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The q"mtum thecry of closed b()soz«

morphic vector bu:: ies cver universal moduli space.

in this letter we formulate quantum string theory
as in*egmb:e analviic geometry on the universal modu-
i space of Riemann surfaces, based on the analytic

3

formmaz;m of two-dimensional conformal fisld
theory [1].
String theory current] y rovides the only viable
candidate for a fun c atal theory of nature 71, Any
such potentially "‘ndamer al theory should have g
compietely natural mathemstical formulation, The

gauge symmetries of string theory should be the trans-

formations betwceﬁ mathematicelly eguivelent descrip-

tions of one underlying mathematical obiect. In par-
ticular, it is unnatural to assume a particular space-
time as 2 setting for string theory, since string theory
is & quantization of general relativity. The structure of
spacetime should be a property of the ground state.

One of our goals is 2 formuiation of string theory
which is suff zam:-y gbstract to sliow discussion of
the nature of spacetime, A second goal 13 a formula-
ton in which effective calculation might be possible.
Even a potentially compiete thecry is unlikely to be
useful, or even testable, unless effective nonperturba-
tive calculations are possible. This argues for an ana.
tytic or even algebraic seiting in which to do siring
theory.

The equation of motion of strings is essentially the

¥
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¢ strings is formulated as integrable analytic geometry on the universai modull
aces. Solutions of the equation of motion of guantum strings are fiat hermitian metrics in holo-

*2

r

two-dimensional conformalbootstrap equation
The perturbation exnansﬁoﬁ of the string S-matrix is
written 2s a sum over world surfaces in spac‘“{ ime,
which is the funclonal integral version of g two-di-
mensional guantum feld theory, The couplings of
the two-dimensions al guantum field theory express
hv background in which str r*gs propagate. The per-
turbation expansion describes sirings as the fluctu
tions around the ground state. Th ground state ;-:seif
is encoded as the two-dimensions! field theery ex.
pressing the background.

A ground state of 2 string is 2 background in which
the S-matrix of propagating strings is unitary. In
bosenic string theory, unitarity requires conformal
invariance of the world surface. Conformal invariance
is expvesseﬂ ny the action of the Virssoro algebre in

he Hilbert space of the two-dimensional field theory
of the cylindrical world surface swept cut by & closed
string. The central charge must have the perticular
value ¢ = 26. To solve the bosenic string equation of
motion is to construct two-Gimensions! conformal
field theories with ¢ = 26. Understanding conformal
fieid theory on all Riemann surfaces is the key to un-
derstanding guantum string theory.

Two-dimensicnal conformai field theory can be
formuiated as analytic geometry on the universal mo-
iuli space of Riemann surfaces [11. In this letter we
adapt the general analytic geometry of conformal fleld

*2 For b ckground references in string theory and two<dimen-
sionat conformal field theory see refs. {1,217,
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theory to the special case of string me&ry, where its
appiication is especiaily natural. As the setting for the
analytic formulation of both two-dimensional con-
formal field theory and string theory, we define the
universal analytic moduli space of Riemann surfaces,
which apparently has not been described previcusly.
The fundamenta! object of quantum string theory is
2 hermitian metric & in 2 holomorphic, infinite-dimen-
sional vector bundle W over universal moduli space.
The quaf‘ un eguation of ratmr of strings is the flat-
equation on the metric s Flatness equations are
imegrasie. Here, the soiu‘osﬂs are exactly the unitary
representations of the universal modular group. String
theo-ry is thus reduced, in principle, to the representa-
tion theory of the universal modular group.
'* zermwr ¢ string theory, unitarity is equivalent to
superconformal invariance of the world surface, The
fermionic theories are the only known string theories
ith consistent perturbative sxpansions. The equation
of motion of the fermionic string is essentially the
two-dimensional st pe*conf&vmni- ootstrap equation.
We camen::ace in this jetter on the closed hosonic
string. The superanatytic formulation of the fermionic
string parallels the bosonic theory, The fermionic s tring
and two-dimensional superconfermal field theory ar
set in the super analytic géometry of the universal
super modull space, based on the superconformal ten-
sor calcuius on super Riemann surfaces,

This work was motivated by -:iﬂe use of modular
mvariance as 2 crucial constraint in strmg theory 3,4}
and in two-dimensional confcm. field theory [5].
and by some of the recent discussions of the founda-
tring t}*eo*y and string field theory {6-91].
it WOrk, we were encourag-

o~
tionsof g

While engaged in the preser

ed by ¢ ‘: pam@r of Belavin and Knizhnik {10] on the
sartition function of strings in fiat spacetime, which

X
5

aiso focuses on the complex a
moduli space, and by otherr
nants of elliptic opera t on

ation properties, on the mo
surfaces {11].

