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Determinant formulae are presented for the periodic, antiperiodic and twisted N = 2 superconformal algebras in two 
dimensions, and a classification is derived of the unitary highest weight representations. Physical realisations of several of these 
representations are discussed. In particular, it is noted that the unitarity constraints apply to string compactification, giving 
results which are nonperturbative in the compactification radius. 

The inFinite-dimensional conformal algebra of the 
two-dimensional cylinder, the Virasoro algebra, is the 
gauge algebra of the world surface of the covariantly 
quantized bosonic string [ 1 ]. The Virasoro algebra 
also acts in the operator representation of two-dimen- 
sional critical phenomena [2], where its unitary repre- 
sentation theory gives constraints on the possible val- 
ues of critical indices [3]. In the investigation of uni- 
tarity, the basic technical tool is the determinant for- 
mula conjectured by Kac [4] and proved by Feigin 
and Fuchs [5]. 

The gauge algebras of the supersymmetric string, 
the Ramond [6] and Neveu-Schwarz [7] algebras, 
are the N = 1 superconformal algebras on the cylinder. 
The N = 1 algebras are realized in supersymmetric crit- 
ical phenomena, and unitarity again restricts the pos- 
sible values of critical indices, permitting the identifi- 
cation of physical systems with supersymmetric crit- 
ical behavior [3,8]. The Neveu-Schwarz determinant 
formula [4] and the Ramond formula [8,9] were 
proved by Meurman and Rocha-Caridi [10] and by 
Thorn [9]. 

In this paper we give the determinant formulae 
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and unitarity constraints for the N = 2 extensions of 
the N = 1 superconformal algebras. The proofs will be 
given elsewhere [ 11]. The N = 2 algebras first appeared 
as gauge algebras of the U(1) fermionic string [12]. 
Preliminary calculations towards determinant formu- 
lae were performed by Di Vecchia, Petersen and Zheng 
[13], Qiu and Shenker [14], and Thorn [15]. While 
this paper was being completed, we received preprints 
by Di Vecchia, Petersen and Yu [16] and Nam [17], 
which describe partial results overlapping with some 
of our work. 

N --- 2 superconformal invariance has applications 
to supersymmetric critical phenomena in two dimen- 
sions [ 18]. It also arises in the classical compactifica- 
tions of the supersymmetric string. A priori, string 
compactifications are given by N = 1 superconformal 
nonlinear models [19,20]. But all known nontrivial 
examples actually have N = 2 superconformal sym- 
metry [21,22]. The N = 2 supersymmetry of the non- 
linear model is associated with spacetime supersym- 
merry in the string ground state after compactifica- 
tion [20,23]. This spacetime supersymmetry should 
persist to all orders in the string coupling [24]. 

To date, all results on the nonlinear model, includ- 
ing N = 2 superconformal symmetry, are known at 
best to all orders in the inverse radius of the compact 
dimensions. The present work is, inter alia, the first 
step in a program to study classical compactifications 
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nonperturbatively in the compactification scale, as- 
suming world sheet N = 2 superconformal symmetry. 
Surprisingly, the unitarity constraints already have con- 
sequences for string compactification. These first re- 
suits are not particularly dramatic, but they suggest 
that the algebraic approach to compactification is 
worth pursuing. 

The anti-commutation relations of  the N = 2 alge- 
bras are 

[ L m , L n ]  = (m - n )Lm+ n + lc ' (m3 - m ) ~ m , _  n , 

[Lm, Gin ] = (½m i - n)Gm +n , 

[L m,  Tn] = - n T m +  n , 

[ Tm , T n ] = "dm~ m , _ n , 

[ r m,  G i  l : ieiJG]m+n , 

[G/m, G/n]+ = 26iiLm+n + iei/(m - n )Tm+ n 

+ 3(m 2 - I ) 6  iJ6rn,_n • (1) 

