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Abstract

This is a naive attempt at describing a mathematical object for use in theoretical physics.
The object is an abelian group and metric space with geometric structure analogous to a
Riemann surface, suitable for writing an analog of the Cauchy-Riemann equation. Examples
are certain abelian groups of singular (n−1)-currents in conformal 2n-manifolds. The hope
is that complex analysis on such quasi Riemann surfaces can be developed in analogy with
Riemann surfaces. The physics goal is to construct quantum field theories on quasi Riemann
surfaces in analogy with 2d conformal field theories on Riemann surfaces, forming a new class
of constructable quantum field theories on 2n-manifolds. The exposition here is unrigorous,
aiming to attract interest in building rigorous complex analysis on quasi Riemann surfaces.
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The goal is to formulate an analog of analysis in one complex variable on certain spaces of
singular (n−1)-currents in a conformal 2n-manifold, to be used in constructing quantum field
theories on those spaces of currents in analogy with 2d conformal field theories on Riemann
surfaces [1, 2].

1. Currents in a conformal 2n-manifold

The basic objects are

M = a smooth 2n-manifold with orientation and conformal structure
(for simplicity: n odd, M compact without boundary, H̃n−1(M) = 0)

Ωsmooth
k M = the smooth real k-forms on M

Ddistr
k M = (Ωsmooth

k M)∗, the distributional k-currents in M

Dsing
k M = the abelian group of singular k-currents in M ,

generated by the k-simplices ∆k →M in M

The pairing between a k-current ξ and a k-form ω is∫
ξ
ω =

∫
M

1

k!
ωµ1···µk(x) ξµ1···µk(x) d2nx (1.1)

The boundary operator on currents is dual to the exterior derivative on forms∫
∂ξ
ω =

∫
ξ
dω (∂ξ)µ2···µk(x) = −∂µ1ξµ1···µk(x) ∂2 = 0 (1.2)

A map σ from the k-simplex to M is represented by a k-current [σ]

σ : ∆k →M

∫
[σ]
ω =

∫
∆k

σ∗ω (1.3)

Dsing
k M is the abelian group of currents generated by the k-simplices in M , i.e., the currents

representing the singular k-chains in M . The bilinear intersection form on currents

IM (ξ1, ξ2) =

∫
M

1

k1!k2!
ξ
µ1···µk1
1 εµ1···µk1ν1···νk2 ξ

ν1···νk2
2 (x) d2nx k1 + k2 = 2n (1.4)

is defined almost everywhere, vanishes unless k1 + k2 = 2n, and depends only on the orien-
tation ε1···2ndx1 · · · dx2n (d2nx)−1. It satisfies

IM (ξ2, ξ1) = (−1)k1k2IM (ξ1, ξ2) IM (∂ξ1, ξ2) = (−1)k1IM (ξ1, ∂ξ2) (1.5)

On singular currents IM (ξ1, ξ2) gives the integer intersection number (where defined). The
Hodge ∗-operator acting on n-forms and on n-currents is conformally invariant

∗ωµ1···µn(x) =
1

n!
εµ1···µn

ν1···νn(x)ων1···νn(x)

∫
∗ξ
ω =

∫
ξ
∗ω ∗2 = (−1)n (1.6)

IM (ξ, ∗ξ′) = IM (ξ′, ∗ξ) IM (ξ, ∗ξ) > 0 ξ 6= 0 deg(ξ) = deg(ξ′) = n (1.7)

For n odd, the n-currents form a Hilbert space with complex structure J = ∗ and hermitian
inner product 〈 ξ, ξ′ 〉 = IM (ξ, ∗ξ′) (where defined).
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2. j-currents in a Riemann surface, j = 0, 1, 2

When n = 1, M is a Riemann surface. Write Σ instead of M . The augmented chain
complex of j-currents in Σ is

0 Dsing
2 Σ Dsing

1 Σ Dsing
0 Σ Z 0

0 Ddistr
2 Σ Ddistr

1 Σ Ddistr
0 Σ R 0

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

(2.1)

ξ ∈ Ddistr
0 Σ

∂7−−−→
∫
ξ

1 (2.2)