We begin by establishing some notation and defin--
ing the universal moduli space {1]. Let W, be the
moduli space of compact, connscted, smooth, genus
g Riemann surfaces 73 1et g 0e the moduli space

anatytic structure of
ecent studies of determi-
urfgces and their factori-
h spaces of Riemann

2]
o

Cor expianations of moduil space see ref, [12}; for analytic

geometry see ref. {13}
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of compact, connected, steble Riemann surfaces of
genus g, The stabie surfaces include the surfaces with
nodes, Q%g is a compact, complex analytic orbifold
or Y-manifold, of complex dimension n =3¢ — 3 for
g>in=1 1crg—~ i and n =0 for g = 0. The space
of surfaces with nodes is the compactification divisor
D, ‘777 — W, The generic surface in D, has
exa ctly one qoce The muitiple seif-intersect ons of
ZJ the subcomponents of Dy, ase the spaces of

faces with muitiple nodes. For every subcompo-
nent of D for every configuration of & nodes, there
is a coliection of k independent analytic coordinates
g’, rear ¢' = §, defining ihe subcomponent by the k
indeperdent equations ¢' = 0. In more abstract lan-
guage, all the self-intersections of Cbg are transversal

The generating functional of the connected part
of the string S-matrix is

on

COY‘H = Z; é'
=0 2
55 g

where Z{m, m) is the string partition functicn on the
moduli spaces W . ;ne string ﬂeupimg constant A
appears in a factor A28 2 which is absorbed into Z.
S conn 18 @ functional of the string background. The
scattering amplitudes of strings are the coefficients of
the infinitesimal variations of the background in the
expansion of &, arcund the string ground state.
The generating functiona! for the full S-matrix is
the integral of the partition function over the modul
space of all compact, smooth Riemann surfaces, not
necessarily connected:

Z(7, m). {1

[y
N’

&
L"
>t

'

S = oxp(Sopa) = | 20, m). 2)
R

‘¥ is the universal moduli space

%=§§{ U SymF(m /5 €}
g=0 \ k=0

where Sym® is the &-fold symmetric product. The
syrmunetrization is dus fo the wdmtmgwsm zi ty of
con;ormc.dy eqa,vaiwn* Riemann surfaces. Eg. (2} is

irect rewriting of eq. {1}, given that the partition
function of a disconnected surface is the product of
the partition functions of the connected components,
The factors 1/k! are provided by the symmetric
products.
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The space K is highly disconnected in its nalve
topology s & union of products of the individual
moduli spaces W . But the infinitely many disconnect-
ed components of R are connected by the formation
of nodes. Any two surfaces in R can be obtained
from 2 single connected surface of higher genus by ana-
iytic deformations which include formation and re-
moval of nodes. The partition fusnction exiends to sur-
faces with nodes, 80 it lives on the universal modulf
space of compact, stable Riemann surfaces

=
_ k 55
®=1l L, sy g).). (4)

The compactification diviser D = &R — R is the space
of compact Riemann surfaces with nodes. But nodes
are invisible to 3 two-dimensionat conformal field
theory. That is, the partition function of a surface
with.nodes is exactly equal to the partition function
of the smooth, possibly disconnected, surface which i
made by removing the nodes and erasing the punctures
which are left behind. This motivates defining an ana-
ivtic structure on R for which the removai of nodes is
anzlytic. We write mcpy = n{mcp ‘} for the operation of
removing the nodes from 3 surface m o € D and eras-
ing the punctures, leaving the smooth surface ﬂ{mq) 3.
We wilt see that % is an effectively connected, com-
pact analytic space on which the partition function is
real analytic.

