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Abstract

A quasi Riemann surface is defined to be a certain kind of complete metric space
Q whose integral currents are analogous to the integral currents of a Riemann surface.
In particular, they have properties sufficient to express Cauchy-Riemann equations on
Q. The prototypes are the spaces Dint

0 (Σ)m of integral 0-currents of total mass m in a
Riemann surface Σ (usually called the integral 0-cycles of degree m).

For M an oriented conformal 2n-manifold, there is a bundle Q(M) → B(M) of
quasi Riemann surfaces naturally associated to M . For n odd, this is the bundle
Dint
n−1(M)

∂−→ ∂Dint
n−1(M) of integral (n−1)-currents inM fibered over the integral (n−2)-

boundaries in M . For n even, the examples Q(M) are slightly more complicated.
I suggest that complex analysis on quasi Rieman surfaces be developed by analogy

with classical complex analysis on Riemann surfaces, based on the Cauchy-Riemann
equations. I want to use complex analysis on quasi Rieman surfaces to construct a new
class of quantum field theories in spacetimesM . The new quantum field theories are to
be constructed on the quasi Riemann surfaces Q(M) by analogy with the construction
of 2d conformal field theories on Riemann surfaces. The quasi Rieman surfaces Q(M)
might also be useful in the study of the manifolds M .
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1 Introduction

This note is taken from the paper [1] where the proposed definition of quasi Riemann surface
is motivated by considerations from quantum field theory. The motivations are summarized
in [2]. The goal is to construct quantum field theories on quasi Riemann surfaces by imitating
the construction of 2d conformal field theories on Riemann surfaces. The latter was based on
elementary principles of analysis in one complex variable, especially the Laurent expansions
of meromorphic functions and the Cauchy integral formula. Analogous basic principles of
complex analysis are needed for quasi Riemann surfaces.

Here, the notion of quasi Riemann surface is presented on its own, without the quantum
field theory motivation. The presentation is entirely formal. In particular, no attempt is
made to be particular about topologies or domains of definition. A companion note [3] will
collect some questions, comments, and speculations about quasi Riemann surfaces.

The main elements are, roughly:

1. There is an analogy

Dint
j+n−1(M) ←→ Dint

j (Σ) , j = 0, 1, 2 (1.1)

between the integral (j+n−1)-currents in a 2n-dimensional conformal manifold M
and the integral j-currents in a Riemann surface Σ. In particular, each has a bilinear
form, the intersection form, which gives the intersection number of two currents with
j1 + j2 = 2, and each has a conformally invariant Hodge ∗-operator in the middle
dimension, j = 1, acting on the differential forms dual to the currents.

2. The Cauchy-Riemann equations on a Riemann surface Σ can be expressed in terms of
the integral currents in Σ, the boundary operator ∂, the conformal Hodge ∗-operator,
and the intersection form.

3. There are natural maps

Πj,n−1 : Dint
j (Dint

n−1(M))→ Dint
j+n−1(M) (1.2)

which take integral j-currents in the complete metric space of integral (n−1)-currents
in M to integral (j+n−1)-currents in M .

4. In each fiber
Q = Dint

n−1(M)∂ξ0 =
{
ξ ∈ Dint

n−1(M) : ∂ξ = ∂ξ0

}
, (1.3)

of the bundle
Dint
n−1(M)

∂−−→ ∂Dint
n−1(M) , (1.4)

the intersection form and Hodge ∗-operator of M pull back along the maps Πj,n−1

to act on the integral currents Dint
j (Q) in Q. The resulting structure on the integral

currents in Q is sufficient to express Cauchy-Riemann equations on Q.

5. A quasi Riemann surface is a complete metric space Q whose integral currents have
this structure.

2



Sections 2 and 3 sketch mathematical background on integral currents from Geometric
Measure Theory and establish notation. Some basic references are [4–6]. Section 3 is essen-
tially a restatement of parts of section 5 of [7], from which came part of the inspiration to
use this mathematical material, especially the maps Πj,n−1 mentioned above.

2 Integral currents in an oriented conformal 2n-manifold M

2.1 The manifold M

Let M be an oriented conformal manifold of even dimension 2n ≥ 2. For simplicity, take
M to be compact and without boundary. The Hodge ∗-operator acting on n-forms depends
only on the conformal structure,

∗ : Ωn(M)→ Ωn(M) , ∗2 = (−1)n (2.1)

∗ωµ1...µn(x) =
1

n!
εµ1...µn

ν1...νn(x)ων1...νn(x) (2.2)

The Hodge ∗-operator on n-forms is all that will be used of the conformal structure on M .

2.2 Currents and boundaries

A k-current ξ in M is a distribution on the smooth k-forms ω,

ξ : ω 7→
∫
ξ

ω =

∫
M

ddx
1

k!
ξµ1···µk(x)ωµ1···µk(x) , deg(ξ) = k . (2.3)

Ddistr
k (M) is the real vector space of k-currents in M . The boundary operator on currents is

dual to the exterior derivative on differential forms

∂ : Ddistr
k (M)→ Ddistr

k−1 (M) ,

∫
∂ξ

ω =

∫
ξ

dω , ∂2 = 0 , (2.4)

(∂ξ)µ2···µk(x) = −∂µ1ξµ1···µk(x) . (2.5)

The Hodge ∗-operator acts on distributional n-currents by∫
∗ξ
ω =

∫
ξ

∗ω . (2.6)

2.3 Singular currents

A k-simplex in M is represented by a k-current

σ : ∆k →M ,

∫
[σ]

ω =

∫
∆k

σ∗ω . (2.7)

The space Dsing
k (M) of singular k-currents in M is the abelian group of currents generated

by the k-simplices in M , i.e., the currents representing the singular k-chains in M ,

σ =
∑
i

miσi , mi ∈ Z , [σ] =
∑
i

mi[σi] ,

∫
[σ]

ω =
∑
i

mi

∫
∆k

σ∗i ω . (2.8)
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The boundary operator on singular currents is compatible with the boundary operator on
singular chains,

∂Dsing
k (M) ⊂ Dsing

k−1(M) , ∂[σ] = [∂σ] . (2.9)

2.4 Integral currents

Dint
k (M) is the metric abelian group of integral k-currents in M . It is the metric completion

of Dsing
k (M) with respect to the flat metric which is induced from the flat norm which is

defined in terms of the mass which is the k-volume of a singular k-current,

massk(ξ) = k-volume(ξ) , ξ ∈ Dsing
k (M) , (2.10)