The intersection form and the conformal Hodge ∗-operator on j-currents satisfy
IΣ(ξ1, ξ2) = 0 unless j1 + j2 = 2 (2.3)

IΣ(ξ2, ξ1) = (−1)j1j2IΣ(ξ1, ξ2) IΣ(∂ξ1, ξ2) = (−1)j1IΣ(ξ1, ∂ξ2) (2.4)
J = ∗ on Ddistr

1 Σ J2 = −1 (2.5)
IΣ(ξ, Jξ′) = IΣ(ξ′, Jξ) IΣ(ξ, Jξ) > 0 ξ 6= 0 deg(ξ) = deg(ξ′) = 1 (2.6)

3. Cauchy-Riemann equation in terms of j-currents

A fundamental solution

G(z, z′)dzdz′ G(z, z′) =
1

(z − z′)2
+ holomorphic (3.1)

of the Cauchy-Riemann equation

∂z̄G(z, z′) = −π∂zδ2(z − z′) G(z, z′) = G(z′, z) (3.2)

can be considered as a complex bilinear form on 1-currents

G(ξ, ξ′) =

∫
ξ

∫
ξ′
G(z, z′)dzdz′ (3.3)

and the Cauchy-Riemann equation can be written in terms of J and IΣ(ξ1, ξ2)

G(ξ, ∂ξ2) = 2πiIΣ(∂ξ, ξ2) G(ξ, ξ′) = G(ξ′, ξ) G(Jξ, ξ′) = iG(ξ, ξ′) (3.4)

Taking ξ2 to be a disk in Σ and ξ to be a 1-simplex, this is the residue formula.

4. (n−1+j)-currents in a conformal 2n-manifold (n odd)

For simplicity, suppose n is odd. The general case is discussed in Appendix A. For each
singular (n−2)-boundary ∂ξ0 ∈ ∂Dsing

n−1M let

Q = Dsing
n−1MZ∂ξ0 =

{
ξ ∈ Dsing

n−1M : ∂ξ ∈ Z∂ξ0

}
(4.1)

This abelian groupQ is to have structure analogous to a Riemann surface — a quasi Riemann
surface. For each ∂ξ0 there is an augmented chain complex

0 Q2 Q1 Q Z 0

0 QR
2 QR

1 QR R 0

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

(4.2)

Q−1 = Z∂ξ0 Q0 = Q = Dsing
n−1MZ∂ξ0 Q1 = Dsing

n M (4.3)

Q2 = Dsing
n+1M/Q⊥0 Q⊥0 =

{
ξ′ ∈ Dsing

n+1M : IM (ξ, ξ′) = 0 ∀ξ ∈ Q
}

The QR
j are the analogously defined real vector spaces of distributional currents.
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The intersection form IM (ξ1, ξ2) descends by construction to a bilinear form IQ(ξ1, ξ2),
ξ1 ∈ Qj1 , ξ2 ∈ Qj2 . So there is the same structure as on the j-currents in a Riemann surface

IQ(ξ1, ξ2) = 0 unless j1 + j2 = 2 (4.4)

IQ(ξ2, ξ1) = (−1)j1j2IQ(ξ1, ξ2) IQ(∂ξ1, ξ2) = (−1)j1IQ(ξ1, ∂ξ2) (4.5)

J = ∗ ∈ End(QR
1 ) J2 = −1 (4.6)

IQ(ξ, Jξ′) = IQ(ξ′, Jξ) IQ(ξ, Jξ) > 0 ξ 6= 0 deg(ξ) = deg(ξ′) = 1 (4.7)

5. j-currents in an abelian group of (n−1)-currents

The natural equivalence ∆j ×∆k ' ∆j+k will give rise to a natural map

Πj,k : Dsing
j (Dsing

k M)→ Dsing
j+kM (5.1)

once given a construction of currents in the space Dsing
k M . In particular, the maps

Πj,n−1 : Dsing
j (Dsing

n−1M)→ Dsing
n−1+jM (5.2)

will descend to maps
Πj : Dsing

j Q→ Qj (5.3)

which can be used to pull back the structure on the Qj to give a structure on the j-currents
in Q analogous to the structure on the j-currents in a Riemann surface. The project then
becomes to develop calculus on Q from this structure on its j-currents in analogy with
complex analysis on a Riemann surface.