Let us now describe explicitly the partiti
near D . Take 2 particular coordinate neighborhood o
a node, consisting of two disks {z;:1z,] < 1} attached
together at 7, =z = § to form the node. A surface
with node is parametrized by m . = {(m, X, %, ), where
m = m{mcy ) is the surface which‘remains when the
node is removed and the punctures erased, and (xy, x,)
is the unordered pair of punciures on the surface m
which result from removal of the node. The opening
of the node is parametrized by a single complex varl-
able . First remove & small neighborheod of the nods,
7.4 < 1g1¥% in both disks. Thex attach the annular co-
ordinate neighborhood ig EU Z<izi< lg i”}/ 2 to the
remaining surface by the identifications

if gl <izi<,
Fiz|<igi Ve, (5

Z =q3‘/2/’22

P
[ 1
=g /Zl

The z snnulus serves as a conformal plumbing joint.
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The modull space near D is parametrized by (mp,¢)
= {m,x;,%,,q), with g = 0 being the surface with
node m (. In the imit ¢ - 0, z becomes 2 coordinate
on the punctured complex plane, which is conformal
iy equivzlent to the infinite cylinder, To study the
hehavior of the partition function near &, we only
need to know the properties of conformal field theory
on the snnuler plumbing joint in the mitg > 0,
which is just conformal field theory on the plane.

The conformal fleld theory on the plane is radially
quantized, with Virasoro algebra L, L. Near D,
the partition function of the surface (m(p ,¢) can be
pictured as an expectation value in the radial quanti-
zation:

7= t{ghegto plmp)) (63

where p{micp ) Is the density matrix of states on the
boundary circles {z;i = | which is prepared by the
conformal field theory on the surface outside the re-
gion of the node {z;] < 1.The density matrix p is in-
dependent of 4. The trace in eq. {6} can be perform-
ed by summing over & complete set of states in the
radial quantization. Use the one-to-one correspon-
dence between the scaling fields pix) of the conformal
field theory and the eigenstates {) = {0}I0), with L,
eigenvaiue b, and L, eigenvalue &, to write the ex-
pansion in terms of two-point functions of the felds
@{x) on the smooth surface m = a{m 3 3

Z =7, dbeg elelptmay o)
14
= Z(, m) ] T e ey 1k Wy (7
@

The correlation functions of the fieids can be recon-
tructed from this expansion {11, The leading contsi-
bution in eq. {7) comes from the ground state i,
which has kg = E@ = . The unique 8L,{C}4nvariant
ground state 10) always corresponds to the identity
operator, which is indifferent to its logation, so the
partition function on D itself is

w2

Zimg, mqy=Zm,m), Z=Z°x. (&

From the point of view of conformal field theory, as
scon as 2 node forms all trace of it disappears,

We now put an analytic structure onR which ex-
presses precisely this indifference to nodes, The ana-
tytic structure on B is the strongest analytic struc.
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ture consistent with the naive gnalytic structure on
¥, and for which the removal of nodes is an analytic
operation. The strongest analytic structure is the one

with fewest local holomorphic fu:c;zons Write t
diagram

a
ure

B> R (9}
i/
R
in which @ —» (% and ¥ - R are the inclusion maps,
and 71: D =R is the map which removes the nodes
and ezases the punctures. The analytic structure on
igthe s :trmgosi for which {9} is 2 commuting dia-
gram of analytic Taps. A function fon R is holo-
morphic if and only if it is holomorphic on the smooth
surfaces R, and satisfies f/@ =fo g on the compacti-
fication divisor. The topology on R associated with
this analytic structure is stronger than the naive
-sowgy In particulaz, it is simple to show by induc-
tion in the genus that a globally holomorphic function
on R is constant. In this sense, ‘R is connected and
compact. In such g rigid analytic setting, the glohal
holomorphic objects are highly constrained and can
be manipuiated by analytic technigues with complete
control, As far as we know, the universal mocduli space
has not previously been described. A universal Teich-
Her space is known, but the corresponding moduli
space is a single point {121,
The partition funtion for strings in spacetime has
the form Z = Z wh Ly, Where £ is the contribution
m the two-dimensional conformal ficld theory of
nai spacetime, and Zgy, s the
partition function of the chiral conformal g%@st 5ys-
tem of the world surface functional integral fixed in
the natural cmﬁ)rma? gauge {2].
The spacetime sector is an ordinary twe-dimen-
sional conformal Axeia theory with ceniral charge ¢
=4. Formulated in the language of ref. [1}, the par-
tition function £y, is a section of Ed ® By, where, in
general, B, = (‘»-V’/’ “,{%4; ) being the Hodge line
hundle. E is the projective line bundie on ‘2 which
ezzc(,des the relati onship between the two-dimension-
a} conformal field theory and the surface geometzy,
The spacetime partition function is written in terms
of a projectively flzt hermitian metric 2% in a projec-
tive vector bundie W, over 9 , and g holomorphic
section Yg{em) of *he vector bundle V= B, @ W,
over O

