Quasi Riemann surfaces

Daniel Friedan

New High Energy Theory Center, Rutgers University
and Natural Science Institute, The University of Iceland

dfriedan@gmail.com

draft August 31, 2018

Abstract

This is a naive attempt at describing a mathematical object for use in theoretical physics.
The object is an abelian group and metric space with geometric structure analogous to a
Riemann surface, suitable for writing an analog of the Cauchy-Riemann equation. Examples
are certain abelian groups of singular (n—1)-currents in conformal 2n-manifolds. The hope
is that complex analysis on such quasi Riemann surfaces can be developed in analogy with
Riemann surfaces. The physics goal is to construct quantum field theories on quasi Riemann
surfaces in analogy with 2d conformal field theories on Riemann surfaces, forming a new class
of constructable quantum field theories on 2n-manifolds. The exposition here is unrigorous,
aiming to attract interest in building rigorous complex analysis on quasi Riemann surfaces.
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The goal is to formulate an analog of analysis in one complex variable on certain spaces of
singular (n—1)-currents in a conformal 2n-manifold, to be used in constructing quantum field
theories on those spaces of currents in analogy with 2d conformal field theories on Riemann
surfaces [1,2].

1. CURRENTS IN A CONFORMAL 2n-MANIFOLD

The basic objects are

M = a smooth 2n-manifold with orientation and conformal structure
(for simplicity: n odd, M compact without boundary, H,_1(M) = 0)

stmOOthM = the smooth real k-forms on M

Ddistryyr = (Qsmeoth A1) the distributional k-currents in M

DzingM = the abelian group of singular k-currents in M,
generated by the k-simplices A*¥ — M in M

The pairing between a k-current £ and a k-form w is

/5 o= [ e @) € @) P (L1)

The boundary operator on currents is dual to the exterior derivative on forms
[o=[do @@ = 0@ =0 (1.2)
23 3

A map o from the k-simplex to M is represented by a k-current [o]

o: AP 5 M / w:/ ow (1.3)
[o] Ak

D,S;ngM is the abelian group of currents generated by the k-simplices in M, i.e., the currents
representing the singular k-chains in M. The bilinear intersection form on currents

1 o
Im(&,&z):/ Wf{“ ey & (@) d e kit ke =20 (14)
M PN1-h2:

is defined almost everywhere, vanishes unless k1 + ko = 2n, and depends only on the orien-
tation €1..opdzt - - - da®™ (d*"z) 7L, Tt satisfies

Ii(6,&) = (1R (&, &) Tn(0&1, &) = (1) I (&1, 06) (1.5)

On singular currents Ins(&1,&2) gives the integer intersection number (where defined). The
Hodge *-operator acting on n-forms and on n-currents is conformally invariant

1 |20 n
g (8) = g ()i () /ng /E w2 (-1 (16)

!

Ing(&%€) =T (€,%6)  Tm(§,#6) >0 £#0  deg(§) =deg(¢) =n (1.7)

For n odd, the n-currents form a Hilbert space with complex structure J = % and hermitian
inner product (£,&) = I (&, x&") (where defined).



2. j-CURRENTS IN A RIEMANN SURFACE, 7 =0,1,2

When n = 1, M is a Riemann surface. Write X instead of M. The augmented chain
complex of j-currents in X is

0 0 ,D;ingz 0 ,Diingz e} ,D(s)ingz o} 7 0 0

Lo 1] &

0 o) Dgistrz 9 Diiistrz 9 fD(d)istrE 9 R 9 0

¢epdsry 2, / 1 (2.2)
3
The intersection form and the conformal Hodge *-operator on j-currents satisfy
I5(£1,62) =0 unless j; + jo =2 (2.3)
Ix(&2,6) = (1) I5(61, &) I5(061,6) = (—1)' In(&1, 062) (2.4)
J=x% on DUy J?=_1 (2.5)
I, JE) = Is(€,JE)  Is(6,JE) >0 £#0  deg(§) =deg(¢) =1 (2.6)
3. CAUCHY-RIEMANN EQUATION IN TERMS OF j—CURRENTS
A fundamental solution
1
G(z,2')dzd?' G(z,7) = o) + holomorphic (3.1)
of the Cauchy-Riemann equation
0:G(2,7) = —md,6%(z — 2) G(z,2') = G(7,2) (3.2)
can be considered as a complex bilinear form on 1-currents
G(¢,¢) :/ G(z,2)dzd?' (3.3)
143

and the Cauchy-Riemann equation can be written in terms of J and Ix(&1,&2)

