
Volume !75, number 3 PHYS:-'CS LETTERS B 7 August 1986 

T H E  I N T E G R A B L E  A N A L Y T I C  G E O M E T R Y  O F  Q U A N T U M  S T R I N G  ~ 

Daniei F R I E D A N  and Stephen S H E N K E R  

Enrico Fermi and J~mes J~>anck L,~stitutes, and Department of Physics, Ui#versi.~y of Chicago, Chicago, IL 60637, USA 

Received 13 May 1986 

The quantem theory of c~osed bosonic strings is formuNted as integrabie anMytic geometry on the universM moduli 
space of Riemann surfaces. Solztions of the equalion of motion of quantum strings are flat hermifian metrics in hoio- 
morphic vector bundles ever universal moduti space. 

In this 1otter we formulate quantum string theory 
as integrabie analytic geometry on the ~aniversal modu- 

space of  Riemann surfaces, based on the analytic 
formulation of  two-dimensional conformal field 
theory [ i ]. 

String theory currently provides the onty viable 
candidate for a %ndamentaI theory o f  nature ~'~" , Any 
such potentially fundamentai theory should have a. 
completely nat~;ral mathematical formulation, The 
gauge symmetries of  string theory should be the trans- 
formations between mathematically equivalent descrip- 
tions of  one underlying mathematical object° in par- 
ticuiar, it is unnat~al  to assume a particular space- 
time as a setting for string theory, since string theory 
is a quantization of  general retati~ty. The structure o f  
spacetime should be a property of  the ground state. 

One of our goals is a formulation of  string theory 
which is sufficiently abstract to allow discussion of  
the nature o f  spacetime, A second goal is a formula- 
tion in which effective calcw!ation might be possible. 
Even a potentially complete theory is unlikely to be 
useful, or even testable, unless effective nonperturba., 
tire calculations are possible. ~ i s  argues for an ~ a -  
lyric or even aigebraic setting in which to do string 
theory. 

The equation o f  motion of  strings is essentially the 
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two-dimensional conformabboots~rap equation *a 
The perturbation expansion of  the strir~.g S-matrix is 
written as a sum over world s~;rfaces in spacetime, 
which is the funcional integral version of  a two-di- 
menNonal quantum field theory, The couplings of  
the twoodimensiona! qum~_tum field theory express 
the background in which strings propagate. The per- 
turbation expansion describes strings as the fluctua- 
tions around the ground state° The gro~-,d state itself 
is encoded as the two-dlmensional field theory ex- 
pressing the background. 

A ground state e ra  string is a background in which 
the S-matrix of  propagating strings is unitary, tn 
bosenic string theory, unitarity requires conformal 
invafiance of  the world surface, ConformaI invariance 
is expressed by the action o f  the Virasore algebra in 
the HiNert space of  the two-dimensional field theory 
o f  the cylindrical world surface swept out by a closed 
string. The central charge must have the particuIar 
vMue c = 26, To solve the bosonic string equation of  
motion is to construct two,dimenslonal conformM 
field theories with c = 26. Understanding co~fermM 
field theory on aH Riemann surfaces is the key to un- 
derstanding quantum string theory. 

Two-dimensions! c o n f o ~ a l  field theory can be 
formulated as analytic geometry on the universal mo- 
duli space of  Riemann surfaces [ 1 ], In this letter we 
adapt the generM ana!ytic geometry of  conforms1 ~etd 

*~ For background references in string theory and two-dimen- 
sional ccnformai field theory see refs. [I ,2 ]. 
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theory to the speciai case of  string ~heory, where its 
applbation is especially naturai. As the setting for the 
analytic formulation of  both two-dimensional con- 
forma[ fie[d theory and string theory, we define the 
universal anaiytic moduli space of  Riemann surfaces, 
which apparendy has not been described previously. 
The fundamental object of  quantum string theory is 
a hermitian metric h in a holomorp~c,  infinite-dimen- 
sional vector bundb W over universa! moduIi space. 
The quantum equatio.,x of  re.orion of  strings is the flat- 
ness equation o'n the metric h. Flatness equations are 
integrabie. Here, the solutions are exactly the unitary 
representations of  the universa! modular group. String 
theory is thus reduced, in principie, to the represer.ta- 
tion theory of  tl~e ~mlversal modular group. 

in fermionic string theory, unitarity is equivabn~ to 
se.~percouformal invafiance of the world surface. The 
fermionic theories are the on!y known string theories 
with consistent perUdrbative expansions. The equation 
of  motion of  th_e fermionic string is esse~tia!ly the 
two-dimensional superconformal bootstrap equation. 
We concentrate in this letter on the closed bosonic 
string The superanalytic formuiation of  the fermi,.mic 
string paraliels the bosonic ~heory~ The fermionic string 
and two-dimensionai superconformal fie~d theory are 
set in the super analytic geometry of  the universal 
super moduti space, based on the superc,'mformal ten- 
sor ca{caius on super Riemann surfaces~ 

This work was motivated by .:he use of  mod~atar 
invariance as a crucia~ constraint in string theory [3,4I 
and ir~ two-dimensional conformal field theory [5 ]. 
and by some of  the recent discussions of the fo,anda° 
tions of  string theory and string field theory [6-9]~ 
Wiaib engaged it.: the presem work, we were encourag- 
ed by the paper of Belav> and Knizhnik [10] on the 
partitio~:~ function of  strings in flat spacetime, which 
also ~bcuses on the compbx analytic structure of 
moduii space, and by other recent studies of  determi- 
nants of  e!Iiptic operators on surfaces and their factori- 
zation properties, on t:::e modu~J spaces o f  Riemann 
surfaces [ 11 l- 