Z 67, m) = h g, P = VEmBS E3emy. (1)
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The ghost secter is not exactly a conformai fisid

Lheu‘y The ghost partition function is Zgn

“‘h {wg}U w‘@h/ W’}e.xg

N
S
[,

N’

-
‘*,)giﬂ(in):‘}r‘ dbdceS@’C}, S{b’c}:j baC

m

is the chiral fermionic ghost functiona! integral. Inter-
preted as a function on moduli space, Wg}»(f"‘?} would
be identically ze , because of the n = 3g — 3 zere
modes ¢ fb(é)’dz in Fng > 1, or the two con-
sta.gf zere modes &y, and ¢y in genus g = 1. We whould

tead interpret Y ERGD as a holomorphic half-densi-
ly on®, z aiovrommc section of the holomorphic
line bundie X = A7 =10y 84 (11)should be
written

ro ;
Yenlmy= | db de o560

X f dzzz ! (z},zi}b(z;}dm}
m

X f@ Zybi{T» 2, Y5z, A (12)

where {dmk} is 2 basis of one-forms on R at m, con-

jugate to a basis {i; } of Beitrami differentials on the

surface m. To be more precise, again in the language
of ref. 1}, Venlmyisa hoéomom‘f‘ic section of
K®E 4@ Wgh, where ng is 2 fine bundle on R
with project' vely flat hermitian metric hgh
in the critical dimension d = 26 the dependence
on surface georetry disappears in the combined
spacstime and ghost system. The curvature forms of
the projectively flat metrics 5% and 52® cancel. The
roduct i = 5K is a flat hermitian metric in W
= Wst ® Wy The fibers of W are in general infinite
dimensional. In the critical dimension, Eg @ E_ ¢
= By is the trivial lne bundie on R, so Y{m)
= Yen{myglm) is 2 hol fomorphic section of ¥
=K ® W, The string partition function is

(7, my = h(b, V) = ¥ m) g ¥° (), (13)

which, as a section of K ® K is a density on @ which
can be integrated, formally, over ® to give the §-
matrix. Thus eg. (2) for the S-matrix is roathematical-
iy natural. This is the formal origin of gauge symme-
try in the analytic guantum string theory. To go be-
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vond formal gauge invariance we wili nsed the super-
analytic formulation of fermionic strings, since we do
>t know of 2 bosonic s*r:ng ground state for which
the integral in eq. {2} is find

The hermitian co*mect*m D in W is written in
components

D=3, D=3+4,

,J

z

Dh}fb = ahab — Z’E;CAg =3, (14}

A4 is the connection form of D. The guantum equa-
tion of motion of bosonic strings is the flatness equa-
tion

=34 =0. (15)

The connection in W can be though‘ of gs the propa-
gator of information across undversal moduli space.
Fiatness, the local equation of motion of guantum
strings, is the absence of ambiguity in the propagation
of information.
Near 2 smooth, non-orbifold point in R | 2 basis
{w,} of covariant constant local he to"noz'pmc sec-
tions can be chosen for W, In this local frame, 4 =0
and h is the constant hermitian matrix by
=R, wy, ,: Ir (‘ompo wnts, Z = 44 m}hab WP om,
which is manifestly real analytic in . Real analyticit
of the pam*zom function on R is equivaient to locall-
ty on the world surface, and therefore to locality in
spacetime. The real analyticity of the partition func.
tion foliows from the local flatness of 7 and the focal
alyticity of .

Beca use & and y are globally defined on R, Z

single valued aﬁde“ analytic continuation arcund
the singular points in 02, the orbifold points and the
com“actif cetion divisor D. To Ye single valued on
R can be in rterpreted as modular invariance, Let R
be the universal analytic "ovamg apace of B . Define
the universal modular group I s¢ the group of Deck
or covering transformations of N =87, Tises
sentially the fundaments! group of CP minus the
singular points. Paraliel transport of the covariant con.
stant sections w, around nontrivial closed curves in
R, avoiding the singular points, gives 2 representation
S of the universal modular group I ywy, = Viw,.
o is unitary because the metric jiz; is invariant under
paraliel transport. Therefore the string partition func-
tion is single valued:

Z = P g, o0 m) = V2 U by Dy imy. (16)
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Modular invarignce of the partition function becomes
crossing symmetry of correlation functions on the
world surface, when the correlation functions are re-
constructed from the behavior of the j‘“rt’*'m f‘y‘ he
tion near <D . Crossing symmeﬁy on the world su

face is duality in string theory. The analytic formula.
tion of guantum strings thus guarantees the {wo crucial
properties of locality and duality.

