appendix A. For ∂ξ0 ∈ Dsing
n−2M

a singular (n−2)-boundary, the abelian group

Q = Dsing
n−1MZ∂ξ0 =

{
ξ ∈ Dsing

n−1M : ∂ξ ∈ Z∂ξ0

}
(3.1)

is to be an example of a quasi Riemann surface. The Dsing
n−1MZ∂ξ0 are the fibers of a bundle

of quasi Riemann surfaces over {Z∂ξ0}. There is an augmented chain complex of abelian
groups Qj analogous to (2.1)

Q2 Q1 Q Z∂ξ0 0∂ ∂ ∂ ∂ Q0 = Q

Q1 = Dsing
n M Q2 = Dsing

n+1M/Q⊥ Q⊥ =
{
ξ′ ∈ Dsing

n+1M : IM (ξ, ξ′) = 0 ∀ξ ∈ Q
} (3.2)
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The Qj are embedded in a chain complex of real vector spaces QR
j defined analogously using

distributional currents in place of singular currents

QR
0 = QR = Ddistr

n−1MR∂ξ0 QR
1 = Ddistr

n M QR
2 = Ddistr

n+1M/QR⊥ (3.3)

The intersection form IM (ξ1, ξ2) of M descends to a bilinear form IQ(ξ1, ξ2) on the Qj with
precisely the properties (2.2) suitable for writing a Cauchy-Riemann equation

IQ(ξ1, ξ2) = 0 unless j1 + j2 = 2

IQ(ξ2, ξ1) = (−1)j1j2IQ(ξ1, ξ2) IQ(∂ξ1, ξ2) = (−1)j1IQ(ξ1, ∂ξ2)

J = ∗ on QR
1 = Ddistr

n M J2 = −1

for deg(ξ) = deg(ξ′) = 1, IQ(ξ, Jξ′) = IQ(ξ′, Jξ) IQ(ξ, Jξ) > 0 ξ 6= 0

(3.4)

4. j-currents in a metric abelian group of (n−1)-currents

Dsing
k M is a metric space with respect to the flat metric on currents [3]. The metric

completion of Dsing
k M is the abelian group of integral k-currents

Dint
k M = (Dsing

k M)′ Dsing
k M ⊂ Dint

k M ⊂ Ddistr
k M ∂(Dint

k M) ⊂ Dint
k−1M (4.1)

The examples Q = Dsing
n−1MZ∂ξ0 complete to Q′ = Dint

n−1MZ∂ξ0 indexed by Z∂ξ0 ⊂ Dint
n−2M .

Calculus on the metric abelian group Q′ is to be based on the currents in Q′ using the general
construction of currents in a metric space [4]. Currents are defined as multilinear functionals
of Lipschitz functions. There is no need of a smooth structure on Q′. The j-forms on Q′ are
to be defined as linear functions of the j-currents in Q′, reversing the usual construction of
currents from forms.

The equivalence ∆j ×∆k ' ∆j+k gives a natural map

Πj,k : Dsing
j (Dint

k M)→ Dint
j+kM (4.2)

In particular,
Πj,n−1 : Dsing

j (Dint
n−1M)→ Dint

n−1+jM (4.3)

gives
Πj : Dsing

j Q′ → Q′j j = 0, 1, 2 (4.4)

where the Q′j are as in (3.2). The structure (3.4) pulls back along Πj to give a structure on
the j-currents in Q′ analogous to the j-currents in a Riemann surface, suitable for writing
a Cauchy-Riemann equation on Q′. The project then becomes to develop complex analysis
on Q′ in analogy with complex analysis on Riemann surfaces.

Some of the impetus to consider this mathematical material came from comments on
spaces of cycles in section 5 of [5] which referred to [6] where the maps Πj,k originate.

5. Tensor analysis on metric abelian groups

A metric abelian group is an abelian group that is complete with respect to a metric
which is compatible with the group structure. Let A′ be a metric abelian group, for example
A′ = Dint

k M or A′ = Dint
n−1MZ∂ξ0 . The j-currents in A′ form the vector space Ddistr

j A′. A
j-simplex in A′ is a j-current that represents a map σ : ∆j → A′. The j-simplices generate
the abelian group of singular j-currents Dsing

j A′.
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This section sketches a development of calculus and tensor analysis on A′ based on the
currents in A′. Topologies, regularity conditions, and domains of definition are left unspeci-
fied. Appendix B contains a naive remark on the need for a weak topology in addition to the
metric topology on currents. Some further remarks on tensor analysis are in Appendix ??.