We begin by establishing some notation and defin-. 
b.g the uriversa! modui! space [ t ]o Let cfg a be the 
modu!i space of  compact, connected, smooth, germs 
g Riemann surfaces * a  Let ~ g  be the moduii space 

,a For expianations of moduli space see ref. ~t 2!; for analytic 
geome*ry see ref. { 13 ]. 

of  compact, connected, stable Riemann surfaces of  
gents g. The stabb surfaces include the surfaces with 
nodes, c-~g is a compact, compbx analytic orbifold 
or V-manifold, of compiex dimension n = 3g - 3 for 

= T,.e s,~ace g > i , n  ! f o r g = i a n d n = 0 f o r g = 0 .  ~ 
of  surfaces with nodes is the compactification divisor 
@g = c-fy. g _ CyEg" Tb.e generic surface in @g has 
exactty one node. The muItiple self-intersections of  
c3g, the subcemponents of  q)g, are the spaces of  
surfaces wit ~ mukipb  r..odes. For every subcompo- 
nent of C~,g, for every configuration of  k nodes, there 
is a colbction of  k independent analytic coordinates 
qi, ~ear qi = 0, defining the subcomponent by the k 
independent equations q* = 0. ~n more abstract lan- 

se;]-mtersectlons @g are transversal. guage, a!t the . . . .  of  
The generating f~.nctional of  the connected part 

of the string S°matrix is 

= 

c] c°nn g={} C ~ g  

where Z(N, m) is the string partition function on the 
modu.li spaces O# g. The string coup!ing constant 3, 
aepears in a factor )v 2g-2 which is absorbed into Z. 
CSconn is a . . . . . . . . . .  ~ ~ ,. ..... string background. The 
scattering amplitudes of  strings are the coefficients of  
the mfinitesima[ variations of  the background i~) the 
expansion of  d corm around the string ground state. 

The generating functional for the full S-matrix is 
the integral of the partition f~a~.ction over the moduli 
space of  all compact, smooth Pdemann surfaces, not 
necessarily cor._nected : 

F 
e I [ " = 3  ~- -  xmcSconn ) • Z,,m,m). (2) 

/ -  

OR 

~ is the ~aniversai moduli space 

co 

2 ° (  ° ~ =  ~ S , (~) 
= k = 0  g 

where Sym k is the k-fold symmetric product. The 
symme~.rization is due ~o the indistinguishability of  
conformalIy equivalent Riema~n surfaces. Eq. (2) is 
a direct rewriting of  eq. (!) ,  given that the partition 
function of  a disconnected surface is the product of  
the partition functions of  the con~.eeted components. 
The factors t/k! are provided by the symmetric 
pmduc~s. 

288 



Volume 175, number 3 PHYSICS LETTERS B 7 August 1986 

The space 9e is highly disconnected in its naive 
topology as a union of  products of  the individual 

" i "÷ I moduii  spaces cy~g. But tP..e mfinue,:y many disconnect- 
ed components  of  c'd are connected by the formation 
of  nodes. Any two surfaces in q~ can be obtained 
from a single connected surface o f  higher genus by ana- 
!y::,c aeformat ,ons wm.cn mcmde formatio~ and re- 
moval o f  nodes. The pa.,t.,Ao.; fm.~don extends to 
o,, - '* it lives on the u:~.wersm moduli  fa~ea wb:h nodes, so "" ' 

space of  compact,  stabie Riemann surfaces 

 =ou syrup(%) (4) 

The compactification divisor @- = c~ _ c)e is the space 
of  compact Riemann surfaces with nodes. But nodes 
are invisible to a two-dimeasionat conformai field 
theory. ~ no. is, the parti t ion function of  a surface 
withonodes is exactly equal to the partit ion function 
of  the smooth,  possibly discormected~ surface which is 
made by removing the nodes and erasing the punctures 
which, are left behind. ~'~ *" ~' s T:ao mo.dw,e defining an anao 

st . . . . .  , ~e on c.~ for which the removal of  nodes is lyric .... *u ~ 
analytic. We write mcb ~ w(mq) ) for the operaL.on*~ of 
removing the nodes from a surface m O ~ O and eras- 
lag the punctures, leaving £he smooth surface ~r(m 0 ). 
We ~:.- see that °£ is an effectively connected, con:- 

pact *"~ ~'- . . . . . . . .  ~q a:aG.~.~ space on which q-,~ pa~'.-t:on function is 

real analytic. 
Let us now describe explicitly the part i t ion function 

near q) o Take a particular coordinate neighborhood of  
a node, consisting o f  two disks {z i : izfl < i} attached 
together at z~ = z 2 = 0 to form the node. A surface 
with node is earametnzed oy m c~ = (m, x ~, x 2), where 

wh,~:, r~m~,_.s waen the m -- ~r(mq))is the surface" ~;'~ = - ~  " 
node is removed .-..rod the punctures erased, and (x ! , x2)  
is the unardered pair of  punctures on the surface m 
which .esut.. from remova~ o f  the aode.  The opening 
of  the node is parametrized by a single complex vari. 
able g. First remove a sma~! neighborhood o f  the node, 

+ , a  ['@ < ~ai !/~ in both  disks. ~be,'~ _ ,~ ~,.~.~o*~o-~ ~h~ aemular co- 
, . , ,  , IV2 !ql  -~ /2  ordinate .~elgnbornood iq < tZl < to the 

remaining surface by  ,:he identifications 

aU~/z ,, z = .  2 if}q i l / 2 < j z i ~  

=q-! /2z  I ifl~jz[<iq[ --!/2. (5) 

The z annulus serves as a conformai plumbing joint .  