At least one construction of currents in Dsing
k M is available. A metric is put on Dsing

k M ,
in particular the flat metric of [3]. Then the general construction of currents in a metric
space [4] gives currents in Dsing

k M . This construction is adopted tentatively.
The metric completion of Dsing

k M in the flat metric is the space of integral k-currents

(Dsing
k M)′ = Dint

k M Dsing
k M ⊂ Dint

k M ⊂ Ddistr
k M (5.4)

Currents in a metric space are defined in [4] not as linear functionals on differential forms
but rather as multilinear functionals of Lipschitz functions. There is no presumption of a
smooth structure on the metric space. The j-forms will then be defined as functions of
j-currents, reversing the usual construction.

Part of the initial impetus to consider this mathematical material came from comments
on spaces of cycles in section 5 of [5] which referred to [6] where the maps Πj,k originate.

6. Currents in an abelian group

The metric spaces of interest here are abelian groups with metric completion,

A = Dsing
k M A′ = Dint

k M or A = Dsing
n−1MZ∂ξ0 A′ = Dint

n−1MZ∂ξ0 (6.1)

The general construction of currents in a metric space [4] gives Ddistr
j A and Dsing

j A, the vector
space of distributional j-currents in A and the abelian subgroup of singular j-currents in A.
The latter is generated by the j-simplices [σ] representing maps σ : ∆j → A′.

The following discussion of the currents in an abelian group A is entirely unrigorous.
Topologies, regularity conditions, and domains of definition are left unspecified. Appendix B
remarks on needing a weak topology in addition to the metric topology.
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6.1. Tangent j-vectors as infinitesimal j-simplices

The singular j-currents are generated by the j-simplices. Each simplex can be subdivided
into a sum of arbitrarily small simplices, so the singular j-currents are generated by the
infinitesimal j-simplices,

σ : ∆j → A′ [σ] =

∫
∆j

δσ(t)Dσ(t) djt (6.2)

δσ(t)Dσ(t) = lim
ε↓0

ε−j [σε,t] σε,t(t
′) = σ(t+ εt′) ∆j = [0, 1]j (6.3)

δσ(t) being the 0-current representing the point σ(t) ∈ A′. Appendix B comments on the
nature of the limit, on the need to use a weak topology.

The vector space of tangent j-vectors to A at ξ is the set of infinitesimal j-simplices

Tj(A, ξ) = {Dσ(0) : σ(0) = ξ} (6.4)

The Tj(A, ξ) are the same for all ξ by translation in the abelian group A.

Tj(A, ξ) = Tj(A, 0) (6.5)

Tj(A, 0) is a vector space, not merely a cone, because A is an abelian group.

D(σ1 + σ2) = Dσ1 +Dσ2 σ1(0) = σ2(0) = 0 (6.6)

Define

DjA = Ddistr
0 A⊗ Tj(A, 0) (6.7)

The derivatives Dσ(t) in the integral (6.2) all lie in Tj(A, 0) so

Dsing
j A ⊂ DjA (6.8)

DjA is the useful vector space of j-currents because it is constructed from infinitesimal j-
simplices. In the examples, the map Πj,k will act on the DjA via its action on the j-simplices.

6.2. j-forms on A

The j-forms on A are defined as the homomorphisms of abelian groups

ΩjA = Hom(Dsing
j A,R) (6.9)

continuous in the same topology as used to define tangent j-vectors in equation (6.3). A
homomorphism is determined by its action on the infinitesimal j-simplices, so the j-forms
can be regarded as functions on A with values in the dual vector space Tj(A, 0)∗. The j-forms
are the sections of the bundle of cotangent j-vectors over A

T ∗j A = A× Tj(A, 0)∗ ΩjA = Γ(T ∗j A,A) (6.10)

6.3. Translations in A

Let Tξ be translation by ξ in the abelian group A. The translations act on Ddistr
j A and on

Dsing
j A by the push-forward T ξ∗ . The translations act on DjA via translation of 0-currents