5.1. Tangent j-vectors as infinitesimal j-simplices

Since a j-simplex can be subdivided into arbitrarily small j-simplices, the infinitesimal
j-simplices generate Dsing

j A′. This is expressed by the integral representation

σ : ∆j → A′ [σ] =

∫
∆j

δσ(t)Dσ(t) djt

∆j = [0, 1]j σε,t(t
′) = σ(t+ εt′) δσ(t)Dσ(t) = lim

ε↓0
ε−j [σε,t]

(5.1)

δσ(t) is the 0-current in A′ representing the point σ(t). The limit is taken in Ddistr
j A′.

(Appendix B comments on the limit.)
Define the space Tj(A′, ξ) of tangent j-vectors at ξ ∈ A′ to be the set of infinitesimal

j-simplices at ξ
Tj(A

′, ξ) = {Dσ(0) : σ(0) = ξ} (5.2)

The Tj(A′, ξ) are the same for all ξ by translation in the abelian group A′

Tj(A
′, ξ) = Tj(A

′, 0) (5.3)

Tj(A
′, 0) is a vector space, not merely a cone, because A′ is an abelian group and

D(σ1 + σ2) = Dσ1 +Dσ2 for σ1(0) = σ2(0) = 0 (5.4)

Let DjA′ be the span within Ddistr
j A′ of the infinitesimal j-simplices

DjA′ = Ddistr
0 A′ ⊗ Tj(A′, 0) (5.5)

Tensor analysis on A′ will be based on the vector spaces DjA′ because the j-currents in
DjA′ have the form of vector valued generalized functions. The integral representation (5.1)
means DjA′ is large enough so that

Dsing
j A′ ⊂ DjA′ (5.6)

In the examples A′ = Dint
k M , the map Πj,k of (4.2) acts linearly on DjA′ via its action on

the infinitesimal j-simplices. Πj,k does not act on all of Ddistr
j A′.

5.2. j-forms

Define the j-forms on A′ to be the homomorphisms of abelian groups

ΩjA
′ = Hom(Dsing

j A′,R) (5.7)

A homomorphism is determined by its action on the infinitesimal j-simplices so the j-forms
are functions on A′ with values in Tj(A′, 0)∗, i.e., sections of the j-cotangent bundle

ΩjA
′ = Γ(T ∗j A

′, A′) T ∗j A
′ = A′ × Tj(A′, 0)∗ (5.8)

The translation invariant forms are

ΩjA
′
inv = Tj(A

′, 0)∗ (5.9)
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6. j-currents (II)

6.1. Maps Πj,k : Dsing
j (Dint

k M)→ Dint
j+kM

The equivalence ∆j ×∆k ' ∆j+k gives

Πj,k : Dsing
j (Dint

k M)→ Dint
j+kM (6.1)

Πj,k acts on infinitesimal j-simplices as a linear function

DΠj,k : Tj(Dsing
k M, 0)→ Ddistr

j+kM (6.2)

The Πj,k are invariant under translations T (ξ) in Dsing
k M

Π0,kT (ξ)∗ = T (ξ)Π0,k Πj,kT (ξ)∗ = Πj,k j ≥ 1 (6.3)

From
∂(∆j ×∆k) = ∂∆j ×∆k + (−1)j∆j × ∂∆k (6.4)

it follows that
∂Πj,k = Πj−1,k∂ + (−1)jΠj,k−1∂∗ (6.5)

where ∂∗ is the push-forward of the boundary map ∂ : Dint
k M → Dint

k−1M

∂∗ : Dsing
j (Dint

k M)→ Dsing
j (Dint

k−1M) (6.6)

6.2. Maps Πj : Dsing
j Q′ → Q′j

Now consider Q = Dsing
n−1MZ∂ξ0 with completion Q′ = Dint

n−1MZ∂ξ0 . Define the Q′j as in
(3.2). Construct the morphism of augmented chain complexes