The flat hermitian vecior bundie W and the unitary
representation N of T are equivalent. W is reconstruct-
ed from O¥ as the quotient of 8 X ¥ by T acting on
both spaces simultaneousty, W = 8 X X . We say
that the analytic geometry of caar.m'n strings is inte-
grable in the sense that this equivaience should even-
tuaily allow a purely group theoretic treatment of
string theory. .

The fiher of the universal analytic covering ¥ %
at & generic smooth point in R is isomorphic to T" it-
seif. At a singuler point in 2 | the fiber degenerates
to a homogensous space I/ FG,W;MV T is the littie
group at the singular point. At a generic smooth point,
the fiber of W is modetied on . At a singular point,
the fiber is W0}, modelied on the subspace {0} con-
sisting of the vectors in 9 which are invariant under
the Hittle group Ty

The littie g:o-.:p for g surface with no d isthe
group generated by the Dehn twists v, o glrigk a
around the nodes. It is encugh to describe the generic
case of one node. In 2 basis of covariant comtant sec-

ons near (B, the twist v can be diagonalized, with
g gerva ues e2mh Wik is the locally defined sub-
bundie on which v has eigenvaiue gmih vy degenerates
to Wi{l)atg = 0.

The definition W as 2 holomor p zc vector bundie
over X includes 3 transition mapn rresponding to
the removal of nodés map 7 in diag:am {9}. In terms
of the local holomorphic sections of W over R, R,
and D, written w{@ (R, WD), the transi-
tion map #* gives the commuting diagram

WDy« W(R) (17
4
W(R}
A tocal section of W must satisfy mrwim g ) =
=winmep iy on D,

More concretely, let mp be a surface with nodes,
and wiite m = n{mep ) = m, Umy U . Umly, the union
of connected components m,. Given a&CUOﬁS Wy of

kPN

251
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W at myy, the symmetric product w, Way o Wy isa
section of W at m. The transition *rap 77* is given by

the factorization structure tenscrs

W*{V/bv whz e yybk) = FgG b2 ...bkwd' ( R>

Note that g is an index for W/Q’) W(0). Note also
that rb by is symmetric {or graded symmetric be-
camse of the ghosts) in the indices b;. The factoriza-
tion tensors provide the dats which is used to build the
representation Y of T from a coliection Q{g of repre-
sentations of the finite geﬁus modular groups Fg,
Conversely, a representation  of [ determinesa
coilection of factorization tensors,
The factorization tensors {18} can ali be expressed
in terms of the elementary structure tensor gg by
symmetricin &, 51

Fo’d Ck 2 1
Thybynby = Lhye ,Fb?cz “'Fbk_ghk’ {(i9)
subiect only to the associativity condition
e =zt a
g: /‘F b< bQF/'D3 {20)

The associativity condition is necessary and sufficient
be well defined, because all of the seifinter-
sec“"icns of D are transversal.
The hermitian metric 7, 10 be smocih on W at D,
must be consistent with the factorization structure:

Rer*, ey o m = R(Y, ),

i F o e Tl ay =hza M, (21
Eq. {21) makes & bear a strong formal resembiapw

to the metsic of a Fock space, where F 7, is the sym-
metric tensor product.