The moduli  space near @ is ,~aramet.~zed oy (m @ ,q) 
= (m, x l ,  x 2 , q), with q = 0 being the s~rface with 
node m O .  ~n the limit q -~ 0, z becomes a coordinate 
on the punctured comDex p~ane, w m c ,  is conforma!o 
.ly equivalent to the infinite cylinder. To study the 
behavior of  the part i t ion function near @, we only 

o,. ~o,:.,.ormat field theory need to know the properties ; "  "~ 
on the annular pIumbLqg joint  in the limit q -~ 0, 
wNch is just conformal field theory on the pla=e. 

The conforms! fie~a ~" ~ "" ; '  m , o , y  on the plane is radiaIiy 

quant~zee, w~:h Virasoro algebra L m L m . Near @ 
the parti t ion function o f  the surface ( m @ ,  q} can. be 
.oictured as an ex~ectation~ vaiue m_ the ~au~a:- ~" : qu~n:>- *~ 

zation: 

Z = tr(q z°  ~Lo p(m @)) (6) 

where p(m O ) is the density matrix o f  states on the 
boundary circles izil = I wNch is prepared by the 
conformal field theory on the surface outside the re- 
gion of  the _,node izii < i .  The density matr ix p is in- 
dependent o f q .  The trace in eqo (6) can be perform- 
ed by  summing over a complete set of  states in the 
radial quamizationo Use the onedo~one correspon- 
dence between the scaling fields ~o(x) of  the con%final 
field theory a.~d "_  " n e  * _ t:.ae e~ge:.~a,~es t@ = ~,0)i0), with L o 
exgen-vame h® and L 0 eigenvaiue h,;, to write the ex- 
pansion in terms of  two-point  functions o f  the fields 
~(x) on the smooth surface m = rr(m ~ ): 

Z = ~ qh~h~o(~{ p(m ,,c7 9 ){¢) 
~0 

q vq ~(~Vc ' l )~23) rn '  (7) 
~o 

., , e  correiat!on functions of  the fields can be recon° 
*r -" " from this expansion [I] The .:~admg ~'-" s~_u~;eca . . . . .  

i'3/, bution i-.~, eq. (7) " ~- ~" the ' ~ ... come~ : , o . :  ground state 
which has h 0 = h0 = 0. x,:e unique SL2(C)-invariant 
ground state I0) always corresponds to the identi ty 
operator ,  which is indifferent to its location, so the 
part i t ion function on @ itself is 

Z(r~O,mo)=z(~,m), Z = z o  ~. (8) 

From the point o f  view of  conforma! field theory,  as 
soon as a node %rms ati trace of  it disappears. 

We now put an a.~alytfc structure on ~ which ex- 
presses precisely tb2,s indifference to nodes. The ana- 
lytic structure on ~ is the strongest analytic struc.. 
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ture consistent wkh the naive analytic structure on 
c~, and for which the removal o f  nodes is an analytic 
operatiom The . . . . . .  : ~' s~.,o_.~g~s~ structure one a:,.a:y,.~c is the 
w~:n fewest tocal holomorphic fmuctions. Write t.,~b~ 
diagram 

U3-+ ~ (9) 

in which @ -+ c'~ and ~ -+ qg are the mc..'us~.on maps, 
and rr: @ _>c~ is the map which removes the nodes 
and erases the punctures. The ana:.ydc structure on 

is +h~ strongest for ' " ~ . . . .  wmc,.~ (9) is a commuting dia- 
gram of  anaiytic maps. A function for,,: ~ is hoIo- 
morphic if and only if it is ho!omorphic on the smooth 
surfaces c~, and satisfies/}@ = f o  ~r on the compacti- 
fication divisor~ The ::opo~ogy on q£ associated wit~: 
this anaiytic structure is stronger t h e .  the naive 
topology. In earticuiar, it is simple t o  show by induc- 

,~. t:~a: a giobal!y hobmorph ic  function tion in ,*he genus ~-* 
on c~ is cons tan t .  ~n *bSs ~ n  • . . . . . . .  se, c~ is connected a~d 
compact,  in such a rigid analytic setting, the globaI 
holomorphic ob jec ts  are highty co,s t ra ined and can 
be manipulated by ana~.ytic techniques with complete 
~,~,~:,,:. As far as we K>OW, the universal modu!i space 
has not previously been descr::bed. A universai Teich- 
m~aiier space is known, but the corresponding moduli  
ssace, is a single >om~" ~ + ,~ 127.'., 

The parti t ion funtlon for strings in spacetime has 
the form Z = Zg:=Zst , where Zg  is the contribution 
from the  two-dimensional conformat field theory of  
s~arfaces in d.-dimensional spacetime, and Zg h is the 
parti t ion function of  the cNrat conformaI ghost sys- 
t e ~  " 4" *' * " o~ me worm surface functional integral fixed im 
the naturai eonformal gauge [2]. 