Dsing
2 Q′ Dsing

1 Q′ Dsing
0 Q′ Z 0

Q′2 Q′1 Q′ Z 0

∂

Π2

∂

Π1

∂

Π0

∂

1

∂ ∂ ∂ ∂

Π0 = Π0,n−1 Π0δξ = ξ δξ ∈ Dsing
0 Q′

∂7−−−→ ∂ξ ∈ Z∂ξ0

Π1 = Π1,n−1 Π2 = p2 ◦Π2,n−1 p2 : Dint
n+1M → Dint

n+1M/Q⊥

(6.7)

The Πj extend to linear maps Πj : DjQ′ → QR
j forming a morphism of linear chain complexes.

The bilinear form on the Q′j lifts to the Dsing
j Q′

I = Π∗IQ I(ξ1, ξ2) = IQ(Πj1ξ1,Πj2ξ2) (6.8)

The bilinear form on Dsing
1 Q′ is bi-invariant under translations

I(T (ξ)∗ξ1, ξ2) = I(ξ1, T (ξ)∗ξ2) = I(ξ1, ξ2) (6.9)

so is equivalent to a bilinear form on the tangent space T1(Q, 0).
DΠ1 identifies T1(Q, 0) with a subspace of Ddistr

n M

T1(Q, 0) = V1,n−1 ⊂ Ddistr
n M (6.10)

V1,n−1 consists, at least roughly, of the n-currents supported on integral (n−1)-currents.
A crucial point is that J = ∗ should act on T1(Q, 0)

JV1,n−1 = V1,n−1 (6.11)
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a germ of a proof of which is given in Appendix 1 of [2]. Given this, J lifts to

J : D1Q
′ → D1Q

′ JΠ1 = Π1J (6.12)

There is now structure on the currents in Q′ analogous to the currents in a Riemann surface,

I(ξ1, ξ2) = 0 unless j1 + j2 = 2

I(ξ2, ξ1) = (−1)j1j2I(ξ1, ξ2) I(∂ξ1, ξ2) = (−1)j1I(ξ1, ∂ξ2)

J : D1Q
′ → D1Q

′ J2 = −1

I(ξ, Jξ′) = I(ξ′, Jξ) I(ξ, Jξ) ≥ 0 deg(ξ) = deg(ξ′) = 1

(6.13)

7. Tensor analysis (II)

Continuing discussion of the metric abelian group A, the object now is to construct a
morphism of chain complexes of abelian groups

· · · Dsing
j A′ · · · Dsing

2 A′ Dsing
1 A′ Dsing

0 A′ 0

· · · A′(j) · · · A′(2) A′(1) A′ 0

∂

Π(j)

∂ ∂ ∂

Π(2)

∂

Π(1)

∂

Π(0)

∂ ∂ ∂ ∂ ∂ ∂

(7.1)

embedded in a morphism of chain complexes of vector spaces

· · · DjA′ · · · D2A
′ D1A

′ D0A
′ 0

· · · AR
(j) · · · AR

(2) AR
(1) AR

(0) 0

∂

Π(j)

∂ ∂ ∂

Π(2)

∂

Π(1)

∂

Π(0)

∂ ∂ ∂ ∂ ∂ ∂

A′(j) → AR
(j) j ≥ 1 A′ → AR

(0)

(7.2)

The A′(j) and AR
(j) will express the distributions Dsing

j A′ and DjA′ modulo translations. If
A were a vector space, or more generally an abelian Lie group, the boundary operators
on A′(j) and AR

(j) would be identically zero. But when A is not a vector space, the chain
complexes A′(j) and AR

(j) can express nontrivial information about A. In the examples A =

Q = Dsing
n−1MZ∂ξ0

Q′(j) = Dint
j+n−1M QR

(j) = Ddistr
j+n−1M j ≥ 1, QR

(0) = Ddistr
n−1MR∂ξ0 (7.3)

as explained in Appendix C.