Ddistr
0 A⊗ Tj(A, 0)

T ξ∗⊗1−−−→ Ddistr
0 A⊗ Tj(A, 0) (6.11)
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Construct a morphism of chain complexes of vector spaces and of abelian subgroups

· · · DjA · · · D2A D1A D0A 0

· · · ÃR
j · · · ÃR

2 ÃR
1 AR 0

∂

Π̃j

∂ ∂ ∂

Π̃2

∂

Π̃1

∂

Π̃0

∂ ∂ ∂ ∂ ∂ ∂

· · · Dsing
j A · · · Dsing

2 A Dsing
1 A Dsing

0 A 0

· · · Ãj · · · Ã2 Ã1 A 0

∂

Π̃j

∂ ∂ ∂

Π̃2

∂

Π̃1

∂

Π̃0

∂ ∂ ∂ ∂ ∂ ∂

(6.12)

When A has an augmentation A ∂−→ Z, these chain complexes are augmented by

D0A
∂−→ R Dsing

0 A
∂−→ Z δξ

∂7−−→ ∂ξ (6.13)

For j ≥ 1 define

Π̃j = 1∗ ⊗ 1: Ddistr
0 A⊗ Tj(A, 0)→ ÃR

j 1∗ : Ddistr
0 A→ R 1∗ξ =

∫
ξ

1

ÃR
j = a completion of Tj(A, 0) Ãj = Π̃j(Dsing

j A)

(6.14)

The completion ÃR
j is to contain the integrals (6.14) of elements of Tj(A, 0). The map Π̃j

identifies ÃR
j with DjA modulo translations, and Ãj with Dsing

j A modulo translations.
For j = 0, the problem is to construct a natural vector space AR containing A with a

linear operator Π̃0 extending the map δξ 7→ ξ from Dsing
0 A to A. Π̃0 should act on the

boundary of an infinitesimal 1-simplex by

lim
ε→0

ε−1(δσ(ε) − δ0) 7→ lim
ε→0

ε−1σ(ε) (6.15)

so AR should contain the vector space Ainf of infinitesimal elements of A. A weak topology
on A is needed for the limits. The infinitesimal elements generate the connected component
of the identity Acc ⊂ A. Therefore AR = Ainf when A is connected, as in the examples
A = Dsing

k M . More generally, assume A/Acc
∼= Zr. Then AR is an extension of Ainf by Rr.

The examples A = Q = Dsing
n−1MZ∂ξ0 come with an augmentation A ∂−→ Z. The connected-

ness condition Acc = Ker ∂ implies A/Acc = Z so AR is an extension of Ainf by R. In the
examples, the connectedness condition is equivalent to Hn−1(M) = 0.

7. j-currents in an abelian group of (n−1)-currents (2)

7.1. Maps Πj,k : Dsing
j (Dsing

k M)→ Dint
j+kM

Consider the abelian group A = Dsing
k M with metric completion Dint

k M . The equivalence
∆j ×∆k ' ∆j+k gives

Πj,k : Dsing
j (Dsing

k M)→ Dint
j+kM (7.1)

In particular,
Π0,k = Π̃0 Π0,kδξ = ξ (7.2)

The Πj,k are invariant under translations in Dsing
k M

Πj,kT
ξ
∗ = TξΠj,k (7.3)
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where the translations T ξ act trivially on the Dint
j+kM , j ≥ 1. From

∂(∆j ×∆k) = ∂∆j ×∆k + (−1)j∆j × ∂∆k (7.4)

it follows that
∂Πj,k = Πj−1,k∂ + (−1)jΠj,k−1∂∗ (7.5)

where ∂∗ is the push-forward of the boundary map ∂ : Dint
k M → Dint

k−1M

∂∗ : Dsing
j (Dsing

k M)→ Dsing
j (Dsing

k−1M) (7.6)

7.2. Derivatives dΠj,k : Tj(Dsing
k M, 0)→ Ddistr

j+kM

Πj,k acts on infinitesimal j-simplices as a linear function

dΠj,k : Tj(Dsing
k M, 0)→ Ddistr

j+kM (7.7)