‖ξ‖flat = inf
{

massk(ξ − ∂ξ′) + massk+1(ξ′) : ξ′ ∈ Dsing
k+1(M)

}
, (2.11)

dist(ξ1, ξ2)flat = ‖ξ1 − ξ2‖flat . (2.12)

The flat metric measures the ease of deforming one current into another. The flat metric
depends on a choice of riemannian metric on M in order to define the k-volume, but all the
resulting metric completions Dint

k (M) are equivalent.
The boundary operator takes integral currents to integral currents,

∂Dint
k (M) ⊂ Dint

k−1(M) . (2.13)

2.5 The fiber bundle of integral currents

Regard
Dint
k (M)

∂−→ ∂Dint
k (M) (2.14)

as a fiber bundle, with fibers

Dint
k (M)∂ξ0 =

{
ξ ∈ Dint

k (M) : ∂ξ = ∂ξ0

}
. (2.15)

Dint
k (M)0 is the metric abelian group of k-cycles. Dint

k (M)∂ξ0 is the space of integral k-cycles
relative to ∂ξ0, which is an affine space for Dint

k (M)0,

Dint
k (M)∂ξ0 = ξ0 +Dint

k (M)0 , ∀ξ0 ∈ Dint
k (M)∂ξ0 (2.16)

The fiber bundle is an exact sequence of metric abelian groups

0 −−→ Dint
k (M)0

∂−−→ Dint
k (M)

∂−−→ ∂Dint
k (M) −−→ 0 . (2.17)

2.6 The intersection form

There is a bilinear intersection form IM(ξ1, ξ2) defined almost everywhere on currents in M ,
which vanishes unless the degrees of the two currents, deg(ξ1) = k1, deg(ξ2) = k2, add up to
the dimension of M ,

IM(ξ1, ξ2) =

∫
M

ddx εµ1···µk1ν1···νk2 (x)
1

k1!
ξ
µ1···µk1
1 (x)

1

k2!
ξ
ν1···νk2
2 (x) , k1 + k2 = 2n (2.18)

IM(ξ1, ξ2) = 0 , k1 + k2 6= 2n . (2.19)
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The definition of the intersection form depends only on the orientation of M . On integral
currents the intersection form gives the integer intersection number

IM(ξ1, ξ2) ∈ Z (where defined) , ξ1 ∈ Dint
k1

(M) , ξ2 ∈ Dint
k2

(M) . (2.20)

On the integral cycles, ξ1 ∈ Dint
k1

(M)0, ξ2 ∈ Dint
k2

(M)0, the intersection form is everywhere
defined and depends only on the homology classes of ξ1 and ξ2.

2.7 The chain complex of integral currents

For n ≥ 2, we will use only the portion

Dint
n+2(M)

∂−−→ Dint
n+1(M)

∂−−→ Dint
n (M)

∂−−→ Dint
n−1(M)

∂−−→ Dint
n−2(M) (2.21)

of the chain complex of integral currents.
For n = 1, M is a two-dimensional conformal manifold, i.e., a Riemann surface, which

we write Σ instead of M . We will use the integral chain complex augmented at both ends,

0 −−→ Dint
3 (Σ)

∂−−→ Dint
2 (Σ)

∂−−→ Dint
1 (Σ)

∂−−→ Dint
0 (Σ)

∂−−→ Dint
−1(Σ) −−→ 0 (2.22)

where
Dint

3 (Σ) = Z , Dint
−1(Σ) = Z , (2.23)

and the augmentation is

1 ∈ Dint
3 (Σ)

∂7−−→ Σ ∈ Dint
2 (Σ) , η ∈ Dint

0 (Σ)
∂7−−→

∫
η

1 ∈ Dint
−1(Σ) . (2.24)

In particular,
∂δz = 1 (2.25)

where δz is the 0-current representing the point z ∈ Σ, the Dirac delta-function at z.
This terminology in the case n = 1 is perhaps nonstandard. The chain complex is usually

not augmented, so Dint
0 (Σ) is usually called the space of integral 0-cycles. The augmentation

∂ : Dint
0 (Σ)→ Z is the degree of the 0-cycle. The kernel of ∂, the space Dint

0 (Σ)0, is the space
of 0-cycles of degree 0. Here, to maintain a uniform terminology over all n, Dint

0 (Σ) is called
the space of integral 0-currents and Ker ∂ = Dint

0 (Σ)0 is called the space of integral 0-cycles.

3 Integral currents in spaces of integral currents

The space Dint
k (M) is a complete metric space. Currents and integral currents can be con-

structed in any complete metric space [6]. So there is a space Dint
j (Dint

k (M)) of integral
j-currents in the space of integral k-currents in M . These j-currents in Dint

k (M) are not
constructed as distributions on j-forms, but rather as linear functionals on (j+1)-tuplets of
Lipschitz functions. We take the integral j-currents on a complete metric space as given.
Later we will define the j-forms as linear functions on the integral j-currents.

The product ∆j ×∆k of a j-simplex with a k-simplex is a singular (j+k)-chain, so there
is a natural map

Π: Dint
j (Dint

k (M))→ Dint
j+k(M) (3.1)
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which we also write Πj,k. We will be using especially the

Πj,n−1 : Dint
j (Dint

n−1(M))→ Dint
j+n−1(M) (3.2)

Let T ξ be translation by ξ in the abelian group Dint
k (M),

T ξ : Dint
k (M)→ Dint

k (M) , T ξ : ξ′ 7→ ξ + ξ′ . (3.3)

T ξ acts on currents in Dint
k (M) by pushing forward,

T ξ∗ : Dint
j (Dint

k (M))→ Dint
j (Dint

k (M)) . (3.4)

The maps Πj,k are translation-invariant,

Π0,kT
ξ
∗ = T ξΠ0,k and Πj,kT

ξ
∗ = Πj,k , j ≥ 1 . (3.5)

The first follows from
Π0,kδξ = ξ , ξ ∈ Dint

k (M) (3.6)

where δξ is the 0-current representing the point ξ. For j ≥ 1, translation invariance follows
from the fact that a map from ∆j ×∆k to M which is constant on ∆k is represented by 0
as a (j+k)-current in M , if j ≥ 1.