7.1. Define AR
(j), Π(j), and A′(j) for j ≥ 1

Using the identification DjA′ = Ddistr
0 A′ ⊗ Tj(A, 0) of (5.5), define

AR
(j) = Tj(A, 0) j ≥ 1

Π(j) : DjA′ → AR
(j) j ≥ 1

Π(j) = 1∗ ⊗ 1 1∗ : Ddistr
0 A′ → R 1∗ : µ 7→

∫
µ

1

A′(j) = Π(j)D
sing
j A′ ⊂ AR

(j) j ≥ 1

(7.4)
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The translations act on DjA′ via Ddistr
0 A′, so Π(j) exhibits AR

(j) as DjA′ mod translations

and A(j) as D
sing
j A′ mod translations. So the boundary maps are well-defined. The cochain

complex of invariant j-forms is dual to the chain complex AR
(j)

ΩjAinv = (AR
(j))
∗ = Hom(A(j),R) j ≥ 1 (7.5)

Strictly speaking, AR
(j) cannot be exactly Tj(A, 0) but must be a completion large enough to

receive the integrals Π(j) of equation (7.4).

7.2. Define Π(0) and AR
(0)

For j = 0, define

Π(0) : Dsing
0 A′ → A′ Π(0) : δξ 7→ ξ ξ ∈ A′ (7.6)

The boundary operator ∂ : A(1) → A′ is well defined because

Π(0) [(δξ1 − δξ2)− (δξ+ξ1 − δξ+ξ2)] = 0 (7.7)

which is to say that ∂ takes Dsing
1 A′ mod translations to Dsing

0 A′ mod ker Π(0).
Define AR

(0) by extending Π(0) from Dsing
0 A′ to D0A

′

AR
(0) = D0A

′/span
{
δξ1+ξ2 − δξ1 − δξ2 , ξ1, ξ2 ∈ A′

}
(7.8)

so that

(AR
(0))
∗ = Hom(A,R) (7.9)

The cochain complex of invariant forms on A is modified in degree 0

· · · Ω2Ainv Ω1Ainv (AR
(0))
∗ 0d d d d (7.10)

7.3. A necessary condition on A

The abelian groups A′(j) are embedded by design in the vector spaces AR
(j) for j ≥ 1. But

A′ is not necessarily embedded in AR
(0). There is a morphism A′ → AR

(0) but there is no
guarantee that the morphism is injective. For example, if A = U(1) then AR

(0) = 0. On the

other hand, in the examples A = Q = Dsing
n−1MZ∂ξ0 the morphism A′ → AR

(0) is the embedding
Dint
n−1MZ∂ξ0 → Ddistr

n−1MR∂ξ0 . The condition that A′ → AR
(0) be injective must be imposed by

hand on the metric abelian group A.

7.4. Augmentation

When there is an augmentation A ∂−→ Z, the augmentation can be regarded as a function
on A′ that can be integrated over a 0-current, giving augmentations of the chain complexes
in (7.1) and (7.2).

D0A
′ ∂−→ R Dsing

0 A′
∂−→ Z δξ

∂7−−→ ∂ξ ξ ∈ A′ (7.11)
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8. Definition of quasi Riemann surface

QRS-1 Let Q be a metric abelian group with a morphism Q
∂−→ Z, the augmentation.

The currents in Q are to have structure equivalent to (6.13) which is sufficient for a Cauchy-
Riemann equation. The examples are Q = Dsing

n−1MZ∂ξ0 for M a conformal 2n-manifold.
When n=1 this is Q = Dsing

0 Σ for M = Σ a Riemann surface.
The structure is formulated on the chain complex of vector spaces QR

(j) from (7.2) with
A = Q in analogy with the chain complex Ddistr

j Σ of currents in a Riemann surface and the
chain complex (3.2) of (j+n−1)-currents in a 2n-manifold M . Then the structure is lifted
to the currents DjQ in Q via the morphisms Π(j).

8.1. Structure on the tangent space QR
(1) = T1(Q, 0)

QRS-2 There should be a complex structure J and an antisymmetric bilinear form IQ(ξ1, ξ2)
on T1(Q, 0).

(1) IQ(ξ1, Jξ2) should be symmetric, hermitian, and positive definite, making
T1(Q, 0) a Hilbert space (which should be infinite-dimensional and separa-
ble).