The spacefime sector is ~n ordinary two-dimem 
sional cor._formal fie~d theory with central charge c 
= d~ Formulated in the im~guage of  t e l  [1 ~, the par° 
.=,t,On , ~,z~ct,o~ Z ~S ^a s~cLon of  E d Ed,W .. . . .  , 
~.~nemi. , ~c '~ = ,iX->: ~w/z, (XH) be~-~g the Hedge line 
bu~,dle. E c is the projective 1in® b u n d b  on c72 which 
encodes the reIationship between the two-dimension- 
al conformat fieid theory and the surface geometry. 
The spat®time parti t ion function is written in terms 

~*-: - ~ "  f h st projec- of  a projective]y fiat henn,~,a . . . . . .  et _.c in a 
t ire vector bundb  War over ~ ,  and a ho tomorp~c  

sectloz:} ~st(m) of  the vector bundle Vst = E d ® Wst 
over c'te : 

The ghost sector i s -  + ~ +~" ::,o.. eAac~,y a conformai field 
theory.__The ghost part i t ion function is Zg h 
= hgh(~gh, ~gh) where 

is the chiral fe rmionb ghost functio~m! integral. !at®to 
preted as a ..u~c,.~on on moduE space, ~gh(m) wo:Ad 
be identica!iy zero, because of  the n = 3g - 3 zero 
.'.nodes ofb(z)(dz) 2 i~ genusg > I, or the two con.- 
stunt zero **nodes b 0 and e 0 in genusg = 1. We whou!d 
instead_interpret ~g>,(m) as a holomorphic halGdensio 
ty on ' ~ ,  a holomorphic section of*" i - h ;  

Erie bundle K = Amax(T* ~ I ' 0 ) .  Eq. (1 1) should be 
writ ten 

~gh(m) = f db dee S(b'c) 

X f 2 1,-- °.o d z !~ ! i z l , z i ) b ( z~ )dm I 

WI 

{din k} is a wo.,ere basis of  one..forms on °Tg at m. corn 
]ugate to a basis {~k} of  Beitrami differentials on the 
surface m. To be more precise, again in the iang~age 
of ref. [! ],  ~gh(ra) is a hoiomorpbJc section of  

K ® E 26 ® Wgh, where Wg h is a !ine bundle on c~ 
with projectively fiat hermifian metric hgh~ 

:_'n the critical dimension d = 26 the depe,~dence 
on surface geometry disappears in the combined 
spacetime and ghost system.. The cu.wature forms of  
the projectively flat metrics h a and h ~1" cancel. The 
product h = hSth gh is a fia~ ~:erm,~mn~*~ metric i~ W 

= Wst ® Wgh~ The fibers of W are in general infinite 
d imensional  in the critical dimension, E d ® E_26 
= E 0 is the mv~a~ .:me bundle on%??, so ¢(m) 
=/go(m) V)st(m,) is a ho!omorp, hic section of V' 
= K ® W. The string parti t ion function is 

z. ,m, m~ - h(~,, ~)  : ~ ( m ) h ~ b . ~ b ( m ) ,  03)  

which, as a section o f  K ® K is a density on ~ which 
can be integrated, formally, over c'~ to give the S- 
matrix. Thus eq. (2) for the S.matrix is mathematical- 
iy natural. This is the formal orig}n of  gauge symme- 
try L~ the anaiytic qua:p.,tum string theory.  To go be- 
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yond form.at gauge invariance we wi!i need the super- 
e.na!ytic formulation o f  fermionic strings, since we do 
not know of  a bosonic string ground state for which 
. .  " "  ~ L A t e .  ~he integraI in eq. (2) is %" 

The hermitian connection D m W is written ha 
components 

D = 8 ,  D = ~ + A ,  

C Dhab = 8h~ - n~.cA b = O. (! 4) 

A is the connection form of  D, The quantum equa- 
tion of  motion of  bosonic strings is the '~ * :..'ames. equa- 
tion 

F=~A =O. 05) 

The connection in W can be thought of  as the propa- 
gator of  information across universal moduIi space. 
r;.aness, the local equation o f  motion of  quantum 
strings, is the absence o f  ambiguity in the propagation 
of information. 

Near a smooth, non-orbifold point m c~,  a basis 
(w a} of covariant constant local hoiomorphic sec- 
tions can be chosen for W. In this local frame, A = 0 
and h is the ~ns tan t  hermitian matt! x ha~ 
= h(~as~-, wa). In components, Z = ,#a(m)h& cb(m),  
w m c .  is manifestly real analytic ha m. Real analyticity 
of  the p~rtition function on c~ is equivaient to locali- 

on ,.~..~ wo~,x: surface, and there%re to locality k~ 
spacetime. The rent ~ +{ ~+ e,  _ ana..y~_c~,.y o~ ,h~ partition func.- 
tion foIiows from the local flatness o f  h and # ~ m~ local 
ana!yticity of ~b. 