From
∂(∆j ×∆k) = ∂∆j ×∆k + ∆j × ∂∆k (3.7)

it follows that
∂Π = Π∂ + Π∂∗ (3.8)

where
∂∗ : Dint

j (Dint
k (M))→ Dint

j (Dint
k−1(M)) (3.9)

is the push-forward of the boundary map ∂ : Dint
k (M)→ Dint

k−1(M). The map ∂∗ will also be
written ∂∗j,k. Equation (3.8) is then written

∂Πj,k = Πj−1,k∂ + Πj,k−1∂∗j,k . (3.10)

4 Modify conformal Hodge-∗ and the intersection form to be independent of n

Some trivial modifications have to be made to the conformal Hodge ∗-operator and to the
intersection form IM(ξ1, ξ2) so that their properties on (j+n−1)-currents will be independent
of n, so that when pulled back along Πj,n−1 to Dint

j (Dint
n−1(M)) their properties on j-currents

will be independent of n.
To accomplish this for n both even and odd requires going to the complex currents

Ddistr
k (M,C) = Ddistr

k (M) ⊗ C. When n is odd, the modifications will be invariant under
complex conjugation so the currents can all stay real.

Choose a root εn of the equation

ε2n = (−1)n−1 , ε1 = 1 (4.1)

and define
J = εn∗ (4.2)
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IM〈 ξ̄1, ξ2 〉 = ε−1
n (−1)

1
2

(k2−n)(k2+n+1)IM(ξ̄1, ξ2) , k2 = deg(ξ2) , (4.3)

deg′(ξ) = deg(ξ)− n+ 1 . (4.4)

These satisfy (where defined)

IM〈 ξ̄1, ξ2 〉 = 0 unless deg′(ξ1) + deg′(ξ2) = 2 (4.5)

IM〈 ξ̄1, ξ2 〉 = −IM〈 ξ̄2, ξ1 〉 (4.6)

IM〈 ∂ξ1, ξ2 〉 = −IM〈 ξ̄1, ∂ξ2 〉 (4.7)

and, on the subspace where deg′(ξ) = 1, which is Ddistr
n (M,C),

J2 = −1 on Ddistr
n (M,C) (4.8)

IM〈 Jξ1, Jξ2 〉 = IM〈 ξ̄1, ξ2 〉 ξ1, ξ2 ∈ Ddistr
n (M,C) (4.9)

IM〈 ξ̄, Jξ 〉 > 0 ξ 6= 0 ∈ Ddistr
n (M,C) . (4.10)

Because of (4.6), we call IM〈 ξ̄2, ξ1 〉 the skew-hermitian intersection form. When n is odd,
the number εn is real, so we can restrict to the real currents. Then we call IM〈 ξ1, ξ2 〉 the
skew intersection form.

When M is a Riemann surface Σ, the skew intersection form has a unique extension to
the bi-augmented chain complex (2.22). IΣ〈 ξ1, ξ2 〉 is given on Dint

3 (Σ)×Dint
−1(Σ) by

IΣ〈 1, 1 〉 = IΣ〈 1, ∂δz 〉 = −IΣ〈 ∂1, δz 〉 = −IΣ〈Σ, δz 〉 = IΣ〈 δz,Σ 〉 = IΣ(δz,Σ) = 1 . (4.11)

5 Forms and tangents on a metric abelian group

The integral currents in a complete metric space Q are constructed in [6] without reference
to forms. But in order to do tensor analysis on Q we will need forms on Q. Given that
the integral currents in Q are constructed in [6], we will try to use the integral currents as
the basis for all geometry on Q. The most economical definition of the real vector space of
j-forms on Q would seem to be

Ωj(Q) = Hom(Dint
j (Q),R) (5.1)

where these are the homomorphisms of metric abelian groups. The exterior derivative d on
forms is the dual of the boundary operator ∂. The real vector space of j-currents on Q is
defined as the vector space dual of the j-forms,

Dj(Q) = Ωj(Q)∗ . (5.2)

This version of the j-currents Dj(Q), derived from the integral currents, might not give the
same vector space of j-currents as originally constructed in [6], but for present purposes it
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seems more appropriate to take the integral currents as fundamental, and then derive the
real currents from the integral currents.

We are interested in complete metric spaces Q which are metric abelian groups or affine
spaces of metric abelian groups. We are interested in a category of metric abelian groups
that have the property that the connected component of 0 is generated by an arbitrarily
small ε-ball around 0. The metric abelian group of integral k-currents in a manifold M
belongs to this category. The metric abelian group of integral j-currents in a metric space
in this category should also be a metric space in this category.

When Q is an affine space for a metric abelian group G, there is a quick way to construct
the tangent space Tξ0Q. We can speak of the tangent space, because the tangent space at
any point in Q is identical to the tangent space at any other point, by translation in G. And
the tangent space of Q is identical to the tangent space T0G of G,

Tξ0Q = TξG = T0G , ξ0 ∈ Q , ξ ∈ G . (5.3)

Let T ξ be translation by ξ,
T ξ : Q→ Q . (5.4)

Then T ξ acts on the integral j-currents in Q by pushing forward and on the j-forms by
pulling back,

T ξ∗ : Dint
j (Q)→ Dint

j (Q) , T ξ∗ : Ωj(Q)→ Ωj(Q) (5.5)

The translation invariant j-forms

Ωj(Q)inv =
{
ω ∈ Ωj(Q) : T ξ∗ω = ω ∀ξ ∈ G

}
(5.6)

can be identified with the j-forms at ξ0 ∈ Q, so the cotangent space is

T ∗ξ0Q = Ω1(Q)inv (5.7)

and the tangent space at ξ0 is the dual space,

Tξ0Q = (Ω1(Q)inv)∗ . (5.8)

These tangent vectors at ξ0 can be pictured more concretely as the infinitesimal 1-simplices
starting from ξ0 ∈ Q

σε : [0, ε]→ Q , σε(0) = ξ0 (5.9)

acting on the 1-forms by

ω 7→ ω([σε])

ε
, ω ∈ Ω1(Q) . (5.10)

This is an equivalent construction of the tangent space as long as the metric abelian group
Dint

1 (Q) is generated by an arbitrarily small ε-ball around 0, so the 1-forms are determined
by their actions on the infinitesimally small integral 1-currents in Q.