G(§08) =2mils(0€, &)  G(§,€)=G(E.§)  GUEE) =iGE ) (3.4)
Taking &5 to be a disk in ¥ and £ to be a 1-simplex, this is the residue formula.
4. (n—14j)-CURRENTS IN A CONFORMAL 2n-MANIFOLD (n ODD)
For simplicity, suppose n is odd. The general case is discussed in Appendix A. For each
singular (n—2)-boundary 9¢ € 9D, "5 M let
n—1 n—1

Q = D™ Mg, = {5 e DMEN: OE € Zago} (4.1)

This abelian group @ is to have structure analogous to a Riemann surface — a quasi Riemann
surface. For each 0&y there is an augmented chain complex

0 0 Qo 0 y Q1 0 Q 0 0 0

l l l | T (4.2)

0~ Qf —> Qf —> Q" —° >0
Q1=20 Qo=Q=D"8Mgp, Qi=Di"eM (4.3)
Q:=DEM/QF  Qf = {¢ € DM Iu(,€) =0 ¥ € Qf

The QI]R are the analogously defined real vector spaces of distributional currents.




4

The intersection form Ips(&1,&2) descends by construction to a bilinear form Ig(&1,&2),
&1 € Qjy, &2 € Qj,. So there is the same structure as on the j-currents in a Riemann surface

Io(&1,&) =0 unless ji + jo = 2 (4.4)

Ig(&2,6) = (-1)21g(&1, &) 1g(061,&) = (-1 Ig(&, 0&) (4.5)
J=xcEnd@Q}) J*P=-1 (4.6)

I9(&,JE) = Ig(¢,JE)  Ig(&,JE) >0 £#0  deg(é) =deg(¢) =1 (4.7)

5. j-CURRENTS IN AN ABELIAN GROUP OF (n—1)-CURRENTS

The natural equivalence AJ x AF ~ AJT* will give rise to a natural map
IL; g : D;mg(DngM) — D;lj_IEM (5.1)

once given a construction of currents in the space DzmgM . In particular, the maps

Iy DS8(DRS M) — D%, M (5.2)
will descend to maps
Hj! D;mgQ — Qj (5.3)

which can be used to pull back the structure on the @); to give a structure on the j-currents
in (Q analogous to the structure on the j-currents in a Riemann surface. The project then
becomes to develop calculus on () from this structure on its j-currents in analogy with
complex analysis on a Riemann surface. . .

At least one construction of currents in D} "M is available. A metric is put on D" M,
in particular the flat metric of [3]. Then the general construction of currents in a metric
space |4] gives currents in Dy "8 M. This construction is adopted tentatively.

The metric completion of DzingM in the flat metric is the space of integral k-currents
(D" M) =DM D™ M C DM c DEsTt M (5.4)

Currents in a metric space are defined in [4] not as linear functionals on differential forms
but rather as multilinear functionals of Lipschitz functions. There is no presumption of a
smooth structure on the metric space. The j-forms will then be defined as functions of
j-currents, reversing the usual construction.

Part of the initial impetus to consider this mathematical material came from comments
on spaces of cycles in section 5 of [5] which referred to [6] where the maps II; ;, originate.

6. CURRENTS IN AN ABELIAN GROUP

The metric spaces of interest here are abelian groups with metric completion,
A=D"™M A =DM or A=D"Mye, A =D My, (6.1)

The general construction of currents in a metric space [4] gives D§*'* A and D} " A, the vector
space of distributional j-currents in A and the abelian subgroup of singular j-currents in A.
The latter is generated by the j-simplices [0] representing maps o: AJ — A’

The following discussion of the currents in an abelian group A is entirely unrigorous.
Topologies, regularity conditions, and domains of definition are left unspecified. Appendix B
remarks on needing a weak topology in addition to the metric topology.