The Virasoro generators L m are the Fourier coefficients 
of the traceless stress-energy tensor o fa  conformally in- 
variant quantum field theory on the cylinder. Equiv- 
alently (by z = e w) they are the Laurent coefficients 
of  the traceless stress-energy tensor T(z)  = Y~Lmz-m 2 

on the plane. The T m are the coefficients of  a U(1) 
current algebra J(z) = ZTrn z - m -  1. The G / are the 
coefficients of  the fermionic partner fields Gi(z)  = 
,~G/mZ-m- 3/2 which complete the N = 2 super stress- 
energy multiplet. All of the generators satisfy hermiti- 
city conditions of  the form Atrn = A_m,  which follow 
from reality of  the super stress-energy tensor. The cen- 
tral charge ~" is related to the usual Virasoro central 
charge c and the usual N = 1 charge e by ~ = c/3 = ~/2. 
The normalization is fixed so that ~ = 1 for the free N 
= 2 superfield, consisting of  two scalars each with c = 1 
and two Majorana fermions each with c = _1 

2 "  

The three N = 2 algebras are given by three modings 
of  the generators, corresponding to three ways of  
choosing boundary conditions on the cylinder. The 
L m are always integrally moded, because the bosonic 
stress-energy tensor is always periodic on the cylinder. 
The P (for periodic) algebra has integer modes for T m 

and G/re. The A (for anti-periodic) algebra has integer 
modes for Tin, but half-integer (m E Z + -~) modes for 
G/m . The T (for twisted * 1) algebra has integer modes 

• 1 Twisted scalar fields were first described in ref. [2"5]. 

for G 1 , half-integer modes for T m and G 2 . 

We consider highest weight representations of  the 
N = 2 algebras. These representations are generated 
from a vector of  lowest L 0 eigenvalue h, called the 
highest weight  vector (hwv). The hwv is necessarily 
annihilated by all the lowering operators L m ,  G/m, 
T m (m > 0). The remaining generators consist of  
the raising operators L m, T_ m, G/--m (m > 0) to- 
gether with the zero modes. The hwv must be an eigen- 
state of  a maximal commuting set of  zero modes. 

The basic technique for studying a highest weight 
representation is to construct it as a quotient of the 
Verma module, which is the largest possible represen- 
tation generated from the hwv. A natural basis for the 
Verma module is a maximal independent set of  states 
which are given by ordered monomials of  the genera- 
tors acting on the hwv. The Verma modules of  all three 
algebras can be decomposed into eigenspaces o f L  0, 
called levels. Level n is the eigenspace with L 0 eigen- 
value h + n. 

For the A algebra the zero modes are L 0 and TO, 
so an hwv Ih, q) is characterized by its energy (L 0 
eigenvalue) h and charge (T O eigenvalue) q. Each level 
n of  the Verma module can be further decomposed 
into T O eigenspaces with eigenvalue q + m, when m 
is called the relative charge. The counting of  states is 
summarized by the partition function PA(n ,  m)  de- 
fined by 

PA(n,  m ) x n y  m 
n ,m 

o o  

I I  (1 + x k - 1 / 2 y ) ( 1  + x k - l / 2 y  - 1 )  
= ( 2 )  

~:= 1 (1 - x k )  2 

In the P algebra the zero modes are L0, TO, G~. 
- - 1  There are two kinds of  hwv, I h, q + ~ )_+, with energy 

- - 1  L 0 = h and charge T O = q + ~. Each satisfies an addi- 
tional highest weight condition with respect to the 
charge, (G 1 -T- iG02) Ih, q ¥~)_+ = 0. These two repre- 
sentations P+ are isomorphic under charge conjuga- 
tion ( T  m --> 2 -G2m). Again, - T m , G m ~ each level n 
is decomposed by relative charge m, with partition 
function 

Pp(n,  m ) x n y  m = C vl/2 + y - l / 2 )  
n ,rn 

0 0  

X I-I (1 + x k y ) ( 1  + x k y  - 1 )  
k=l (1 - - x k )  2 

(3) 
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We will also need partition functions in the presence 
of  single charged fermions: 

Px(n ,  m; k ) x n y  m 
n , m  

=(1 +xlklysgn(k))  -1 ~ P x ( n , m ) x n y  m , (4) 
H , m  

for X = A, P. We define sgn(k) = 1 for k > 0, sgn(k) 
= - 1  for k < 0 and sgn(0) = +I for the representation 
W. 