(2) T1(Q, 0) should decompose into three orthogonal subspaces

T1(Q, 0) = Im ∂ ⊕ T1(Q, 0)H ⊕ J Im ∂

T1(Q, 0)H = Ker ∂ ∩ J Ker ∂
(8.1)

(3) The harmonic subspace T1(Q, 0)H should be finite dimensional, or at least
Im ∂ should be infinite dimensional. In the examples, T1(Q, 0) = Ddistr

n M
and T1(Q, 0)H is the finite dimensional vector space of harmonic n-currents.

8.2. Assume connectedness and nondegeneracy

For simplicity make two assumptions on Q.

(1) connectedness: The reduced homology H̃0(Q) = 0, i.e., ∂Q(1) = Ker ∂.

In the examples Q = Dsing
n−1MZ∂ξ0 this is H̃n−1(M) = 0. For n = 1, the Riemann

surface M = Σ is connected. For n > 1, the 2n-manifold M has Hn−1(M) = 0.

(2) nondegeneracy: ∂Q = Z
In the examples, this is ∂ξ0 6= 0.

8.3. Extend IQ(ξ1, ξ2) to QR
(0) ×Q

R
(2)

IQ(ξ1, ξ2) extends to ∂QR
(1) ×Q

R
(2) and QR

(2) × ∂Q
R
(1) by the conditions

IQ(∂ξ1, ξ2) = (−1)j1IQ(ξ1, ∂ξ2) IQ(ξ2, ξ1) = (−1)j1j2IQ(ξ1, ξ2) (8.2)

but additional structure is needed to specify the extension to all of QR
(0) × QR

(2). By the
two assumptions above, there exists ξ0 ∈ Q with ∂ξ0 = 1 and QR

(0) = Rξ0 ⊕ Im ∂. So the
extension is completely specified once ξ2 7→ IQ(ξ0, ξ2) is given.
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QRS-3 There should be ω(ξ0) ∈ T2(Q, 0)∗ = Ω2Qinv for some ξ0 ∈ Q with ∂ξ0 = 1,
depending on the choice of ξ0 by

ω(ξ0 + ∂ξ1) = ω(ξ′0) + dη(ξ1) ξ1 ∈ QR
(1)

η(ξ1) ∈ T1(Q, 0)∗ is given by
∫
ξ′1

η(ξ1) = IQ(ξ′1, ξ1) ξ′1 ∈ QR
1

(8.3)

ω(ξ0) should not vanish on Ker ∂ ⊂ QR
(2).

The extension of IQ(ξ1, ξ2) to QR
(0) ×Q

R
(2) is now completely specified by

IQ(ξ0, ξ2) =

∫
ξ2

ω(ξ0) ξ2 ∈ QR
(2) (8.4)

8.4. QR
j and Q′j The vector spaces QR

j as in (3.2) are

QR = QR
0 = QR

(0) QR
1 = QR

(1)

QR
2 = QR

(2)/(Q
R
(0))
⊥ (QR

(0))
⊥ = Ker ∂ ∩ Kerω(ξ0)

(8.5)

The abelian groups Qj ⊂ QR
j are the images of the Dsing

j Q′.

8.5. Integrality condition

QRS-4 IQ(ξ1, ξ2) should take integer values on Q′(1) and ω(ξ′0) should take integer values
on Q′(2), both wherever defined (which should be almost everywhere).

Q′(j) = Π(j)D
sing
j Q′ ⊂ QR

(j) (8.6)

8.6. Lift to the currents in Q

Define

DR
0 = Ddist

0 Q′ = D0Q
′ D0 = Dsing

0 Q′ = D0Q
′

DR
1 = Ddist

0 Q′ ⊗ T1(Q, 0) = D1Q
′

DR
2 = Ddist

0 Q′ ⊗QR
2

so DR
2 is a quotient of D2Q

′ = Ddist
0 Q′ ⊗QR

(2).
Lift IQ(ξ1, ξ2) to a bilinear form I(ξ1, ξ2) on the currents in Q by

I(ξ1, ξ2) = IQ(Π(j1)ξ1,Π(j2)ξ2) ξ1 ∈ Dj1Q′, ξ2 ∈ Dj2Q′, (8.7)

Lift J to act on D1Q
′ via the identification D1A

′ = Ddistr
0 A′ ⊗ T1(A, 0) of (5.5).