Define Vj,k to be the image

Vj,k = dΠj,k(Tj(Dsing
k M, 0)) ⊂ Ddistr

j+kM (7.8)

Vj,k is, roughly, the subspace of (j+k)-currents supported on integral k-currents. The bound-
ary operator ∂ is injective on Vj,k

(Ker ∂) ∩ Vj,k = {0} (7.9)

There is also a linear function

Tj(Dsing
k M, 0)

d∂∗−−→ Tj(Dsing
k−1M, 0)

dΠj,k−1−−−−−→ Ddistr
j+k−1M (7.10)

The two linear functions dΠj,k and dΠj,k−1 ◦ d∂∗ identify

Tj(Dsing
k M, 0) = ∂(Vj,k)⊕ Vj,k−1 (7.11)

7.3. Maps Πj : Dsing
j Q→ Q′j

Now take A = Q = Dsing
n−1MZ∂ξ0 with metric completion Q′ = Dint

n−1MZ∂ξ0 . Define

Dsing
4 Q Dsing

3 Q Dsing
2 Q Dsing

1 Q Dsing
0 Q Z 0

0 Z Q′2 Q′1 Q′ Z 0

∂

0

∂

Π3

∂

Π2

∂

Π1

∂

Π0

∂

1

∂ ∂ ∂ ∂ ∂ ∂

Π0 = Π̃0 Πj = Dsing
j Q

Πj,n−1−−−−→ Dint
j+n−1M

pj−→ Q′j j ≥ 1

(7.12)

where the Qj are defined in (4.3) and pj is projection on the quotient. The Πj comprise a
morphism of chain complexes, because the operator ∂∗ in (7.5) vanishes on Dint

j Q for j ≥ 1.
The Πj extend to linear maps Πj : DjQ → QR

j forming a morphism of the linear chain
complexes. The Πj are translation invariant in the sense that they factor through the Π̃j of
(6.12). The bilinear form on the Qj now lifts to the Dsing

j Q

I = Π∗IQ I(ξ1, ξ2) = IQ(Πj1ξ1,Πj2ξ2) (7.13)

The derivative dΠ1 identifies the tangent space T1(Q, 0) with V1,n−1

T1(Q, 0) = V1,n−1 ⊂ Ddistr
n M (7.14)

A crucial point is that J = ∗ should act on T1(Q, 0)

JV1,n−1 = V1,n−1 (7.15)
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a germ of a proof of which is given in Appendix 1 of [2]. Assuming (7.15), J lifts to

J : D1Q→ D1Q JΠ1 = Π1J (7.16)

Now the structure on the currents Dsing
j Q is analogous to the Dsing

j Σ in a Riemann surface

I(ξ1, ξ2) = 0 unless j1 + j2 = 2 (7.17)

I(ξ2, ξ1) = (−1)j1j2I(ξ1, ξ2) I(∂ξ1, ξ2) = (−1)j1I(ξ1, ∂ξ2) (7.18)

J ∈ End(D1Q) J2 = −1 (7.19)

I(ξ, Jξ′) = I(ξ′, Jξ) I(ξ, Jξ) ≥ 0 deg(ξ) = deg(ξ′) = 1 (7.20)

8. First definition

A first definition of quasi Riemann surface recapitulates the examples Dsing
n−1MZ∂ξ0 .

(1) an abelian group Q with augmentation Q ∂−→ Z and metric completion Q′.

(2) a bilinear form I(ξ1, ξ2) on the Dsing
j Q (defined almost everywhere).

(a) I(ξ1, ξ2) ∈ Z (where defined)

(b) I(ξ1, ξ2) = 0 unless j1 + j2 = 2

(c) I(ξ2, ξ1) = (−1)j1j2I(ξ1, ξ2)

(d) I(∂ξ1, ξ2) = (−1)j1I(ξ1, ∂ξ2)

(e) I(T ξ∗ ξ1, ξ2) = I(ξ1, ξ2), with a modified action of translations on 0-currents

T ξ∗ δξ′ = δξ+ξ′ − δξ (8.1)

so that I(ξ1, ξ2) on 0-currents factors through Π̃0 : δξ′ 7→ ξ′.