Because h and ¢ are globally defined on ~ ,  Z 
is single valued under analytic continuation aro'~md 
the singular poLnts in 9~, the orbifo!d po~.ts and the 
compactification divisor @. To l~e single valued on 
c~ can be interpreted as modular invariance. Let N 
be the universal analytic covering space of  c7g£~° Define 
the universal modular group P to be the group of  Deck 
or covering t r~sformat ions  of  N, ~ = N/P. P is es- 
sentially the fundamental group of  ~ minus the 
singular points. ParaI:e,_ transport o f  the covariant con° 
st ant se~ons,'*~ w a aromad nontrivial closed curves in 
c~, avoiding the singular points, gives a representation 

of  the universal modular group P: T ~  = "~w a. 
is ~ i t a r y  because the metric h~b is finvariant under 

parattei transport. Therefore the string ~,. e,. pa~x~1on !~nc- 
tion is single valued: 

v~ ~ ( m ) ~ a ¢  ~m). 06) 

Modular invariance o f  the partition function becomes 
crossing symmetry of  correiation functions on the 
world surface, when the corre[at:.'on ~5~,a~,.~,,_,:~'~- are re- 
constructed from the behaqor  o f  the partition funco 
tion near @.  Crossing symm~h, on ::he world sur- 
face is duality ~m stnng theory. The analytic formui'ao 
tion o f  quantum strings *~ • ~, • • ~ * ~ a . • ~.,~us ,,uar_me~s t:_.e two crucla:. 
properties of  locality and duality. 

The fiat herm:~an vector bundle W an~ the unitary 
representation ~ of  P are equivalent. W is reconstruct- 
ed ) o r e  iE as the quotient of  N X 9~ by P acting on 
both spaces simult~eousiy,  W = N × r  ~ . We say 
that the analytic geometry of  quantum strings ~s ~ + . x n ~ e -  

grable in the sense that this equivalence should even- 
tuaily allow a purety group theoretic treatment of  
string theory. 

The fiber of  the universai analytic covering N .+c£ 
at a generic smooth point Ln c~ is isomorphic to P ito 
se!L At a singular point in c~£, the fiber eegenerat~s~ 

a l , c . ~ e  to a homogeneous space P/P0, where P0 is the :'**: 
group at the singular point. At a generic smooth poma +~, 
~ e  fiber of  W is modelled on gg. At a singuIar point, 
the fiber is W(0), modelled on the subspace ~ ( O )  con- 
sisting of  the vectors Ln ~ which are inva~ant ~ d e r  
the iittle group P0'  

The little group for a surface with nodes is the 
group generated by the Dd.~n twists 7k :qk .+ e2~riqx 

' a tt arouna t:.e nodes, is enough to describe the generic 
case o f  one node. '.in a basis of  cova/ant  constant sec- 
tions near cD, the twist 7 can. be diagona!ized, with 
eigenvaiues e 2rAh . W(h) is the ~ocatly defined sub- 
bundle on which 7 has eigenva:me e2~rih 0 W degenerates 
to W(0) at q = O. 

The definition W as a holomorphic vector bundie 
over c.~ includes a transition map rr* correspondfi',g to 
the removal of  nodes map ~ in diagram (9). In + * ° 
of  the Ioeal hotomozphic sections of  W over q~, qg+, 
and @, written c~x2 ( ~ ) ,  O~Y (c~), o/2 (@) ,  the transi- 
tion map ~r* ~" *~' g,ves ,.an commuting diagram 

cw(c~) 

. oca  s~c,~o, of  W must satisfy lr*w(m ® ) = 
= w(~(m c~)) on cD. 

More concretely, let mq) be a surface with nodes, 
and write m = ~(mc D ) = m I U m 2 ~.J _. Umk, the unim~ 
of  con,nected comixme~'As.mi. Given sections Wa~ of 
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W at m i, the symmetric oroduct w a w a ... Wa, is a 
0 4 - 4  ~ * * . . I ~ , . / ' 2  sev.,o.: of  W at m. The transmon map ~r* ~s gwen by 

the factorization structure tensors 

r*(w>, w.~ .°o v"bk) = Fg; b~...bk W~ • (18) 

Note that a is an index for W/c D = W(O). Note also 
~hat ob,...blc :.s sy..'nm~nc ~o_ 6r~dee. ~ymme:nc be- 
cause o~ the ghosts) in the radices be. The factofiza- 
:~o:, tensors provide tlae data which is used to build the 
representation 9~ of  P from a cotiectlon fgg of repre. 
s~n~..~o~,.s of  the finite genus monu~ar groups P 
C V o  ~ on. ~,~se:y, a representation of P determines a 
collection of  factorization tensors. 

The factorization tensors (18) can a!l be expressed 
i:.a terms of  the elementary structure tensor F ~  b~, 
symmetric in b ! ,  b2: 

_ Fa ~c~ ~ e  k-  2 
FZ,.b~z~.bx - b~c~. ~ b~e~ "°" bk_ib  k ,  ('-.'9) 

subject onIy to the associativity condition 

~a F c = Y c - F~ (20) • b , ,c  b2b~ ~ : ~  ~b a" 

-_oso . . . .  w~;y condition is necessary and sufficient 
for rr* to be wet! defined, because ali of  the seK-inter- 
sections of  ,"D are transversal. 

~*;~ metdc The herm~:~a-. . . . . . . .  h,  to be smooth on W at .'2), 
must be consistent with the factorization structure: 

h(~*¢, ~**) o ~ = h(~, , ) ,  

. ,c~ d~d 2 =hc ,d~  hg2d 2" 

Eq. (21) makes h bear a strong formal resembh~,.c~ 
to the metric of  a Fock space, where Fg c is the sym- 
metric tensor product. 