More generally, we suppose that all the metric abelian groups Dint
j (Q) have this property,

so the j-forms are determined by their actions on the infinitesimally small integral j-currents
in Q.

Another approach might be to identify the 0-forms with an algebra of (Lipschitz) func-
tions on Q, show that the j-forms are modules for this algebra, then construct the sections
of the tangent bundle as the module homomorphisms Ω1(Q)→ Ω0(Q).
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6 Cauchy-Riemann equations in terms of Hodge-∗ and the intersection form

The Cauchy-Riemann equations on a Riemann surface Σ (more precisely, on a local neigh-
borhood Σ in a Riemann surface) can be written

FΣ(ξ̄0, ∂ξ2) = 2πiIΣ〈 ξ̄0, ξ2 〉 , ξ0 ∈ Dint
0 (Σ) , ξ2 ∈ Dint

2 (Σ) . (6.1)

where the fundamental solution FΣ(ξ̄0, ξ1) is a homomorphism (almost everywhere defined)

FΣ : Dint
0 (Σ)×Dint

1 (Σ)→ C (6.2)

whose extension to D0(Σ)×D1(Σ) satisfies

FΣ(ξ̄0, (J − i)ξ1) = 0 . (6.3)

The point is that the Cauchy-Riemann equations are expressed entirely in terms of currents,
the J operator, and the skew-hermitian intersection form,

To see that equation (6.1) expresses the Cauchy-Riemann equations, let ξ1 = δw, the
0-current representing a point w ∈ Σ. With w fixed, FΣ is a 1-form on Σ,

FΣ = F (x)µdx
µ , FΣ(δ̄w, ξ1) =

∫
Σ

d2x G(x)µ ξ
µ
1 (x) . (6.4)

J acts on 1-forms by
Jdz = idz , Jdz̄ = −idz̄ (6.5)

where z = x1 + ix2 is a complex coordinate on Σ. So condition (6.3) says that F is a
(1, 0)-form

FΣ = F (z, z̄)dz (6.6)
Then, by (2.18) and (4.3), equation (6.1) is the Cauchy-Riemann equation

∂

∂z̄
F = πδ2(z − w) , F (z, z̄) =

1

z − w
+ · · · . (6.7)

One might say that equation (6.1) expresses the Cauchy-Riemann equations by the residue
formula.

7 The real examples Q(M) for n odd

A quasi Riemann surface is a complete metric space Q with some additional structure mod-
eled on the space Dint

0 (Σ) of integral 0-currents in a Riemann surface Σ. This structure is
sufficient to express Cauchy-Riemann equations on Q.

What might make quasi Riemann surfaces interesting is a class of examples constructed
from the integral (n−1)-currents in a compact oriented conformal manifold M of dimension
2n. These examples were motivated in [1] by consideration of quantum field theory on the
quasi Riemann surfaces. The quantum field theory motivations are summarized in [2].

The general quasi Riemann surface is complex. The real quasi Riemann surfaces are
the complex quasi Riemann surfaces which are invariant under an involutive automorphism,
“complex conjugation”.

This section describes real quasi Riemann surfaces naturally associated to 2n-manifolds
M with n odd. The following section describes complex quasi Riemann surfaces associated
to 2n-manifolds for all n, even and odd.
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7.1 The fiber bundle Q(M)→ B(M) of quasi Riemann surfaces

Assume now that n is odd. All currents will be real
The “bundle” of quasi Riemann surfaces associated to the manifold M will be the exact

sequence of metric abelian groups

0 −−→ Dint
n−1(M)0

∂−−→ Dint
n−1(M)

∂−−→ ∂Dint
n−1(M) −−→ 0 (7.1)

renamed
0 −−→ G(M)

∂−−→ Q(M)
∂−−→ B(M) −−→ 0 . (7.2)

We are regarding
Q(M)→ B(M) (7.3)

as a fiber bundle. The metric abelian group G(M) = Dint
n−1(M)0, i.e., the group of integral

(n−1)-cycles, is the “gauge group” of the bundle. The fibers

Q(M)∂ξ0 = Dint
n−1(M)∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ = ∂ξ0

}
, ∂ξ0 ∈ ∂Dint

n−1(M) (7.4)

are the spaces of integral relative (n−1)-cycles. Each fiber Q(M)∂ξ0 is an affine space for
the metric abelian group G(M). Each fiber is to be a quasi Riemann surface.

Now fix ∂ξ0 and consider the fiber Q(M)∂ξ0 . To save space, write

Q = Q(M)∂ξ0 , G = G(M) = Q(M)0 . (7.5)

7.2 The analogous chain complex to ⊕j Dint
j (Σ), Σ a Riemann surface

The first step is to construct a chain complex of metric abelian groups

0 −−→ Q3
∂−−→ Q2

∂−−→ Q1
∂−−→ Q0

∂−−→ Q−1 −−→ 0 (7.6)

analogous to the chain complex (2.22) of integral currents Dint
j (Σ) in a Riemann surface Σ.

Define metric abelian groups

Q−1 = Z∂ξ0 ⊂ Dint
n−2(M) (7.7)

Q0 = Dint
n−1(M)Z∂ξ0 =

{
ξ ∈ Dint

n−1(M) : ∂ξ ∈ Z∂ξ0

}
⊂ Dint

n−1(M) (7.8)

Q1 = Dint
n (M) (7.9)

Q2 = Dint
n+1(M)/Q⊥0 (7.10)

Q3 = Dint
n+2(M)/Q⊥−1 (7.11)

where Q⊥0 and Q⊥−1 are the orthogonal complements of Q0 and Q−1 in the skew intersection
form of M ,

Q⊥0 =
{
ξ ∈ Dint

n+1(M) : IM〈 ξ′, ξ 〉 = 0 ∀ξ′ ∈ Q0

}
(7.12)

Q⊥−1 =
{
ξ ∈ Dint

n+2(M) : IM〈 ∂ξ0, ξ 〉 = 0
}
. (7.13)

Q−1 = Q3 = Z when ∂ξ0 6= 0. At ∂ξ0 = 0 they degenerate to Q−1 = Q3 = 0. The Qj form a
chain complex (7.6) because Q−1 = ∂Q0 so ∂Q⊥−1 = Q⊥0 by property (4.7) of IM〈 ξ1, ξ2 〉.