(3) A linear function J : D1Q→ D1Q

(a) J2 = −1

(b) JT ξ∗ = T ξ∗J

(c) I(ξ, Jξ′) = I(ξ′, Jξ)

(d) I(ξ, Jξ) ≥ 0

This structure is sufficient to write a Cauchy-Riemann equation on Q analogous to (3.4) on
a Riemann surface

G : D1Q⊗D1Q→ C (8.2)

G(ξ, ξ′) = G(ξ′, ξ) G(Jξ, ξ′) = G(ξ, Jξ′) = iG(ξ, ξ′) (8.3)

G(ξ, ∂ξ2) = 2πiI(∂ξ, ξ2) (8.4)

In addition, translation invariance of the fundamental solution can be required

G(T ξ∗ ξ
′, ξ′′) = G(ξ′, ξ′′) (8.5)

QR
j is the quotient of DjQ by the null space of I(ξ1, ξ2), Qj the quotient of Dsing

j Q, with
bilinear form IQ(ξ1, ξ2) = I(ξ1, ξ2).
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9. Second definition

A second definition is

(1) an abelian group Q with augmentation Q ∂−→ Z and metric completion Q′.

(2) a complex structure J and hermitian inner product 〈 ξ1, ξ2 〉 on T1(Q, 0) satisfying

(Im ∂) ∩ J(Im ∂) = {0} (Ker ∂) ∪ J(Ker ∂) = T1(Q, 0) (9.1)

(3) a 2-form ωξ0 ∈ T2(Q, 0)∗ associated to ξ0 ∈ Q, ∂ξ0 = 1, satisfying

ωξ0/Ker ∂ 6= 0 ωξ0+∂ξ1(ξ2) = ωξ0(ξ2) + Im〈 ξ1, ∂ξ2 〉 (9.2)

(4) integrality conditions

(a) Im〈 ξ, ξ′ 〉 ∈ Z for almost all ξ, ξ′ ∈ Q̃1 = Π̃1(Dsing
1 Q)

(b) ωξ0(Π2(Dsing
2 Q)) = Z

To recover the first definition, set

I(ξ1, ξ2) = Im〈 Π̃1ξ1, Π̃1ξ2 〉 ξ1, ξ2 ∈ D1Q

I(ξ1, ξ2) = ωΠ̃0ξ1
(Π̃2ξ2) ξ2 ∈ D2Q, ξ1 ∈ D0Q, ∂ξ1 = 1

(9.3)

This definition makes two simplifying assumptions:

(1) the nondegeneracy condition ∂Q = Z, i.e., that there exists ξ0 with ∂ξ0 = 1

(2) the connectedness condition H̃0(Q) = 0, i.e. ∂ξ = 0 implies ξ = ∂ξ1 for ξ ∈ Dsing
0 Q.

Connectedness ensures that I(ξ1, ξ2) is completely determined by (9.3). In the examples,
connectedness is the condition H̃n−1(M) = 0. For n = 1, the Riemann surface is connected.
For n > 1, the 2n-manifold satisfies Hn−1(M) = 0.

9.1. Basic consequences

The Hilbert space QR
1 = T1(Q, 0) decomposes into orthogonal subspaces

QR
1 = QR

1,exact ⊕ J(QR
1,exact)⊕QR

1,harm

QR
1,exact = Im ∂ QR

1,harm = (Ker ∂) ∩ J(Ker ∂)
(9.4)

The 2-form ωξ0 restricted to Ker ∂ does not depend on the choice of ξ0, and descends to the
one-dimensional space Ker ∂ ⊂ QR

2 so there is an element [Q] ∈ Q2 uniquely defined by

[Q] ∈ Q2 ∂[Q] = 0 ωξ0([Q]) = 1 (9.5)

which therefore has the property

IQ(ξ, [Q]) = ∂ξ ξ ∈ Q (9.6)

Choosing ξ0 ∈ Q, ∂ξ0 = 1 gives decompositions

QR
0 = Rξ0 ⊕ (Im ∂) QR

2 = R[Q]⊕ ξ⊥0 Im ∂ ∼= J(QR
1,exact) ξ⊥0

∼= QR
1,exact (9.7)