To understand the behavior of Y near D, we only
need some basic facts about the behavior of the con.
formal ghost fields on the compiex plane [2]. The
Fourier components of the ghost wida satisly
D Cple = anbcf'*c ,,,b‘ =5_,. The
Si, invariant state is written {0). Because of the
; ackgmur-é cﬁ-argc of the ghost system, ({0 = 0, and

he state conju to 10, satisfying (') = 1, s 10D
c_ieqeyi 0’7 ote that |0) s not 8L, invariant.
nsert a sum over states on each sids of the node,
at the circle [z i = 1 and zlso at the circle {z,]= 1.

e leading singularity comes from the insertion
IO L1870, which has the 5L mvamms&afes i
fac 'zg the rest of the surface. From eq. {12}, using ex-
licit Beltrami differentials dual to dx l,axz and dg,

8t
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we get the leading behavior

d’gh(m"b)

b 1
) \}gdzﬂ 2mi évdz}

X A{G'ig™ " 12 2b(zg;deq ‘zob{zg)dg

q_}(} wgh(m/ 2 1 fdz

X (g bz yax, 10
q:() a- (ix‘i dg dx Y (m). {223

The caiculation in eq. (22) shows how K is construct-
ed at D. A holomorphic section y of K near D must
factorize on the double pole:

a 24, dg dxpxdm). (23)
-2

X(ﬂl prz "‘Zi

The existence of the singuiar differential formyg
X dxy dg dx, a3 "D is the key to the definition of
the canonical bundle X, aliowing ¥ at @ to be ex-
pressed in terms of K on the smooth surfaces #{D }.
The singular form ¢ “dxl dg dx , is natural at D
exactly because cach node turns into the punctured
complex plane in the Hmit g~ 0.

As 2 secion of V=X ®W, Y must factorize on the
double pole:

75 -2 .
d/amyxg,xzsq}q_’:@q dxy dg dxym*y(m),
Yomy, my, %y, %, q)

Do Ty Gy da PR ). 29

The factorization conditions {21) on Az and (24)
on Y give the factorization of Z:

Z{?ﬁsfi,iz,l{‘,m,x@xz,q}

o G Mg iax dx, P26, m). (25}

Bei avm and Knizhnik [0} originally found the
7~ %q~? singularity of the genus g partition function
in flat spacetime.

We have now described a quantum ground state
of the string as a flat hermitian metric in 2 holo-
morphic vector bundle W over% | or equivalently a
unitary representation ¥ of I, slong with a hole-
morphic section Y of V=K @ W, The fundamental
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principles of siring theory have been transiated into
flatness and analyticity on R . But this formulation
of string theory is not concrete without a definite
prescription for constructing 9. We will discuss pos-
sinle criteria for choosing 9, but our understanding
of this probiem is still very | m,cmpiete in particular,
we lack a general abstract formulation of Wick rota-
tion as analytic continuation of the representation .
Until now we have implicitly been working in the ab-
stract analog of “euclidean” spacu;;megwneie the
spacetir-e system is a unitary conformal field theory
with straightforward factorization properties. In the
Wick rotated system we expect there to be 2 mani-
foid of solutions of the infinitesimal flatness equsa-
tion {13}, co
string. The crucial condition on ¥ will be the positivi-
ty of the metric on physical states, after Wick rotation.
o deal with these issues it will surely be necessary
o mde stand the gauge symmetries of the quantum
string. The gauge symmetries of the classical string
have veen described inthe context of classical string
field theory 16,8}, Gauge symunetry in the quantum
bosonic string s difficult to discuss because the par-
tition function Z = &{ U, ) cannot be integrated at
g = 0. The integral could only be finlte at g = § if the
residue 7%y 5t the double pole, and the single pole
residue as well, were in the null spacs of k. But 2
factorizes on the double pole, 5o the partition func-
tion itself would then be identically zero. It is in
triguing to speculate that an argument of this type,
for Z= 0, could be used to show the vanishing of the
cosmoiogical constant, In the super analytic formula-
tion of fermionic styings, there must be an analogous
factorization pole, but the integral over universa! super
modull space cleverly suppresses the factorization
singularity by the GOS8 projection, and suppresses the
subleading s_ngu iarity by a remarkable canceliation
mechanism, which smma in principle follow simply
from smoocthness of & and a%yam‘y of Y, on the
super compactification divisor of super moduli space.
We should wait to formulate the analvtic geometry of
the fermionic string before discussing gauge symme-
tries of the string §-matrix. But we proceed anyway,
8 practice for the fermionic string.