In the T algebra the zero modes are L 0 and G 1. An 
hwv Ih) is characterized by its energy h. Each level n 
splits into two equal subspaces of  fermion parity (_)F 
= +1, where (_ )F  is the operator which commutes 
with L m and Tin, anticommutes with G / and is 1 on 
[h). The partition function for each fermion parity is 

oo 

~_j eT (n )x  n = 1-I (1 + x k ) ( 1  +X k- l~2)  
n k= l (1  -- x k ) ( l  -- x k - 1 / 2 )  " (5) 

As usual, the inner product on the Verma module 
is defined by the hermiticity conditions, the commuta- 
tion relations and the highest weight conditions. Sub- 
spaces of  different level and relative charge or fermion 
parity are orthogonal. A powerful tool in the represen- 
tation theory of  these algebras is the determinant for- 
mula. This is a polynomial expression in ? ,  h, q for the 
determinant of  the matrix of  inner products of  a basis 
of  ordered monomials for a given eigenspace (up to a 
basis-dependent positive constant). The vanishing sur- 
faces, or curves, of  the determinant formula describe 
the Verma modules which contain null vectors. The 
presence of such null vectors can be used to solve for 
correlation functions in conformal quantum field the- 
ories [2,26,27,8,28]. The vanishing surfaces also mark 
changes in the signature of  the metric, so they give 
crucial information about unitarit~ [29,3]. 

For the P and A algebras letMn, m and MnA,m be 
the inner product matrices for level n, relative charge 
m. The determinant formula for the A algebra is 

detMAn m( 'd ,h ,q )  = [ I  "-, r(fAs,~eA(n-rs/2'm) 
' l<~rs<2n ' 

s even 

X R tg A,d~A (n - Ikl,m - sgn(k);k) (6) 
k k) 

kEZ+I/2 

where 

A ~ fr ,  s ( C , h , q ) = 2 ( U -  1)h q2 , ~ - - ~ ( c  - 1) 2 

1 + a [(~ - 1)r + s] 2 (s even),  

g~('~, h, q) = 2h - 2kq + (~ - 1)(k 2 - ~) 

(k~z+{). (7) 

For the P algebra, 

11 (fPs) PP(n-rs/2'm) 
det -'m($'h'q)MP = l<rs<2n ' 

s even 

X R ( g ; ) P p ( n - I k l , m - s g n ( k ) ; k ) ,  (8) 
k~Z 

where 

f y  ( ~ , h , q )  = 2(~ - 1 ) ( n - - - ~ V ) - q 2  
r , S  

1 + ~ [(~ - 1)r + s] 2 (s even),  

1 gP(Y, h, q) -- 2h - 2kq + (~ - 1) (k 2 - 1) _ 

(k E Z) .  (9) 

For the T algebra let MT,n be the matrix of  inner pro- 
ducts for level n and fermion parity ( _ ) F  = -+1. On 
level 0 the determinant formulae are det M+T,0 = 1, 
det M T_,0 ~- h - 5/8. For n > 0, 

det MT,n(~ ", h) = (h - ~ ~)PT(n)/2 

X 1-I (fTs)PT(n--rs/2) (10) 
l <~rs~2n " 

s odd 

where 

f T s ( 3 ,  h) = 2(3 - 1)(h - -~U) + I [(c" - 1)r + s] 2 

(s odd). (11) 

A vanishing of  the determinant formula signals a 
new hwv generating a submodule inside the Verma 
module• For the P algebra, along the quadratic vanish- 