To ~.derstand the behavior of  ~) near @, we onIy 
need some basic facts about the behavior of  the con- 
fo rm~ ghost fieids on the complex plane [2}. The 
Fourier components of the ghost fields satisfy 

SL 2 ;mva:.a,,'~ "* state .~s written [0% Because ",f.. the 
background charge of  tan ghost syst.,m, <010> - O, and 

"'7 e" the state conm~at ~0 I0>, satisfying <0'D> = 1, is i0'> 
= 0, is not $L 2 invarieaat. c _ i c o c  I iO>, Note that ' ,x 

nser~ a sum over ~tates on each side of  the node, 
at .<"~ circle !a;i -~ 1 and also at the circle Iz2i = I. 
The !eadh'~g singu!afity comes from the insertion 
10><0'l -. {0 ,<Ol, which has the SL 2 mvariam states f0> 
facLqg the rest of  ...._e sa.face.o From eq. ~,:2), using ex- 
plic:;t Bekrami differentials dual to dx~, dx 2 and dq, 

we get the 1ending behavior 

~ ~h(rn ~ ) 

• f z, : 
q~'0 O g h ( m ) ~  ~ f dr0 " 1 

× <o'iv-V2z2b(z ~) dx2q- "-rob(to) ¢q 

× (-V-z/2)b(z t)dx~IO) 

¢30 q - 2 d x l  dq dx27)g.h.(m ). (22) 

The calculation m eq, (22) shows how K is construct- 
ed at @. A ho!omorphic section X e l k  near D must 
factorize on the doubb  pole: 

X ( m , x l , x 2 , q )  ct2o q - 2 d x l  dc ldx2x(m) .  (23) 

The existence of  the singular differential form q - 2  
× dxt dq dx 2 at ~D is the key to the definition of 
the canonical bundle K, a!1owing K a~ @ to be ex- 
eressed in re}ms of K on the smooth surfaces ~r(@). 
2fhe singular form q - 2 d x  1 dq dx 2 is natural at @ 
exactly because each node *.urns into the punctured 
complex plane in the Hmit q -+ 0o 

As a secion of V = K ® W, ~ must factorize on the 
double pole: 

~(m, x~, x 2, q) q'2o cl-2dx~ dv dx2~r* ~(m), 

~a(m ! ,  m 2 , x  i , x  2,q)  

q~0 q-2dx?  dx2 ; ' ~ F~ ee /b (m l )~ e (m2)"  (24) 

The factorization conditions (21) on hab and (24) 
on * give the factorizatinn of Z: 

Z ( ~ , Z l , x 2 , q , m , x ! , x 2 , q )  

q~'O q-2q-21dql2fdxl  dx2i2Z(g~' m). (25) 

Belavin and ICnizhnik [ i0]  or!gina!iy found the 
g -  2q-2 singularity of  the  genus g partition %nction 
hn fiat spacefime. 

We have now described a quantum ground state 
of  the string as a flat hermAian metric in a holo. 
morphic vector bundle W o v e r ~ ,  or equivalently a 
unitary mpresentafion ~ of P, along with a hoto- 
morphic section ~ of  V = K ® W. The fundamental 
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pr!ncipIes of string theory have been trans!ated into 
flatness and analyticity on c~. But tNs formu}ation 
of string theory is not concrete without a definite 
prescrlptior~, for constructing ~ .  We wiIi discuss pos- 
sible criteria for choosing ~ ,  but our understanding 
of this probbm is still very incomplete. In particular, 
we lack a generM abstract formulation of Wick rota- 
tion as analytic continuation of the representation ~ .  
Unto now we have implicitly been working in *be ab- 
stract analog of "e,aclidean" spacetime, where the 
spacetime system is a unitary conformal field theory 
with straightfo~vard factorization properties. ~n the 
Wl,.~. rotated system we expect there to be a mani. 
fo!d of solutions of the kqfL~itesimal flatness eqaao 
tion (1 ~), corresponding to physical fluctuations of the 
string. The crucial condition on ~ wili be the positi~- 
ty of the metric on physical states, after Wick rotation. 

To deal with these issues it wiIi surely be necessary 
to understand the gauge symmetries of the quantum 
string. The gauge symmetries of the c!assical string 
have been described in the context of classical string 
field theory [6,8]. Gauge symmetry in the quantum 
bosonic string is difficuk to disc~,~s because the par- 
tition function Z = h(~, ,~) cannot be integrated at 
q = 0. The integral could only be finite at q = 0 if the 
residue ~*~ at the double pole, and the sLngle pole 
residue as weli, were in the nu!l space of h. But Z 
factorizes on the doubb poie, so the partition func- 
tion itself would then be identically zero. It is in- 
tr!gukng to specu!ate that an argument of this type, 
for Z = O, could be used to show the vanisNng of the 
cosmological constant, in the super anMytic formula- 
tion of fermionic strings, there must be an analogous 
factofization pole, but the k.ntegra! over universal super 
modu~ ~ space c~ever,,y suppresses the factorization 
singularity by the GOS projection, and suppresses the 
s~;bleading singularity by a remarkable canceIlation 
mechanism, wbhch should in principle fo!~ow simply 
f tom smooWmess of h ar.d analydcity of  ~, or._ the 
super compactification dfvisor of  super moduli space° 
We should wait to formulate tl~e analytic geometry of 
the ferrnionic string before discussing gauge symme~ 
tries of the string S-mat~x. Bet we proceed anyway, 
as practice for the fermionic strh'-~g. 