The cbvicus gauge symmetries are the unitary
gauge transformations in the hermitian bundie W. But
there is 2 larger class of gauge transformations. The
vector bundle V is contained as a sub-bundle in the
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yector bundle § of differential forms on K with co-

efficients in W

max

22 (AP TT e W,
».g=0

max
E 02 NP = Ag‘;@ &Y
P.g=0
V=08, AR =APIRWANTRM), (26)

The metric i on W, combined with the wedge product
on forms, induces an inner product on sections Y of
Q, ki Y= r—bzp x,bb whose value is & differential
formon @ Int egrating formally the volume element
component in iy gives an indefinite metzic on the
space of sections of {1

et

Grw= [ wgy. 27
&

The connection D in W combines with the exterior
derivatives 8, & on forms to give exterior Gerivatives
9, D on sections of (3. 3 is the ordmary anttholo-
morphic exterior derivative, 3 u H yand D s
the covariant divergence opﬂmtoz Dﬂg”‘ G2~ The
real exterior derivative with coeffi "zts inWis @
=g + B. D being & metric connection s equivalent to
pl=0.D being flat is equivalent to {5 Dl =0. The
compatibility of the metric b with the connection D
is the forma! seff.adjointness condition ot =3 Thus
the quantum squation of motion of the string can be
written in the geuge invariant form

gt=0, gf=0q. 28)

If differential forms on ® are written in terms of
ghost zero modes, the operator Q can be recognized
as 3 guantum BRS opserater. TM eg. (28) is formal-
iy analogous to the classical field e at‘on for open
strings {8]. The gauge symumetries of the two equations
have essentially the same stracture. W@ stress, however,
that eq. (28) is the gquantum equation of motion of
the closed string,

The flat hermitian geometry, or eguivalently the
unitary representation K of T, should be regarded as
the primary object in the string theory. For sach such
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representation X there s an acsoc:a te¢ complex
M{%’f 3 fqe co omology spaces of this complex are

HPH ) =HR ,W)=1% ,...p(%) The cohomolog
spas 8 h{v"’ ma v%wa‘ bundle over the spacv of
representatio f?. For the trivial representation G,
B(O} is th ”Oh mology ring H(®), which acts by
*Wuitmhcai on of forms as an afgebra on F{¥ ). Asa
section of QC, Y satisfies BLD G because ¥ is holo-
morphic, and DY = § because ;z,f; is empty for p < 0.
?ﬂe“e ore Y determines a cohemology class, (Y 1{ )
%%(9{}

We shouid b ¢ precise about the analyticity
wrc-“ 53y = O. On the space of smooth surfaces,

Sy =0is *za: ely true. At D, 3y =0 is true despite,

or rather because of, the double pole in  at @ . The

9 operator on K, and on V, should be written, in

4

terms of the naive 3,

3 =3, +{1/m)38 Hgym* — (1/m8X{g)Resqp,
Resq ¥ = 5= § dq ¥(a). 29)
The equation 8y = O thus enforces factorization on

the d@ucie pole, which is necessary for analyticity at
(D, while allowing ¢ 2 subleading pole at g = 0. The
singie po?e inyis asseciated with the fields of con-
formal weights i = corresponding to the mass-
ess excitations of tzbesﬁmg at zero spacetime momen-
tum.

We can interpret Y — i + Qu as a formal gauge
transformation “because the partition function is only
changed by & total derivative:

+ iy + BRQn). {303

S=iy={ hiy (31}
R

is formally gauge invariant, deueqd'rg only on the co-

homology ciass vi{e e ﬁ@(%‘i’} The transforma-

tions = ¥ + Qn are thus formal gauge symmetries

of the Snmmnx i riicular, the single pole of

can be moved, or s re @zdw modified, bv 2 gauge trans-

formation, G*eu-m states with different massless exci-

tations, and thue different spacetime geometries,

m*g‘r& thus be gauge equivalent. The gauge inveriant
ormation is the cohomology class ¢ ](P¢ ). The
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choice of 2 representative Y in the cohomology class
is a choice of gauge.

We need to understand which unitary representa-
tions O are allowed ground states of the string. It
tempting to posit the unigueness of [Y}1{FH Yasa
basic condition on K, since otherwise the ground
state is not unlquely determined by the hermitian

geometry alone. This condition would be dim Hg(gf}
0 % .
= unless p = ¢ = §, and dim HE = 1. It would be in-

teresting to trv to interpret af'f‘;zor { cohomology
classes as some kKind of BRS anomalies, thought of as
obstructions to Wick rotation. The simplest resolution
of the unigueness proeblem would be that only one
representation @ exists which aliows a Wick zotation
giving a positive metric :ﬁty cal Hilbert space.