6.1. Tangent j-vectors as infinitesimal j-simplices

The singular j-currents are generated by the j-simplices. Each simplex can be subdivided
into a sum of arbitrarily small simplices, so the singular j-currents are generated by the
infinitesimal j-simplices,

o: AV A [o] = Sty Do (t) 't (6.2)
A
SoryDo(t) = liﬁf)l €0 oer(t') =o(t +et') A =10,1) (6.3)

do(+) being the O-current representing the point o(t) € A’. Appendix B comments on the
nature of the limit, on the need to use a weak topology.
The vector space of tangent j-vectors to A at £ is the set of infinitesimal j-simplices

Tj(A,€) ={Da(0): 0(0) = £} (6.4)
The T;(A, ) are the same for all £ by translation in the abelian group A.
Tj(A,§) = Tj(A,0) (6.5)
Tj(A,0) is a vector space, not merely a cone, because A is an abelian group.
D(01+02):D01+D02 01(0) 202(0)20 (6.6)
Define
D;A = D" A @ Tj(A,0) (6.7)
The derivatives Do(t) in the integral (6.2) all lie in 7);(A, 0) so
D;mgA C D;A (6.8)

D;A is the useful vector space of j-currents because it is constructed from infinitesimal j-
simplices. In the examples, the map II,; ;, will act on the D; A via its action on the j-simplices.

6.2. j-forms on A

The j-forms on A are defined as the homomorphisms of abelian groups
Q;A = Hom(D}"® A, R) (6.9)

continuous in the same topology as used to define tangent j-vectors in equation (6.3). A
homomorphism is determined by its action on the infinitesimal j-simplices, so the j-forms
can be regarded as functions on A with values in the dual vector space T};(A,0)*. The j-forms
are the sections of the bundle of cotangent j-vectors over A

TPA= AxTi(A0)  QA=T(TFA,A) (6.10)

6.3. Translations in A
Let T¢ be translation by £ in the abelian group A. The translations act on D;-iiS“A and on

D;ingA by the push-forward T, ¢. The translations act on D; A via translation of 0-currents

. 3 .
Dl 4 T (A,0) 224 Ddistr 4 @ 75(4, 0) (6.11)



Construct a morphism of chain complexes of vector spaces and of abelian subgroups

8>DJ'A O, ... B>D2AL>D1AL>D0AL>O
b b
0 1 0 0 1 0 1 0 0
AR e A% y AR AR 0
(6.12)
o} D;ingA 9., .. _0 D;ingA 2] DiingA 0 D(s)ingA 0 0
| ifb iﬁl Jﬁo
I S RN N [ NN, (R BN R N
When A has an augmentation A LN 7, these chain complexes are augmented by
DoASR  Diealz 5 s e (6.13)
For j > 1 define
I, =1"®1: DA T;(A,0) = AFY 1" Dy""A R 1°¢ = /1
3 (6.14)

;1%% = a completion of T};(A,0) A; = f[j(D;ingA)

The completion AI]R is to contain the integrals (6.14) of elements of Tj(A,0). The map II;
identifies flR with D; A modulo translations, and fl with DSingA modulo translations.
For j = 0 the problem is to construct a natural vector space AR containing A with a

linear operator Iy extending the map J¢ + & from DsmgA to A. Iy should act on the
boundary of an infinitesimal 1-simplex by

lim e (8,(¢) — 60) > lim e "o (e) (6.15)
€e—0 e—0

so AR should contain the vector space Ajn¢ of infinitesimal elements of A. A weak topology
on A is needed for the limits. The infinitesimal elements generate the connected component
of the identity Acc C A. Therefore AR = Aj¢ when A is connected, as in the examples
A= DsmgM . More generally, assume A/A.. = Z". Then AR is an extension of Ainr by R".

The examples A = Q = Dsmg 1 Mzp¢, come with an augmentation A 9, 7. The connected-
ness condition A.. = Kerd implies A/Ac. = 7Z so AR is an extension of Aj,¢ by R. In the
examples, the connectedness condition is equivalent to H,,_1(M) = 0.

7. j-CURRENTS IN AN ABELIAN GROUP OF (n—1)-CURRENTS (2)
7.1. Maps II;,: D;"8(Dy"8M) — Ditt, M
Consider the abelian group A = DzmgM with metric completion DM . The equivalence
A x AF ~ AITE gives
I, D" (D" M) — DYy M (7.1)
In particular,
Hop =1l Iloxde =& (7.2)

The 11, are invariant under translations in DzmgM

IT; , T = T¢I, (7.3)



where the translations T act trivially on the D;‘}:kM , j > 1. From

A(AT x AF)y = 9AT x AF 4+ (—1)7 AT x dAF (7.4)
it follows that A
Ol =11 0 + (—1)’11; 1 0, (7.5)
where 0, is the push-forward of the boundary map 0: D}gntM — D}cnﬁlM
0. D"B(DYMEM) — DIE(D M) (7.6)
7.2. Derivatives dIl;,: Tj(D}"*M,0) — DI\
I1; ;, acts on infinitesimal j-simplices as a linear function
dIL; i Tj (D8 M, 0) — DM (7.7)
Define V; ;. to be the image
Vik = dIL (T;(Dy"8 M, 0)) € DI M (7.8)