The integrality condition implies that I(ξ1, ξ2) will take integer values on Dsing
j Q′
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8.7. Some basic consequences

ω(ξ0) restricted to Ker ∂ ⊂ QR
(0) does not depend on the choice of ξ0. It descends to a

nonzero form on the one-dimensional Ker ∂ ⊂ QR
2 so [Q] ∈ Q2 is uniquely defined by

[Q] ∈ Q2 ∂[Q] = 0

∫
[Q]
ω(ξ0) = 1 (8.8)

[Q] has the property
IQ(ξ, [Q]) = ∂ξ ξ ∈ Q (8.9)

There are decompositions

QR
0 = Rξ0 ⊕ [Q]⊥ Im ∂ = [Q]⊥ [Q]⊥ ∼= J∂QR

2

QR
1 = ∂QR

2 ⊕ T1(Q, 0)H ⊕ J∂QR
2

QR
2 = R[Q]⊕ ξ⊥0 Ker ∂ = R[Q] ξ⊥0

∼= ∂QR
2

(8.10)

In the examples Q = Dsing
0 Σ, [Q] is the 2-current representing the Riemann surface Σ. For

Q = Dsing
n−1MZ∂ξ0 with n> 1, [Q] is a certain equivalence class of (n+1)-boundaries in M

[Q] =
{
∂ξ ∈ Dsing

n+1M : IM (ξ0, ∂ξ) = 1
}

(8.11)

The set of such ∂ξ should be non-empty which is an additional condition on ∂ξ0, an ir-
reducibility condition. To accommodate all ∂ξ0 ∈ Dsing

n−1M the nondegeneracy assumption
∂Q = Z should be dropped. Then ∂Q = NZ for some integer N ≥ 0 and ω(ξ0) depends on
a choice of ξ0 ∈ Q with ∂ξ0 = N . The integrality condition becomes ω(ξ0)(Q′(2)) = NZ.

8.8. Cauchy-Riemann equation

All the properties of (6.13) are now satisfied. This structure is sufficient to write a Cauchy-
Riemann equation on the quasi Riemann surface Q analogous to the Cauchy-Riemann equa-
tion (2.5) on a Riemann surface

G : D1Q⊗D1Q→ C G(ξ, ξ′) = G(ξ′, ξ)

G(ξ, ξ′) = G(P+ξ, P+ξ
′) P+ =

1

2
(1 + i−1J)

G(ξ, ∂ξ2) = −2πiI(P+ξ, ∂ξ2)

(8.12)

In addition, the translation invariance of I(ξ1, ξ2) and J allows translation invariance to be
imposed on the solution

G(T (ξ′′)∗ξ, ξ
′) = G(ξ, T (ξ′′)∗ξ

′) = G(ξ, ξ′) (8.13)

NOTE: that the equation is really solved on the QR
j .

using the decomposition
introduce period lattice
For use in the linear morphism section.

9. Morphisms and quasi holomorphic curves

A linear morphism F : QA → QB of quasi Riemann surfaces consists of linear operators
Fj : QR

Aj → QR
Bj which preserve ∂, J , and IQ(ξ1, ξ2), including

F−1 : R→ R F−1∂ = ∂F0 (9.1)
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A morphism will be a linear morphism satisfying some integrality and regularity conditions.
For simplicity assume that QA and QB are nondegenerate and connected as in section 8.2.

9.1. Linear morphisms, isomorphisms, automorphisms

By the decomposition (8.10) F1 consists of two partial unitary operators

F1,exact : ∂QR
A2 → ∂QR

B2 F †1,exactF1,exact = 1

F1,harmonic : T1(QA, 0)H → T1(QB, 0)H F †1,harmonicF1,harmonic = 1
(9.2)

F0 on Im ∂ ⊂ QR
A0 is determined by F1,exact. Then F0 is completely determined by

ξ′B0 = F0ξA0 ∈ QR
B (9.3)

ξ′B0 also determines F−1 by
F−11 = ∂ξ′B0 ∈ R (9.4)