Unfortunately, there is no hope of uniqueness in
finite genus, because many perturbative solutions of
fermionic string theory are known, each with a finite
number of free parameters. We might conjecture,
however, that uniqueness of the string ground state
can be attributed to nonperturbative sffects. The
nonperturbative effects should be zecounted for by
extending the sum over surfaces (2) from R 1o %,
the universal modull space of surfaces, which inciudes
an approprigte class of infinite genus surfaces, Here
we only make some heuristic comments on this ap-
propriate class, ¥t should be based on some notion
of effective compactness, which gen e*a‘;izes t‘ap

ompactness of the surfaces in % . We would then

write R as the space of effectively compac“ stable
Riemann surfaces. The compactification divisor D
=@ — % should be dense in R _ . Adding or
subtracting a handle, or ¥plitting off 2 component sur-
face, shouid be a smali disturbance, The anslytic strue-
ture o % shouid be very smooth.

Every permrbative string ground state 9, ¢ de-
fined on the universal moduli space R of finite genus
Riemann surfaces, should have a well-defined exten-
sion to % . The uniquensss of the string ground
state would require that these extensions zll be gauge
eauﬁvaiw on B . We expect then that a uniqueness
regult is obiainable, if at eli, only in the smooth gso-
‘neiry of R .. We have considered the possible unique
ness of K in a setting analogous to euclidean signa-
ture spacetime, A puzzle common o ail potentially
complete theories ES' simuid we expect 2 unique sobu-
tion afrer Wick rotation? If there is 3 unigue real time
solution, up to gauge equivalence, then how is the §-

1

matrix to be interpreted?
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Spacetime geometry is associated with perturbative
string theory, and presumably with the choice of gauge
in ® . The choice of gauge determines the residues
of ¥ at the single poles, and thus determunes the mass-
less physical particle spectrum. We do not know the
details of the association betwsen geometry and gaugs
choice because we 4o not have & theory of measure-
ment, Measurement is the basic conceptual problem
0 be resolved in turning the formal structure of ana-
iytic guantum string theory into g theory of physics.

There should be no esgential problem extending
the analytic construction to fermionic string. The key
ingredients are the local superconformal tensor calcu-
tus on super Riemann surfaces, and, because a node
focks Hke the complex plane, the structure of the
superconformal ghost system on the complex plane
{2]. In the heterotic string, the partition function Z
= I i ¥ qp 18 a0 ordinary half-density in the anti-
holomerphic variables and a super half-Censity in the
holomerphic varigbles. The spaces W and W are not
necessarily complex conjugete to each other. In
fermionic string theory, the finitaness of the generat-
ing functional comes from canceliations of poles due
to the sum over spin structures and the GOS8 projec-
tion, in the node viewed as a superconformal punctur-
ed plane,

In this work, we have defined the universal modull
space of Riemann surfaces, and we have written the
quantum eguation of motion of the bosonic string as
the flatnsess equation (15). This equation can be inte.
grated, in principle. The solutions are the unitary
representations ¥ of the universal modular group.
We have given the gauge invariant form of the guan.
turn equation of moticn and have speculated on the
relevance of infinite genus Riemann surfaces to the
unigueness of the ground state. Among the promising
aspects of this analytic formalism {s the possibility of
precise control over string theory, so that certain key
numbers Hke the cosmological constant might be de-
termined exactly, even though it will probably remain
impractical to describe the ground state explicitly and
concretely in every detail. The remaining problems of
immediaste concern are: extending the analytic forma-
lism to fermionic strings; giving a concrete description
of the universal covering space ¥ and the universal
moduler group; finding an abstract version of Wick
rotation and specifying the physical positivity con-
straints on 9% ; and constructing a theory of measure-
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ment, so that the string states in the analytic forma-
Hsm can be interprated physically.

We should note that the strategy of the present
work can be traced in several ways to the origingl .
matrix bootsirap program {14}, It is applied here in
the highly constrained context of stzing theory,
Analyticity, crossing symmetry, and unitarity of the |
S-matrix are expressed as flatness of i and analyvticity
of Y on universel modull space. Analyticity, crossing
symmetry, and unitarity are abstracted away from
spacetime, and adopted as dvnamical principles of
string theory, in the hope that the ground state of the
string will resemble spacetime,

We thank Dan Freed, Emil Martinec, Edward Witten
and Secott Wolpert for heipful conversations. We es-
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string field theory and on the foundations of string
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