Vj i is, roughly, the subspace of (j+Fk)-currents supported on integral k-currents. The bound-
ary operator 0 is injective on V;
(Kerd) NV;, = {0} (7.9)
There is also a linear function
T, (D507, 0) 227 1, (DS g, 0) LAY, pdistr (7.10)
J k ) J k—1"%> j+k—1 .
The two linear functions dIl;; and dIl; ;_; o d0* identify

T (D" M,0) = 0(Vjx) © Vg1 (7.11)

7.3. Maps 1I;: DjmgQ — Q)
Now take A = Q = Df;ﬂgleago with metric completion Q" = D, Mzpe,. Define
DiingQ 0 DgingQ 0 D;ingQ 0 DiingQ 0 D(s]ingQ 0 7 0 0
io lﬂs lnz lHl lno ll
) ) A A A (7.12)
0 z Q) Q! . Q . 7 -2, 0

~ . II; 1 .
_ L Sing J,n int
Iy = 1lp HJ_Dj Q —— D},

M Q) =1

where the @; are defined in (4.3) and p; is projection on the quotient. The II; comprise a
morphism of chain complexes, because the operator 9, in (7.5) vanishes on D;ntQ for 7 > 1.
The II; extend to linear maps II;: D;Q — QEQ forming a morphism of the linear chain

complexes. The II; are translation invariant in the sense that they factor through the ﬁj of
(6.12). The bilinear form on the @; now lifts to the D;mgQ

T=Tly  I(6,6) = Io(;,6, T,6) (7.13)
The derivative dII; identifies the tangent space T7(Q,0) with Vi 5,1
T1(Q,0) = Vi, 1 C DIsTpp (7.14)

A crucial point is that J = % should act on T3 (Q, 0)
IVipn—1=Vina (7.15)



a germ of a proof of which is given in Appendix 1 of [2|. Assuming (7.15), J lifts to
J: DlQ — DlQ JH1 = H1J (716)

Now the structure on the currents DjingQ is analogous to the DjingE in a Riemann surface

I(£1,&) =0 unless ji + jo = 2 (7.17)

I(&,6) = (-1)"21(6,&)  1(061,&) = (1) 1(£1,06) (7.18)
J € End(D;Q) JP=-1 (7.19)
1(§,JE)=1(¢,J8)  I(§,JE) =0  deg(§) =deg(¢) =1 (7.20)

8. FIRST DEFINITION

A first definition of quasi Riemann surface recapitulates the examples Df;fgleago.

(1) an abelian group @ with augmentation @ 9, 7 and metric completion Q.

(2) a bilinear form I(£1,&2) on the D;ingQ (defined almost everywhere).
(a) I(&1,&2) € Z (where defined)
(b) I(&1,&2) = 0 unless ji + j2 = 2

) I(
(¢) I(&2.&) = (=1)721(&1, &)
(d) 1(9&1,&) = (1)1 1(&1,062)
() I(T8€1,&) = I(£1,&), with a modified action of translations on 0-currents

Ti0g = Ocver — 0 (8.1)
so that I(&1,&) on O-currents factors through Iy : der — &
(3) A linear function J: D1Q — D1Q
(a) J?=-1
(b) JTS =T5J
(c) I(&JE) =1I(¢,JE)
(d) I(¢,J€) 20

This structure is sufficient to write a Cauchy-Riemann equation on @) analogous to (3.4) on
a Riemann surface

G:D1Q®DiQ — C (8.2)
G&E)=G(E,8  GUEE) =G(ETE) =iG(E,¢) (8.3)
G(&,06) = 2mil(9€, &) (8.4)
In addition, translation invariance of the fundamental solution can be required
G(T:e¢") = G(¢,¢") (8.5)

Q%-% is the quotient of D;Q by the null space of I(£1,&2), Q; the quotient of D;mgQ, with
bilinear form Ig(&1,&2) = 1(&1,62).