10



7.3 The skew form I〈 ξ1, ξ2 〉 on ⊕j Qj

By construction, IM〈 ξ1, ξ2 〉 defines (almost everywhere) an integer-valued form

I〈 ξ1, ξ2 〉 ∈ Hom(⊕
j
Qj ×⊕

j
Qj,Z) (7.14)

satisfying (where defined)

I〈 ξ1, ξ2 〉 = 0 unless deg′(ξ1) + deg′(ξ2) = 2, (7.15)
where deg′(ξ) = j for ξ ∈ Qj

I〈 ξ1, ξ2 〉 = −I〈 ξ2, ξ1 〉 (7.16)

I〈 ∂ξ1, ξ2 〉 = −I〈 ξ1, ∂ξ2 〉 (7.17)

I〈 ξ1, ξ2 〉 is nondegenerate. (7.18)

7.4 The J operator

Define real vector spaces
Ωj = Hom(Qj,R) , Dj = Ω∗j (7.19)

as in section 5 above. In particular,

Ω1 = Hom(Dint
n (M),R) (7.20)

so
D1 ⊂ Ddistr

n (M) . (7.21)

To complete the analogy with currents in a Riemann surface, J = εn∗ should act on D1.
However, it does not seem obvious that Hodge-∗ takes D1 to itself, i.e., that Hodge-∗ acts
on the infinitesimal integral n-currents. This is more or less proved — or at least the germ
of a proof is given — in Appendix 1 of [1]. The argument makes essential use of fractal
integral currents that are limits of Cauchy sequences of singular currents in the flat metric
on currents. This is one of the motivations for adopting the integral currents, along with the
existence of integral currents in the complete metric spaces of integral currents.

Assuming that Hodge-∗ does act on D1, we have the final elements of the analogy:

J2 = −1 on D1 (7.22)

I〈 Jξ1, Jξ2 〉 = I〈 ξ1, ξ2 〉, ξ1, ξ2 ∈ D1 (7.23)

I〈 ξ, Jξ 〉 > 0, ξ 6= 0 ∈ D1 (7.24)

where I〈 ξ1, ξ2 〉 is extended from Q1 to D1 by linearity.
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7.5 Pull up the structure from ⊕j Qj to ⊕j Dint
j (Q)

These structures, I〈 ξ1, ξ2 〉 and J , are pulled up to the currents in Q via a morphism of chain
complexes of metric abelian groups,

Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q) > 0

0

Π4

∨
> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
> 0

(7.25)

The augmentation of the top complex is the usual

Dint
−1(Q) = Z , ∂ : δξ ∈ Dint

0 (Q) 7→ 1 ∈ Dint
−1(Q) (7.26)

Write the augmented space of integral currents in Q

Dint(Q) = ⊕
j=−1
Dint
j (Q) . (7.27)

The morphism Π

The morphism maps Πj are

Π−1 = m 7→ m∂ξ0 , m ∈ Z (7.28)

Πj =

{
Πj,n−1, j = 0, 1

πj ◦ Πj,n−1, j = 2, 3
(7.29)

Πj = 0 , j ≥ 4 . (7.30)

where
Πj,n−1 : Dint

j (Dint
n−1(M))→ Dint

j+n−1(M) (7.31)

is the map of equation (3.2), and πj is the projection on the quotient space

πj : Dint
j+n−1(M)→ Qj = Dint

j+n−1(M)/Q⊥2−j , j = 2, 3 . (7.32)

In particular,
Π0 : δξ 7→ ξ , ξ ∈ Q . (7.33)

To see that the Πj form a morphism of chain complexes, first calculate explicitly

∂Π0 = Π−1∂ . (7.34)

Then note that
∂Πj = Πj−1∂ , j ≥ 1, (7.35)

because the operator ∂∗j,n−1 in equation (3.10) vanishes on Dint
j (Q) for j ≥ 1, because ∂

takes Q to the single point {∂ξ0} and there are no j-currents in a single point if j ≥ 1.
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Translation invariance

The fiber Q = Dint
n−1(M)∂ξ0 is an affine space for the metric abelian group G = Dint

n−1(M)0,
which acts by translations T ξ

Q = ξ0 + G , T ξ : ξ0 7→ ξ0 + ξ , ξ ∈ G , ξ0 ∈ Q . (7.36)

Let T ξ act trivially on the Qj, j 6= 0.
The translations act on integral currents in Q by pushing forward

T ξ∗ : Dint
j (Q)→ Dint

j (Q) (7.37)

where T ξ∗ acts trivially on Dint
−1(Q) = Z.

The morphism Π is translation-invariant,

ΠjT
ξ
∗ = T ξΠj . (7.38)

The isomorphism Π1∗ : Tξ0Q→ D1

Since Q is an affine space for the group G, the tangent spaces Tξ0Q are all the same, and all
equal to T0G. The map Π1 induces isomorphisms (of real vector spaces)

Π1∗ : Tξ0Q→ D1 , Π∗1 : Ω1 → T ∗ξ0Q (7.39)

where, as in section 5,

T ∗ξ0Q = Ω1(Q)inv , Tξ0Q = (Ω1(Q)inv)∗ . (7.40)

The J operator and the skew form pulled up to Q

Transport the J operator from D1 and Ω1 to Tξ0Q and T ∗ξ0Q, via the isomorphisms (7.39),

JΠ1∗ = Π1∗J , JΠ∗1 = Π∗1J . (7.41)

The J operator acting on the cotangent space T ∗ξ0Q then determines a J operator on the
space Ω1(Q) of 1-forms on Q.