In the examples for n = 1, [Q] is the 2-current representing the Riemann surface Σ. For
n > 1, [Q] is a certain equivalence class of (n+1)-boundaries in M

Q = Dsing
n−1MZ∂ξ0 [Q] =

{
∂ξ ∈ ∂Dsing

n+2M : IM (ξ0, ∂ξ) = 1
}

(9.8)
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10. Morphisms

A morphism F : Q(1) → Q(2) between quasi Riemann surfaces consists of linear functions
Fj : QR

(1)j → QR
(2)j which preserve the linear structures ∂, J , and IQ(ξ1, ξ2), and which satisfy

some additional integrality and regularity conditions. Assume the nondegeneracy condition

F−1 = 1: R→ R (10.1)

10.1. Linear morphisms

By the decomposition (9.4), F1 consists of two partial unitary operators

F1,exact : QR
(1)1,exact → QR

(2)1,exact F †1,exactF1,exact = 1

F1,harm : QR
(1)1,harm → QR

(2)1,harm F †1,harmF1,harm = 1
(10.2)

F0 on Im ∂ ⊂ QR
(1)0 is determined by F1,exact. Choose ξ(1) ∈ Q(1), ∂ξ(1) = 1. Then ξ(2) =

F0ξ(1) and F0∂ξ = ∂F1ξ determine F0 completely. F2 must satisfy

F2(ξ⊥(1)) ⊂ ξ
⊥
(2) F2[Q(1)]− [Q(2)] ∈ ξ⊥(2) IQ(2)

(F1ξ1, ∂F2ξ2) = IQ(1)
(ξ1, ∂ξ2) (10.3)

the last of which is equivalent to

∂(F2ξ2)− F1(∂ξ2) ∈ (F1Q(1)1)⊥ (10.4)

so F2 is determined up to an arbitrary linear operator

F2,0 : Q(1)2 → (F1Q(1)1)⊥ ∩ (∂Q(2)2) (10.5)

Thus a linear morphism is given by

(1) the partial unitary operators F1,exact and F1,harm

(2) ξ(2) ∈ QR
(2), ∂ξ(2) = 1

(3) the linear operator F2,0

A linear isomorphism is a morphism with F1,exact and F1,harm each unitary, implying F2,0 = 0.
The linear automorphism group is the semi-direct product

Aut(Q) = Q0,0 o (UQR
1,harm × UQR

1,exact) Q0,0 = Ker ∂ = Im ∂ ⊂ Q (10.6)

where Q0,0 acts on Q by translation, i.e., ξ(2) = ξ(1) + ∂ξ′(1), ∂ξ
′
(1) ∈ Q0,0.

10.2. Integrality and regularity conditions

A morphism might be defined as a linear morphism that preserves the integral structure
Qj ⊂ QR

j and also the metric structure on Q. However, the Cauchy Riemann equation sees
only ∂, J , and I(ξ1, ξ2). These are preserved by every linear morphism. So it might be
reasonable to impose only one additional condition: that the linear morphism preserve the
period lattice L ⊂ QR

1,harm, i.e., F1,harm(L(1)) ⊂ L(2). With this definition of morphism, a
quasi Riemann surface is classified up to isomorphism by the genus g = dimC(QR

1,harm) and
the rank 2g lattice L in the complex Hilbert space QR

1,harm
∼= Cg.
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10.3. Quasi holomorphic curves

A quasi holomorphic curve is a morphism C : Q(Σ) → Q where Σ is a Riemann surface
and Q(Σ) = Dsing

0 Σ is the quasi Riemann surface associated to Σ. A solution of the Cauchy
Riemann equation on Q pulls back along C to an ordinary solution on the Riemann surface
Σ. A local quasi holomorphic curve is one where Σ is the open complex disk.