9. SECOND DEFINITION
A second definition is

an abelian group () with augmentation ) — 4 and metric completion ).
1 beli Q with ion Q % 7 and metri letion Q'
2) a complex structure J and hermitian inner product (&1,&s) on T7(Q),0) satistying
1 J and h d £,¢ T1(Q f
(Im9o)NJ(Imo) = {0} (Ker0) U J(Kerd) = T1(Q,0) (9.1)
a 2-form weg, € 12(Q), assoclated to §y € @), 0§y = 1, satistying
3) a 2-f ¢ € T2(Q,0)* iated to & € @, 9§ 1 isfyi
Weo / Ker 0 #0 Weo+og (§2) = wey (§2) +Im (&1, 0€2) (9.2)
(4) integrality conditions
(a) Tm(€,€') € Z for almost all £,¢' € Q, = I1;(D}"8Q)
(b) we, (M2(D3™Q)) = Z
To recover the first definition, set

I(¢1,&) = Im(T&, &) £1,6 € D1Q
I(&1, &) = wyyye, (aa) §2 € D2Q, &1 € D@, 961 =1

This definition makes two simplifying assumptions:

(1) the nondegeneracy condition 0Q = Z, i.e., that there exists {p with 9§ =1
(2) the connectedness condition Hy(Q) = 0, i.e. 9¢ = 0 implies £ = 9&; for £ € Dy "4Q.

Connectedness ensures that I (§~1,§2) is completely determined by (9.3). In the examples,
connectedness is the condition H,_;(M) = 0. For n = 1, the Riemann surface is connected.
For n > 1, the 2n-manifold satisfies H,_1(M) = 0.

9.1. Basic consequences

The Hilbert space QF = T} (Q,0) decomposes into orthogonal subspaces

R R R R
Ql — W1,exact D J(Ql,exact) D Ql,harm

R =Imo QF = (Ker9) N J(Ker 0)

1,exact 1,harm

(9.4)

The 2-form wg, restricted to Ker @ does not depend on the choice of £, and descends to the
one-dimensional space Ker & C Q% so there is an element [Q] € Q2 uniquely defined by

QRQIle@2  0[QI=0 wg([Q)=1 (9.5)
which therefore has the property

Ig& Q) =0¢  €€Q (9.6)

Choosing & € Q, 0§y = 1 gives decompositions

Qo =R&H®(Imd) Q5 =RQI®&G  Imd=J(QF caet) &0 = Qlexact  (97)

In the examples for n = 1, [Q] is the 2-current representing the Riemann surface ¥. For
n > 1, [Q] is a certain equivalence class of (n+1)-boundaries in M

Q=D Maae, Q] = {06 € ODIEM : I (0, 0¢) =1} (9.8)
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10. MORPHISMS

A morphism F': Q1) — Q(2) between quasi Riemann surfaces consists of linear functions
Fj: Q]ﬁ)j — Q%)j which preserve the linear structures 0, J, and Ig(&1, &2), and which satisfy
some additional integrality and regularity conditions. Assume the nondegeneracy condition

F,1=1:R—>R (10.1)

10.1. Linear morphisms

By the decomposition (9.4), F} consists of two partial unitary operators

. OR R =
F1 exact : Q(l)l,exact - Q(Q)l,exact F{texactFl,exact =1 (10 2)
. OR R = |
Fl,harm . Q(l)l,harm - Q(Q)l,harm FliharmFLhMHl =1

FyonImod C Q%)O is determined by F exact- Choose §1y € Q(1), 91y = 1. Then o) =
Fo&(1y and Fp0 = OF1€ determine Fy completely. F> must satisfy

B(Eh) Céa BRI - Qe €y oy (Fi&,0Ft) = Ig, (€1,06)  (10.3)

the last of which is equivalent to

O(Faés) — F1(0&) € (FiQuy)™ (10.4)

so Fy is determined up to an arbitrary linear operator

Foo: Quyz — (F1Qy1)™ N (0Q(2)2) (10.5)

Thus a linear morphism is given by

(1) the partial unitary operators Fi cxact and Fi harm
(2) &) € Qs 02y =1
(3) the linear operator Fy g

A linear isomorphism is a morphism with F exact and F parm each unitary, implying F» o = 0.
The linear automorphism group is the semi-direct product