The obvious gauge symmetries are the unitary 
gauge transformations in the hermitian bundle W. But 
mere is a larger class of gauge transformations. The 
recto, bundte V is contained as a sub-b~mdle in the 

ycctor bm'~d!e f2 of differential forms on c~ with co- 
efficients in W: 

m a x  

a =  ~ ( ^ ; , q N ) ® w ,  
p,q =0 

AP, q'O~ = . P ( T * ~ ! , 0 ~  ,, ,~  ,~ , ®  ^ q ( T * N ° , i ) ,  

max 

a = E G ,  ap--  ® v 
p,q=O ~q 

(26) 

The metric h on W, combined with the wedge product 
on forms, induces an inner product on sections ~ of 
~ ,  h~ V) = ha-5 ~a ~bb, whose value is a differential 
form on c ~  Integrating formally the volume e!ement 
compor,.ent in hff ff gives an i~deFmite metric on the 
space of sections of ~: 

The connection D m W combines with the exterior 
derivatives g~ @ on forms to give exterior derivatives 
5, D on sections of  ~ .  8 is the ordinary antiholo. 
morpNc exterior derivative, ~ C f2~+l, and D is 
the covariant divergence operator DI2- ~ C g2P - I  The 
r,~al exterio~ derivative wkh coe:ficients in ~¢qis Q 
= 8 + D. D being a metric connection is equivaIent to 
D 2 = 0. D being flat is equivMent to [g, Dt+ = 0. The 

compatibility of the metric h with the connection I3 
is the formal self-adjointness condition D ? = ~ Thus 
the quar..tum equation of motion of the string can be 
written in the gauge invariant form 

Q2 = O, Qt = Q. (28) 

if differential forms on c~ are written i,~ terms of 
ghost zero modes, the operator Q can be recognized 
as a quantum BRS operator° Thus eq. (28) is formai~ 
iy analogous to the classical field equatio~ for open 
strings [8~° TEe gauge symmetries of  the two equations 
have essentially the same structure. We stress, however, 
that eq. (28) is the quan tum equation of motion of 
the cJesed string° 

The f i a t '  ' ~ ~_~ nermman geometry, or equiva!entiy +~,e 
"~....tary .~o~es~nta..~on ~ of P, shouId be regarded as 
the pvlmary object in the strD.~g theory. For each such 
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representafio~ gg . . . .  v~e.ze is an associated com~ .~p..~l~× 
~2(~ )., The cohomoiogy spaces of this complex are 
H(gt ) = H(°--~d, W) = Ep,qH~(g(). The cohometogy 
spaces H ( ~ )  form a vector bundle over .*,,he space of  
representations of  P. For the trivial representation 0, 
H(0) is the cohomology ring H(C~), which acts by 
m~pl.~t:o. .~,  of  forms as an a~gebra oe, ~.X~)° As a 
section o f  g20, ff satisfies 3-~ = 0 because ff is hoie- 
morphic, and D~ = 0 because ~'P azq is empty for p < O. 
Therefore ~b determines a cob.omoIogy class, [,~)] (g{ } 

We shouid be more precise about the analyticity 
condition ~ = 0. O~',. the space of  smooth surfaces, 
~ = 0 is naively true. At cO, 3~ = 0 is true despite, 
or rather because of, the double .oole in ,]a at @ . The 
?J operator or.. K, and on V, should be written, in 
terms of  the naive )-0, 

8 = 80 + (i/~r)88 2(q)~ * -- (I/r@$2(q)Resc-D, 

i 
aes@ ¢ -- f )7  fd,4 ,#(q). (29) 

The equation ~V) = 0 thus e~%rces factorization on 
the double pole, which is ~ecessary for analyticity at 
~z~, wN!e allowing ~ a subieading po!e at q = 0~ The 
singie pole in ~ is associated with the fie~ds of  con- 
forms! weights h = .h = 1, corresponding to the n-ass- 
Iess excitations of  the.string at zero spacetime momeno 
turn. 

We can Lqterpret ~ ~ ~ + Q~ as a formal gauge 
transformation, because the partition function is only 
changed by a torsi derivative: 

h~g) -+ hT&,~ + d(h~r? + h ~  + h~Q:q) (30) 

The generat~mg function 

is formalty gauge irwariant, depending only on the co- 
homology class I ~  ( ~ )  ~ H~(~)o  The transforma- 
tions ~ -~ ~ + Q~ are thus formal gauge symmetries 
of  the Somatrix. in particuiar, the single pole of  
can be moved, or its residue modified, by a gauge trans° 
formation. Ground states with different massless exci'- 
rations, m~d thus different spacetime geometries,. 
might thus '~ "" o "~ ~,e ga~,g~ equivaient. , ne gauge invadant 
~qfo_."mation is the cohomoiogy c!ass [ ~  ( ~ ) .  The 
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choice of  a representative ~ in ~:e co~:omo,.~,gy class 
is a choice of  gauge. 

We need to understand which unitary represents° 
tions g( are a]lowed ground states of  the string, k is 
,emp.~mg to posit the uniqueness of  [~] ( ~ )  as a 
basic condition on g( ,  since otherwise the ground 
state is not uniqueiy determined by the hermitian 
geometry a!one. This condition wouId be dim H p~''qv~<a ~ 
= 0 un!ess p = 6' = 0, a~d dim H 0 = 1. ~t would be in- 
teresting to try to interpret additional cohomology 
classes as some kind of  BRS anomaiies, thought of  as 
obstructions to Wick rotation. The sim,~iest resolution 
of  the uniqueness problem wouid be that on!y one 
representation gg exists which allows a Wick rotation 
giving a positive metric physics1 Hiibert space. 