Pull back the skew form I〈 ξ1, ξ2 〉 to Dint(Q) along the morphism Π,

IQ〈 η1, η2 〉 = Π∗I〈 η1, η2 〉 = I〈Πη1,Πη2 〉 , η1, η2 ∈ Dint(Q) . (7.42)

IQ〈 ξ1, ξ2 〉 ∈ Hom(Dint(Q)×Dint(Q),Z) (7.43)

IQ〈 η1, η2 〉 = 0 if deg(η1) + deg(η2) 6= 2 (7.44)

IQ〈 η1, η2 〉 = −IQ〈 η2, η1 〉 (7.45)

IQ〈 ∂η1, η2 〉 = −IQ〈 η1, ∂η2 〉 (7.46)

IQ〈 η1, T
ξ
∗ η2 〉 = IQ〈 η1, η2 〉 , deg(η2) ≥ 1 , ξ ∈ G (7.47)

J2 = −1 on Tξ0Q (7.48)

IQ〈 Jη1, Jη2 〉 = IQ〈 η1, η2 〉 , η1, η2 ∈ Tξ0Q (7.49)

IQ〈 η, Jη 〉 > 0 , η 6= 0 ∈ Tξ0Q (7.50)

where IQ〈 η1, η2 〉 is extended to Tξ0Q by linearity.
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7.6 Cauchy-Riemann equations on Q

Now we have the ingredients to write Cauchy-Riemann equations on Q analogous to the
Cauchy-Riemann equations for a Riemann surface Σ, in the form of equations (6.1-6.3),

FQ(η0, ∂η2) = 2πiIQ〈 η0, η2 〉 , η0 ∈ Dint
0 (Q) , η2 ∈ Dint

2 (Q) . (7.51)

where the fundamental solution FQ(η0, η1) is a homomorphism (almost everywhere defined)

FQ : Dint
0 (Q)×Dint

1 (Q)→ C (7.52)

whose extension to D0(Q)×D1(Q) satisfies

FQ(η0, (J − i)η1) = 0 . (7.53)

On Q, we can impose the additional condition that the fundamental solution FQ(η0, η1) is
the pullback of a form F (ξ0, ξ1) on Q0 ×Q1,

FQ = Π∗F , FQ(η0, η1) = F (Π∗η0,Π∗η1) (7.54)

F ∈ Hom(Q0 ×Q1,C) (7.55)

F (ξ0, ∂ξ2) = 2πiI〈 ξ0, ξ2 〉 (7.56)

F (ξ0, (J − i)ξ1) = 0 , ξ0 ∈ D0, ξ1 ∈ D1 . (7.57)

7.7 n = 1

For n = 1, for M a Riemann surface Σ, the bundle of quasi Riemann surfaces

0 −−→ G(Σ)
∂−−→ Q(Σ)

∂−−→ B(Σ) −−→ 0 (7.58)

is
0 −−→ Dint

0 (Σ)0
∂−−→ Dint

0 (Σ)
∂−−→ Z −−→ 0 (7.59)

since ∂Dint
0 (Σ) = Dint

−1(Σ) = Z. The fiber Q(Σ)∂ξ0 = Dint
0 (Σ)m, ∂ξ0 = m, is the space of

integral 0-currents of total mass m (called the space of integral 0-cycles of degree m in the
usual terminology). The chain complex (7.6) of the Qj is

0 −−→ Z ∂−−→ Dint
2 (Σ)

∂−−→ Dint
1 (Σ)

∂−−→ Dint
0 (Σ)mZ

∂−−→ mZ −−→ 0 . (7.60)

The skew form I〈 ξ1, ξ2 〉 is the skew intersection form IΣ〈 ξ1, ξ2 〉 (which extends uniquely to
the augmented chain complex of Σ).
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7.8 Surjectivity of Π3

For n > 1, the morphism maps Πj are all surjective. This allows the Qj to be constructed
as the quotients of the Dint

j (Q) by the null spaces of the skew form IQ〈 η1, η2 〉 on Q. All the
structure of the quasi Riemann surface is encoded in the structure of Q, in the skew form
IQ〈 η1, η2 〉 and the J operator on Tξ0Q.

However, when n = 1, when M is a Riemann surface Σ, the Πj, j 6= 3, are surjective, but
Π3 is not surjective. The map Π3 is the restriction of Π3,0, which takes integral 3-currents
in Dint

0 (Σ) to integral 3-currents in Σ. But there are no 3-currents in the 2-manifold Σ. So
Π3 = 0. The augmentation on the left by Dint

3 (Σ) = Z is artificial. The augmented chain
complex makes sense, but there are in fact no 3-currents in a Riemann surface.

The failure of Π3 to be surjective is aggravating. It blocks the possibility of there being
morphisms of quasi Riemann surfaces from the Q(M)∂ξ0 for n > 1 to the quasi Riemann
surfaces associated to a Riemann surface. Such morphisms might be useful for tranporting
two dimensional quantum field theories from Riemann surfaces to the Q(M)∂ξ0 . It would
be useful if there were an actual augmentation Σ′ ⊃ Σ of a Riemann surface Σ such that
Dint

3 (Σ′) was actually Z.

8 The complex examples Q(M) for any n

Now let n be any positive integer. When n is even, the operator J = εn∗ and the skew-
hermitian intersection form IM〈 ξ̄1, ξ2 〉 are imaginary. The construction of the quasi Riemann
surface Q(M)∂ξ0 has to be modified so that J and IM〈 ξ̄1, ξ2 〉 will act on the tangent space.

The bundle Q(M)→ B(M) of complex quasi Riemann surfaces associated to M is given
by the exact sequence

0 −−→ G(M)
∂−−→ Q(M)

∂−−→ B(M) −−→ 0 (8.1)

B(M) = ∂Dint
n−1(M), as before, (8.2)

Q(M) = Dint
n−1(M)⊕ i∂Dint

n (M) (8.3)

G(M) = Dint
n−1(M)0 ⊕ i∂Dint

n (M) . (8.4)

The fibers of Q(M)→ B(M) are

Q(M)∂ξ0 = Dint
n−1(M)∂ξ0 ⊕ i∂Dint

n (M) , ∂ξ0 ∈ ∂Dint
n−1(M) . (8.5)

Fix ∂ξ0 ∈ ∂Dint
n−1(M) and write the fiber as Q = Q(M)∂ξ0 and the gauge group as G = G(M).

Again, Q is an affine space for the abelian group G.
As in the real case, there is a morphism of chain complexes of metric abelian groups

Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q) > 0

0

Π4

∨
> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
> 0

(8.6)
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with the usual augmentation Dint
−1(Q) = Z, and with

Q−1 = Z∂ξ0 (8.7)

Q0 = Dint
n−1(M)Z∂ξ0 ⊕ i∂Dint

n (M) (8.8)

Q1 = Dint
n (M)⊕ iDint

n (M) (8.9)

Q2 =
[
Dint
n+1(M)⊕ iDint

n+1(M)
]
/Q0

⊥ (8.10)

Q3 =
[
Dint
n+2(M)⊕ iDint

n+2(M)
]
/Q−1

⊥ (8.11)

where now Q0
⊥ and Q−1

⊥ are the orthogonal complements in the skew-hermitian intersection
form IM〈 ξ̄1, ξ2 〉 of M defined in equation (4.3). Now Q3 is isomorphic to Z⊕ iZ. Again, the
morphism maps Πj are given by the Πj,n−1. Again, Π0 is the canonical map δξ 7→ ξ, ξ ∈ Q,
and Π−1 is 1 7→ ∂ξ0. Again, the Πj are invariant under translation by G.