Aut(Q) = Qoo ¥ (UQI{Riharm X UQT exact) Qoo =Kerd=Imo C Q (10.6)

where Qo acts on @ by translation, i.e., {2) = (1) + 85{1), (%El) € Qo,o-

10.2. Integrality and regularity conditions

A morphism might be defined as a linear morphism that preserves the integral structure
Qj C QI]R and also the metric structure on (). However, the Cauchy Riemann equation sees
only 0, J, and I(£1,&2). These are preserved by every linear morphism. So it might be
reasonable to impose only one additional condition: that the linear morphism preserve the
period lattice L C Q%harmv i.e., Fiharm(L(1)) C L2y. With this definition of morphism, a
quasi Riemann surface is classified up to isomorphism by the genus g = dim@(QIEharm) and
the rank 2g lattice L in the complex Hilbert space Q]Eharm = (9.
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10.3. Quasi holomorphic curves

A quasi holomorphic curve is a morphism C': Q(X) — @ where ¥ is a Riemann surface
and Q(X) = Dy "X is the quasi Riemann surface associated to . A solution of the Cauchy
Riemann equation on @ pulls back along C to an ordinary solution on the Riemann surface
Y. A local quasi holomorphic curve is one where X is the open complex disk.

Complex analysis on @) should be equivalent to ordinary analysis in one complex variable
on each of a suitable collection of (local) quasi holomorphic curves, subject to compatibility
conditions when quasi holomorphic curves overlap. The physics application would be to
construct a quantum field theory on @ as an ordinary two-dimensional conformal field theory
on each of those quasi holomorphic curves.
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APPENDIX A. GENERAL CASE (n EVEN OR ODD)

Now consider the general case of M a conformal 2m-manifold with n even or odd. For n
even, the conformal Hodge #-operator on n-forms satisfies ¥> = (—1)" = 1, and the inter-
section form Ips(€,&") on n-currents is symmetric. So the construction of a quasi Riemann
surface for general n requires the complex currents

D M = (D" M) ® C (A.1)
Write '
deg(§) =n—1+deg'(§) k=n—-1+j (DM (A.2)
Choose a root €, of the equation
e =(-1)"" (A.3)
then define .
J =¢€px on Dgf’ctrM (A.4)
In(&,&) =" (=)™ " Iy (&,8) on Dgﬁch ® DiveM (A.5)
satisfying

In(&,&) =0 unless ji + jo =2 (A

m(&,&) = (121 (&, &) 1(0&, &) = (1) 1(&, 06) (A.

J € End(DYM)  J*=-1 (A

I(&JE ) =Ty (€, JE)  In(EJE)>0 £#0 deg/(§) =deg'(¢) =1 (A9

For each 0¢y = 8D7S;Eg1M there is the augmented chain complex of abelian groups/complex
vector spaces

020y -9 —230-2 79,9
| | | J (A.10)
0—25Qf 25 QFf 25 25¢c 250
Q-1 = Z0% Q% =
Q = Qo = (D38 Mzae,) @ i(OD" M) QG = Ddls 1.cMcog, (A11)
Ql _ (DsmgM) ® Z(DSingM) Q(C — DgffctrM .

Q2 = [(DIEM) @ i(DIEM))/QF  QF = (DR eM)/(QF)"
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Q is defined so that A(Q) C Z, so that Hy(Q) = 0 in the connected case, and so that Tp(Q, 0)
is the complex vector space V1,1 ® C on which J = €,* acts.

A complex quasi Riemann surface is a abelian group ) with augmentation and metric
completion and also with an involution & — &, 9¢ = 0€, called complex conjugation. The
definition is as before, but with C in place of R and with a sesquilinear form IQ<51, &) in
place of the bilinear form I (&1, &2).

APPENDIX B. TOPOLOGIES FOR INFINITESIMAL j-SIMPLICES

The construction of an infinitesimal j-simplex as a derivative in (6.3) requires taking a
limit of j-currents lim. | € I[oet]. Suppose A = R? as a simple example. In the ordinary
sense of derivative, Do(t) is a j-vector in R? at o(t). The j-currents e J[o¢;] converge
weakly to d,4)Do(t) but they do not converge in the metric topology. The limit in the
metric topology is a O-current |v|d; in the unit sphere of j-vectors at o(t), where v = Do (t),
0 = v/|v]. The linear map ady — atd projects the metric j-tangent space down to the weak
j-tangent space. This example suggests that the infinitesimal j-simplices in a general abelian
A must be constructed as weak limits of currents. The same weak topology would be used

to define j-forms as homomorphisms from D™ A to R as in (6.9). In the same vein, a weak
topology is needed for the vector space of infinitesimal elements of A so that in the examples
A = D;™8 M the result will be a subspace of DS M. The metric topology gives much too
large a space of infinitesimals.
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