F2 must satisfy
∂F2[QA] = F2∂[QA] = 0

IQB
(F0ξA0, F2[QA]) = IQA

(ξA0, [QA]) = 1
(9.5)

so
F−11 = ∂ξ′B0 6= 0 F2[QA] = (F−11)−1[QB] (9.6)

Finally,
F2(ξ⊥A0) ⊂ (ξ′B0)⊥ (9.7)

the last of which is equivalent to

∂(F2ξ2)− F1(∂ξ2) ∈ (F1QA1)⊥ (9.8)

so F2 is determined up to an arbitrary linear operator

F2,0 : ξ⊥A0 → (F1,exact∂Q
R
A2)⊥ ∩ (∂QR

B2) (9.9)

Thus a linear morphism is given by
(1) the partial unitary operators F1,exact and F1,harmonic

(2) ξ′B0 ∈ QR
B, ∂ξ

′
B0 = 1

(3) the linear operator F2,0

Strictly, ∂ξ′B0 can be any nonzero real number, but sending ξ′B0 → aξ′B0, a ∈ R, a 6= 0
produces an essentially equivalent morphism. So ∂ξ′B0 = 1 which is F2[QA] = [QB] might as
well be assumed.

A linear isomorphism has F1,exact and F1,harmonic both unitary, implying F2,0 = 0. The
linear automorphism group is thus the semi-direct product

Aut(Q) = QR
0,0 o (UQR

1,harmonic × UQR
1,exact) Q0,0 = Ker ∂ = Im ∂ ⊂ Q (9.10)

where Q0,0 acts on Q by translation, i.e., ξB = ξA + ∂ξ′A, ∂ξ
′
A ∈ Q0,0.

9.2. Integrality and regularity conditions

A morphism might be defined as a linear morphism that preserves the integral structure
Qj ⊂ QR

j and also the metric structure on Q. However, the Cauchy Riemann equation sees
only ∂, J , and I(ξ1, ξ2). These are preserved by every linear morphism. So it might be
reasonable to impose only one additional condition: that the linear morphism preserve the
period lattice L ⊂ QR

1,harmonic, i.e., F1,harmonic(LA) ⊂ LB. With this definition of morphism,
a quasi Riemann surface is classified up to isomorphism by the genus g = dimC(QR

1,harmonic)

and the rank 2g lattice L in the complex Hilbert space QR
1,harmonic

∼= Cg.
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9.3. Quasi holomorphic curves

A quasi holomorphic curve is a morphism C : Q(Σ) → Q where Σ is a Riemann surface
and Q(Σ) = Dsing

0 Σ is the quasi Riemann surface associated to Σ. A solution of the Cauchy
Riemann equation on Q pulls back along C to an ordinary solution on the Riemann surface
Σ. A local quasi holomorphic curve is one where Σ is the open complex disk.

Complex analysis on Q should be equivalent to ordinary analysis in one complex variable
on each of a suitable collection of (local) quasi holomorphic curves, subject to compatibility
conditions when quasi holomorphic curves overlap. The physics application would be to
construct a quantum field theory on Q as an ordinary two-dimensional conformal field theory
on each of those quasi holomorphic curves.
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Appendix A. General case (n even or odd)

Now consider the general case of M a conformal 2m-manifold with n even or odd. For n
even, the conformal Hodge ∗-operator on n-forms satisfies ∗2 = (−1)n = 1, and the inter-
section form IM (ξ, ξ′) on n-currents is symmetric. So the construction of a quasi Riemann
surface for general n requires the complex currents

Ddistr
k,C M = (Ddistr

k M)⊗ C (A.1)

Write
deg(ξ) = n− 1 + deg′(ξ) k = n− 1 + j ξ ∈ Ddistr

k,C M (A.2)

Choose a root εn of the equation
ε2n = (−1)n−1 (A.3)

then define
J = εn∗ on Ddistr

n,C M (A.4)

IM 〈 ξ̄1, ξ2 〉 = ε−1
n (−1)(n−1)k2 IM (ξ̄1, ξ2) on Ddistr

k1,CM ⊗D
distr
k2,CM (A.5)

satisfying
IM 〈 ξ̄1, ξ2 〉 = 0 unless j1 + j2 = 2 (A.6)