At this point, the only manifestation of the imaginary unit i that is used in the construc-
tion of the metric abelian groups in (8.6) is the complex conjugation involution ξ 7→ ξ̄ that
acts as an automorphism of (8.6).

By construction, IM〈 ξ̄1, ξ2 〉 gives a skew-hermitian form I〈 ξ̄1, ξ2 〉 on ⊕jQj,

I〈 ξ̄1, ξ2 〉 ∈ Hom(⊕
j1
Q̄j1 ×⊕

j2
Qj2 ,Z⊕ iZ) (8.12)

satisfying (where defined)

I〈 ξ̄1, ξ2 〉 = 0 unless deg′(ξ1) + deg′(ξ2) = 2, (8.13)
where deg′(ξ) = j for ξ ∈ Qj

I〈 ξ̄1, ξ2 〉 = − I〈 ξ̄2, ξ1 〉 (8.14)

I〈 ∂ξ̄1, ξ2 〉 = −I〈 ξ̄1, ∂ξ2 〉 (8.15)

I〈 ξ̄1, ξ2 〉 is nondegenerate. (8.16)

The vector spaces

Ω1 = Hom(Q1,R) = Hom(Dint
n (M),R)⊕ iHom(Dint

n (M),R) , D1 = Ω∗1 (8.17)

are complex vector spaces. Given that ∗ acts on Hom(Dint
n (M),R), the operator J = εn∗ acts

on Ω1 and D1. The skew-hermitian form I〈 ξ̄1, ξ2 〉 extends by linearity to a skew-hermitian
complex form on D1. They satisfy on D1 (where defined)

J2 = −1 (8.18)

I〈 ξ̄1, ξ2 〉 = − I〈 ξ̄2, ξ1 〉 (8.19)

I〈 Jξ1, Jξ2 〉 = I〈 ξ̄1, ξ2 〉, (8.20)

I〈 ξ̄, Jξ 〉 > 0, ξ 6= 0 . (8.21)

16



The skew-hermitian form I〈 ξ̄1, ξ2 〉 pulls back along the maps Πj to give a skew-hermitian
form on Dint(Q),

IQ〈 η̄1, η2 〉 ∈ Hom(Dint(Q)×Dint(Q),Z⊕ iZ) (8.22)

which inherits the properties of I〈 ξ̄1, ξ2 〉. Again, I〈 ξ̄1, ξ2 〉 is invariant under the translations
acting on the Dint

j (Q), j ≥ 1.
The map Π1 induces isomorphisms of vector spaces

Π1∗ : Tξ0Q→ D1 , Π∗1 : Ω1 → T ∗ξ0Q (8.23)

so Tξ0Q and T ∗ξ0Q are complex vector spaces, and thus also Ω1(Q). Again, J is transported
from Ω1 and D1 to Tξ0Q and to T ∗ξ0Q. and thereby determines a J operator on Ω1(Q). On
the tangent space Tξ0Q, J and IQ〈 η̄1, η2 〉 inherit the properties (8.18-8.21). This might be
called an affine Kähler structure on Q.

9 Definition of quasi Riemann surface

The aim now is to define quasi Riemann surface and bundle of quasi Riemann surfaces in
a way that encompasses all the examples Q(M) and Q(M) as narrowly as possible. At a
minimum, the structure should be sufficient to express Cauchy-Riemann equations.

9.1 A quasi Riemann surface

A quasi Riemann surface is a complete metric space Q with the following properties.

1. Q is an affine space of a metric abelian group G. G acts on Q by translations

Q = ξ0 + G , T ξ : ξ0 7→ ξ + ξ0 , ξ ∈ G , ξ0 ∈ Q . (9.1)

2. There is a morphism of chain complexes of metric abelian groups

Dint
4 (Q)

∂
> Dint

3 (Q)
∂
> Dint

2 (Q)
∂
> Dint

1 (Q)
∂
> Dint

0 (Q)
∂
> Dint

−1(Q) > 0

0

Π4

∨
> Q3

Π3

∨
∂

> Q2

Π2

∨
∂

> Q1

Π1

∨
∂

> Q0

Π0

∨
∂

> Q−1

Π−1

∨
> 0

(9.2)

Dint
−1(Q) = Z , ∂ : δξ 7→ 1 , ξ ∈ Q . (9.3)

3. Q−1 is a cyclic group with generator ∂ξ0, which is possibly 0,

Q−1 = Z∂ξ0 , Π−1 : 1 7→ ∂ξ0 . (9.4)

4. Q0 is the smallest metric abelian group such that

G = ∂−1{0} ⊂ Q0 , Q = ∂−1{∂ξ0} ⊂ Q0 , and ξ + ξ0 = T ξξ0 , ξ ∈ G , ξ0 ∈ Q . (9.5)
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So Q = Q0 = G if ∂ξ0 = 0, otherwise Q0 is isomorphic to G × Z∂ξ0, the ismormorphism
depending on a choice of ξ0 ∈ Q.

The morphism map Π0 is
Π0 : δξ 7→ ξ , ξ ∈ Q . (9.6)

5. All the Πj are surjective except possibly Π3.

6. The morphism Π is translation-invariant under G, where G acts by T ξ on the Qj, trivially
for j 6= 0, and by T ξ∗ on the Dint

j (Q), trivially for j = −1.

7. Π1 induces isomorphisms

Tξ0Q = D1 , T ∗ξ0Q = Ω1 , where Ω1 = Hom(Q1,R) , D1 = Ω∗1 . (9.7)

8. There is an involution ξ → ξ̄, called “complex conjugation”, which acts on Q and on the
Qj, acting trivially on Q−1 and on G, and which acts on the Dint

j (Q) via its action on Q.
The complex conjugation is an automorphism of the diagram (9.2).

The quasi Riemann surface is real when complex conjugation acts trivially, complex when
complex conjugation is not trivial.