Unfortunately, there is no hope of  uniqueness in 
Kn'_;te genus, because many pe:~urbative sol'ations of  
fcrmionie string theow are known, each with a finite 
number of  free parameters. We might conjecture, 
however, ~na~ uniqueness of  the s:,~,ng ground s:a:e 
can be attributed to nonperturbative effecgs. The 

o e. nonperturbative J~ects should be accounted for by 
exte°.mng the sum over s~rfaces (2) from cB to ~ ~, 
the universal maduti space of  surfaces, which inc!udes 
an appropriate class of  ~,.,m.~e genus surfaces. Here 
we onty make some heuristic comments on tins ap- 
propriate class. Itsb, outd be based on some notion 
of  effective compactness, which generaiizes the 
compactness of  the surfaces in gg. We would then 
write c ~  as the space of  effectively compact, stable 
Riemann surfaces. The compactificatlon divisor CO~ 
= ~-R~ - q'£~, shouid be dense i,*- ~'--d . Adding or 
subtracting a handle, or ~p~tting off  a component sur- 
face, should be a small ,:~.s~uman~e. Th~ analytic struc- 
ture or.. @.~ ~ should be very smooth. 

Every perturbative string ground state ~ ,  ~ de- 
fined on the universal moduli space c£ of  finite genus 
Riemann surfaces, shouid have a weliodefined exten° 
sion to ~ ~ .  The ur.2.queness of  ti~e string ground 
state woutd require that these extensions a11 be gauge 
equivalent o~a °R~. We expect then ~hat a uniqueness 
result is obtainable, if at alt, oniy in the smooth geo- 
metry of  cN ~. We have considered the possibte umique 
,n..ess o f  g( in a setting ~ ' ~na~ogous to euclidean signa- 
ture spacetN~e. A puzzle common to a11 potentially 
comptete :heo, xes is: should we expect a unique sotu- 
tior,, after Wick rotation? If there is a unique real time 
so]ution; up to gauge equivaience, then how is the S- 
matrix to be interpreted? 
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Spacetime geometry is associated w_..,~" ~'0 pe~ ~u_oa~ive~+~-r ~ *~ 

string theory, and presumably with the choice of  gauge 
k.n ~ ~o The choice of  gauge determ~nes the residues 
of  ¢ at t;~e single poles, and thus determ:.nes the mass° 
less physical particle spectrum. We do not know the 
details ~ *~ o~ ~ e  association between geomet~  a-~d gauge 
choice because we do not have a theory of  measure. 
monte Measurement is the basic concep~ua.: promem 
to be resolved in turning the formai structure of  ana- 
~y~..~ ~aan~um string theory into a theory of  physics. 

There should be no essential prebiem extending 
the analytic construction to femnionic string. The key 
~',,gredients are the local superconformal tensor caicu- 
!us on super RJemann surfaces, and, because a node 
Iooks ~,~e the complex plane, the structure o f  the 
superconformai ghost system on the complex plane 
[z]~ In me hetero~ic string, the partition function Z 
= h~ord~su p is an ordinary halfodensity in the anti° 
hoiomorphic variables and a super h alf..density in the 
ho!omerphic variableso The spaces W and W are not 
nece~arily comptex conjugate to each other, tn 
fermionic string theory, the fimteness of  the generat- 
ing m:,c~ona, comes from cancellations of  poles due 
to the sum over spin structures and ,~h~ GOS projec- 
tion, i.n the node viewed as a superconforma! puncture 
ed p!ane. 

• ~n this work, we have defined the universal moduti 
space o f  Riemann surfaces, and we have written the 
quantum equation of  motion of  the bosonic string as 
the flatness equation (I5) .  This equation can be irte- 
gra..ee, ~,,. principle. The ' +" somdons are the unitary 
representations g{. of  the universal modular group. 
We have given the gauge ~_variant form of t h e  quan. 
turn equauo,~ of  tues.,on and have speculated on the 
relevance ,~,~ ,~,,.,.,,~:'~n-;'o genus Riema~.n surfaces to the 
uniqueness of  the ground state. Among the promising 
aspects o f  ..b& * anayt~c forma~sm is the possibility of  
precise control over string theory, so that certain key 
numbers I£~:e the cosmological constant might 5e de- 
termined exactly, even though it witl probably remain 
impractical to describe the ground state explicitly and 
~o . . . . .  e~,y  ia every detail. The remaining problems of  
.t.nmediate concern are: extending the analytic forma- 
lism to fermionic strings; giving a concrete description 
of the universal covering space N and the umve_sa 
modular group; fimdkng an abstract version o f  Wick 
rotation and specifying the physical positivky con- 
straints on g~ ; and construct/ng a theory o f  measure- 

ment, so that the string states in the ena!ytic .forma- 
lism can be interpreted physicMly. 

We should note that the strategy of  the present 
work can be traced in several ways to the original S- 
matrix bootstrap program [!4  t . it is applied here in 
the highly constrah'..ed context o f  string theoryu 
Anaiyticity, cross'ms symmetry, and unit arity o f the 
S-matrix are expressed as flatness o f h  and analyticity 
of  ¢ on universal mod~!i space. Analyticity, crossing 
symmetry, and unitarity are abstracted away from 
spacetime, and adopted as dynamical principles of  
string theory, in the hope that the ground state of  the 
strw.g will resemble spacetime. 

We thank Dan.: Freed, Emil Martinec, Edward Witten 
and Scott Woipert for helpful conversations. We es- 
peclai!y acknowledge discussions with Tom Banks on 
string field theory and on the foundations o f  string 
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given at the Workshop on Strings and _.Riemapm~ Sur- 
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