IM 〈 ξ̄1, ξ2 〉 = (−1)j1j2IM 〈 ξ̄2, ξ1 〉 I( ¯∂ξ1, ξ2) = (−1)j1I(ξ̄1, ∂ξ2) (A.7)

J ∈ End(Ddistr
n,C M) J2 = −1 (A.8)

IM 〈 ξ̄, Jξ′ 〉 = IM 〈 ξ̄′, Jξ 〉 IM 〈 ξ̄, Jξ 〉 > 0 ξ 6= 0 deg′(ξ) = deg′(ξ′) = 1 (A.9)

For each ∂ξ0 = ∂Dsing
n−1M there is the augmented chain complex of abelian groups/complex

vector spaces

0 Q2 Q1 Q Z 0

0 QC
2 QC

1 QC C 0

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

(A.10)
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Q−1 = Z∂ξ0 QC
−1 = C

Q = Q0 = (Dsing
n−1MZ∂ξ0)⊕ i(∂Dsing

n M) QC
0 = Ddistr

n−1,CMC∂ξ0

Q1 = (Dsing
n M)⊕ i(Dsing

n M) QC
1 = Ddistr

n,C M

Q2 = [(Dsing
n+1M)⊕ i(Dsing

n+1M)]/Q⊥0 QC
2 = (Ddistr

n+1,CM)/(QC
0 )⊥

(A.11)

Q is defined so that ∂(Q) ⊂ Z, so that H̃0(Q) = 0 in the connected case, and so that T0(Q, 0)
is the complex vector space V1,n−1 ⊗ C on which J = εn∗ acts.

A complex quasi Riemann surface is a abelian group Q with augmentation and metric
completion and also with an involution ξ 7→ ξ̄, ∂ξ̄ = ∂ξ, called complex conjugation. The
definition is as before, but with C in place of R and with a sesquilinear form IQ〈 ξ̄1, ξ2 〉 in
place of the bilinear form IQ(ξ1, ξ2).

Appendix B. Topologies for infinitesimal j-simplices

The construction of an infinitesimal j-simplex as a derivative in (5.1) requires taking a
limit of j-currents limε↓0 ε

−j [σε,t]. Suppose A = Rd as a simple example. In the ordinary
sense of derivative, Dσ(t) is a j-vector in Rd at σ(t). The j-currents ε−j [σε,t] converge
weakly to δσ(t)Dσ(t) but they do not converge in the metric topology. The limit in the
metric topology is a 0-current |v|δv̂ in the unit sphere of j-vectors at σ(t), where v = Dσ(t),
v̂ = v/|v|. The linear map aδv̂ 7→ av̂ projects the metric j-tangent space down to the weak
j-tangent space. This example suggests that the infinitesimal j-simplices in a general abelian
A must be constructed as weak limits of currents. The same weak topology would be used
to define j-forms as homomorphisms from Dsing

j A to R as in (5.7). In the same vein, a weak
topology is needed for the vector space of infinitesimal elements of A so that in the examples
A = Dsing

k M the result will be a subspace of Ddistr
k M . The metric topology gives much too

large a space of infinitesimals.

B.1. Derivatives DΠj,k : Tj(Dsing
k M, 0)→ Ddistr

j+kM

Πj,k acts on infinitesimal j-simplices as a linear function

DΠj,k : Tj(Dsing
k M, 0)→ Ddistr

j+kM (B.1)

The image is
Vj,k = DΠj,k(Tj(Dsing

k M, 0)) Vj,k ⊂ Ddistr
j+kM (B.2)

Vj,k is, roughly, the subspace of (j+k)-currents supported on integral k-currents. The bound-
ary operator ∂ is injective on Vj,k

(Ker ∂) ∩ Vj,k = {0} (B.3)

There is another linear function

Tj(Dsing
k M, 0)

D∂−−→ Tj(Dsing
k−1M, 0)

DΠj,k−1−−−−−→ Ddistr
j+k−1M (B.4)

Together, the two linear functions DΠj,k and DΠj,k−1 ◦D∂ identify

Tj(Dsing
k M, 0) = ∂(Vj,k)⊕ Vj,k−1 (B.5)

Appendix C. Tangent spaces

In particular,
Π0,kδξ = ξ (C.1)
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