Complex analysis on Q should be equivalent to ordinary analysis in one complex variable
on each of a suitable collection of (local) quasi holomorphic curves, subject to compatibility
conditions when quasi holomorphic curves overlap. The physics application would be to
construct a quantum field theory on Q as an ordinary two-dimensional conformal field theory
on each of those quasi holomorphic curves.
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Appendix A. General case (n even or odd)

Now consider the general case of M a conformal 2m-manifold with n even or odd. For n
even, the conformal Hodge ∗-operator on n-forms satisfies ∗2 = (−1)n = 1, and the inter-
section form IM (ξ, ξ′) on n-currents is symmetric. So the construction of a quasi Riemann
surface for general n requires the complex currents

Ddistr
k,C M = (Ddistr

k M)⊗ C (A.1)

Write
deg(ξ) = n− 1 + deg′(ξ) k = n− 1 + j ξ ∈ Ddistr

k,C M (A.2)
Choose a root εn of the equation

ε2n = (−1)n−1 (A.3)
then define

J = εn∗ on Ddistr
n,C M (A.4)

IM 〈 ξ̄1, ξ2 〉 = ε−1
n (−1)(n−1)k2 IM (ξ̄1, ξ2) on Ddistr

k1,CM ⊗D
distr
k2,CM (A.5)

satisfying
IM 〈 ξ̄1, ξ2 〉 = 0 unless j1 + j2 = 2 (A.6)

IM 〈 ξ̄1, ξ2 〉 = (−1)j1j2IM 〈 ξ̄2, ξ1 〉 I( ¯∂ξ1, ξ2) = (−1)j1I(ξ̄1, ∂ξ2) (A.7)

J ∈ End(Ddistr
n,C M) J2 = −1 (A.8)

IM 〈 ξ̄, Jξ′ 〉 = IM 〈 ξ̄′, Jξ 〉 IM 〈 ξ̄, Jξ 〉 > 0 ξ 6= 0 deg′(ξ) = deg′(ξ′) = 1 (A.9)

For each ∂ξ0 = ∂Dsing
n−1M there is the augmented chain complex of abelian groups/complex

vector spaces
0 Q2 Q1 Q Z 0

0 QC
2 QC

1 QC C 0

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

(A.10)

Q−1 = Z∂ξ0 QC
−1 = C

Q = Q0 = (Dsing
n−1MZ∂ξ0)⊕ i(∂Dsing

n M) QC
0 = Ddistr

n−1,CMC∂ξ0

Q1 = (Dsing
n M)⊕ i(Dsing

n M) QC
1 = Ddistr

n,C M

Q2 = [(Dsing
n+1M)⊕ i(Dsing

n+1M)]/Q⊥0 QC
2 = (Ddistr

n+1,CM)/(QC
0 )⊥

(A.11)
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Q is defined so that ∂(Q) ⊂ Z, so that H̃0(Q) = 0 in the connected case, and so that T0(Q, 0)
is the complex vector space V1,n−1 ⊗ C on which J = εn∗ acts.

A complex quasi Riemann surface is a abelian group Q with augmentation and metric
completion and also with an involution ξ 7→ ξ̄, ∂ξ̄ = ∂ξ, called complex conjugation. The
definition is as before, but with C in place of R and with a sesquilinear form IQ〈 ξ̄1, ξ2 〉 in
place of the bilinear form IQ(ξ1, ξ2).

Appendix B. Topologies for infinitesimal j-simplices

The construction of an infinitesimal j-simplex as a derivative in (6.3) requires taking a
limit of j-currents limε↓0 ε

−j [σε,t]. Suppose A = Rd as a simple example. In the ordinary
sense of derivative, Dσ(t) is a j-vector in Rd at σ(t). The j-currents ε−j [σε,t] converge
weakly to δσ(t)Dσ(t) but they do not converge in the metric topology. The limit in the
metric topology is a 0-current |v|δv̂ in the unit sphere of j-vectors at σ(t), where v = Dσ(t),
v̂ = v/|v|. The linear map aδv̂ 7→ av̂ projects the metric j-tangent space down to the weak
j-tangent space. This example suggests that the infinitesimal j-simplices in a general abelian
A must be constructed as weak limits of currents. The same weak topology would be used
to define j-forms as homomorphisms from Dsing

j A to R as in (6.9). In the same vein, a weak
topology is needed for the vector space of infinitesimal elements of A so that in the examples
A = Dsing

k M the result will be a subspace of Ddistr
k M . The metric topology gives much too

large a space of infinitesimals.
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