9. In the complex case, D1 and Ω1 are complex vector spaces. That is, the two eigenspaces
of complex conjugation are isomorphic, so that there is a linear action of i on D1 satifying
iξ = −iξ̄.

10. There is a skew-hermition form I〈 ξ̄1, ξ2 〉 defined almost everywhere on ⊕jQj,

I〈 ξ̄1, ξ2 〉 ∈ Hom(⊕
j1
Q̄j1 ×⊕

j2
Qj2 ,Z⊕ iZ) (9.8)

satisfying (where defined)

I〈 ξ̄1, ξ2 〉 = 0 unless deg′(ξ1) + deg′(ξ2) = 2, (9.9)
where deg′(ξ) = j for ξ ∈ Qj

I〈 ξ̄1, ξ2 〉 = − I〈 ξ̄2, ξ1 〉 (9.10)

I〈 ∂ξ̄1, ξ2 〉 = −I〈 ξ̄1, ∂ξ2 〉 (9.11)

I〈 ξ̄1, ξ2 〉 is nondegenerate. (9.12)

11. There is a linear operator J acting on D1 (and on Ω1) satisfying (where defined)

J2 = −1 on D1 (9.13)

I〈 Jξ1, Jξ2 〉 = I〈 ξ̄1, ξ2 〉, ξ1, ξ2 ∈ D1 (9.14)

I〈 ξ̄, Jξ 〉 > 0, ξ 6= 0 ∈ D1 (9.15)
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where I〈 ξ̄1, ξ2 〉 is extended by linearity to a skew-hermitian complex form on D1.
The real quasi Riemann surfaces can be identified with the complex quasi Rieman surfaces

where J and I〈 ξ̄1, ξ2 〉 are both real.

9.2 A bundle of quasi Riemann surfaces

A bundle of quasi Riemann surfaces is a an exact sequence of metric abelian groups

0→ G ∂−→ Q ∂−→ B → 0 (9.16)

regarded as a fiber bundle Q → B. the fibers Q∂ξ0 are quasi Riemann surfaces, all of which
share the structure of the degenerate fiber Q0 = G,

Dint
3 (G)

∂
> Dint

2 (G)
∂
> Dint

1 (G)
∂
> Dint

0 (G) > 0

0

Π3

∨
> G2

Π2

∨
∂

> G1

Π1

∨
∂

> G

Π0

∨
> 0

(9.17)

Every fiberQ∂ξ0 has the sameQ1 = G1, the same morphism map Π1, the same skew-hermitian
form I〈 ξ̄1, ξ2 〉 on Q1, and the same J operator. The nondegenerate fibers Q∂ξ0 , ∂ξ0 6= 0, are
then characterized by the extensions

0→ G → Q0
∂−→ Z∂ξ0 → 0 (9.18)

0→ Q3
∂−→ Q2 → G2 → 0 (9.19)

and by the skew-hermitian form on Z∂ξ0 ×Q3

Finally, there is a commutative diagram

Dint
3 (B)

∂
> Dint

2 (B)
∂
> Dint

1 (B)
∂
> Dint

0 (B) > 0

0
∨

> G

D2

∨
∂

> Q

D1

∨
∂

> B

D0

∨
> 0 .

(9.20)

In the examples Q(M), where B = ∂Dint
n−1(M), the map Dj is given by Πj,n−2. D1 can be

interpreted as a translation-invariant connection in the bundle Q → B. For σ : [0, 1] → B
a 1-simplex in B, [σ] is in Dint

1 (B) so D1[σ] is in Q with ∂D1[σ] = σ(1) − σ(0). Parallel
transport along σ takes ξ ∈ Qσ(0) to ξ + D1[σ] ∈ Qσ(1). If σ2 is a 2-simplex in B, then
parallel transport around the boundary ∂σ2 takes ξ to ξ +D2[σ2]. So D2 is the curvature of
the connection.

10 Questions

Some questions and speculations about quasi Riemann surfaces are listed here. A companion
note [3] contains more questions, comments, and speculations.
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1. Define a quasi holomorphic curve in a quasi Riemann surface Q to be a function
C : Σ→ Q from a Riemann surface Σ to Q that preserves the J operators and the skew-
hermitian forms on integral currents, so a solution of the Cauchy-Riemann equations
on Q pulls back to a solution of the Cauchy-Riemann equations on Σ.

Do quasi holomorphic curves exist in a general Q? in the Q(M)∂ξ0? In particular, do
local quasi holomorphic curves exist, where Σ = D is the unit complex disk? Are there
“enough” quasi holomorphic curves to distinguish solutions of the Cauchy Riemann
equations on Q? Can explicit quasi holomorphic curves be constructed in the basic
case M = S2n = R2n ∪ {∞}, Σ = D or CP1?

2. Can quasi holomorphic curves Q be classified? In particular, does there exist a unique
two-dimensional space Σ′ such that Q = Q(Σ′)m for some m ∈ Z? Σ′ would have to
be some kind of generalization of ordinary Riemann surface. It would have integral
currents. Its intersection form would be nonzero on currents of degrees adding to
2. And it would have a J operator in the middle dimension. It would have to have
3-currents, Dint

3 (Σ′) = Z. For this point, Σ′ cannot be exactly a Riemann surface.
The jacobian of Σ′ would have to equal the Jacobian of Q, where the jacobian is the
homology in the middle dimension as a lattice in a complex Hilbert space. On this point
also, Σ′ cannot be exactly a Riemann surface, sincejacobians can presumably occur in
the Q(M) that are not the jacobians of Riemann surfaces. Finally, the topology of
Q would need to be weakened to make such an equivalence possible, since the quasi
Riemann surfaces Q(M) with the metric topology induced from M , detects all the
homology groups of M .

If such two-dimensional spaces Σ′ exist, are they close enough to Riemann surfaces to
support some form of complex analysis in one complex variable?

If there is such a classification of quasi Riemann surfaces, what are their automorphism
groups? These would contain all the conformal symmetry groups of manifolds M .

3. Can an intrinsic conformal tensor calculus be developed on quasi Riemann surfaces
analogous to the conformal tensor calculus on Riemann surfaces (perhaps along the
lines suggested at the end of section 5 above)? Is there an analog of the local conformal
transformations in one complex variable? Such a conformal tensor calculus would have
to be consistent with any quasi holomorphic curves, and the speculative equivalence
to some Q(Σ′)m.
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