P ing surface f r  s = 0 there is an hwv on level rs/2 with 
• ' 1 • • relatwe charge -~  sgn(0). Along the vanishing plane 

gP = 0 there is an hwv at level Ik[ and relative charge 
1 + - ~  sgn(0) sgn(k). For k = 0 this reflects the unbro- 

ken supersymmetry of states with h = ?'/8, and the 
possibility of  a non-zero Witten index [30,8]. 
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For the A algebra, along the quadratic surfaces frA.s 
= 0 there is an hwv of  level rs/2 and relative charge 0. 
Along the vanishing plane gh  = 0 there is an hwv of  
level Ikl and relative charge sgn(k). For the T algebra, 
along the quadratic vanishing curve f T  s = 0, there are 
two hwvs at level rs/2 with fermion parity +1. Along 
the vanishing line h = ~/8,  the state at level 0 and fer- 
mion parity - 1  becomes an hwv, again allowing a non- 
zero index. 

The quadratic vanishing surfaces for the P and A 
algebras are roughly analogous to the vanishing curves 
of  the N = 0 or N = 1 superconformal formulae. The 
vanishing planesg~ 'h  = 0 are something new. For the 
A algebra, there are precisely two at each half-integral 
level; for the P algebra there is one at level 0 and two 
at each of  the higher levels. The hwv on a vanishing 
plane does not generate a full Verma submodule of  
states, because there exist raising operators which an- 
nihilate the hwv. (A simple example is given by the 
vanishing plane gA/2 = 0, where the hwv G 1/2[h, q) 
is annihilated by G_l/2. ) This ex~lai~ the need for 
the modified partition functions Pp, PA (eq. (4)); their 
precise form is justified in the proof of the determinant 
formulae [ 11 ]. 

We stress that there are no further vanishings. In 
particular, the formulae imply that the A algebra has 
hwvs only for relative charge m = - 1 ,  0, 1, and the 

X P algebra only for m = - ~ ,  3, - 3 sgn(0)/2. 
Determinant formulae give a great deal of  informa- 

tion about the representation theory of  a Lie algebra. 
For the N = 0 and N = 1 superconformal algebras, de- 
terminant formulae were used to prove the non-unitar- 
ity of  a large class of  representations; the remaining rep- 
resentations were conjectured to be unitary [3,8]. 
These conjectures were based on explicit low-level 
calculations, and on a small number of  examples from 
statistical mechanics. The unitarity conjectures were 
subsequently verified by manifestly unitary construc- 
tions of  all the allowed representations [31 ]. 

An interesting picture emerges when the same strate- 
gy is applied to the N = 2 algebras. In the region ~" < 
1, we find a discrete series of  possibly unitary represen- 
tations, while the non-unitarity of  the remaining rep- 
resentations follows from the determinant formulae. 
(This much is familiar from the N = 0, 1 results.) How- 
ever, for the P and A algebras, it is no longer the case 
that all ~"/> 1, h />  0 representations are unitary, since 
the vanishing surfaces impinge on this region. Unitar- 

ity is obvious for h above the upper boundary of  the 
vanishing surfaces, which is composed of  plane seg- 
ments. But the determinant formulae indicate that 
some representations between this boundary and the 
plane h = 0 survive the non-unitarity proof. These lie 
on segments of  vanishing planes. 

The precise results are as follows. For the A algebra, 
the only possible unitary representations fall into three 
classes: 

h 3 : ~" 11. 1 , (~ h, q) such that g2  ~> 0 ,  

x for alln E 2  +7.  

A 2 : c" >~ 1 , (~', h, q) such that g~n = 0, 
A 1 gn+sgn(n) < 0 ,fA,2 ~> 0 ,  for some n E Z  +~ . 

h O: b ~ < 1 , ~ =  1 - 2 / ~ , h = ( / ' k - ~ ) / ~ ,  

q = (j - k) /~ ,  for integer ~ ~> 2, 

1 a n d ] , k E Z + ~ , 0 < ] , k , ] + k < . ~ - l .  

For the P algebra, the only possible unitaries (with 
sgn(0) = -+1) are 

P~: 0" >~ l , (Y, h, q) s u c h t h a t g ~ n > ~ 0 f o r a l l n E Z .  

P~: ~" ~> 1,(Y, h,q)  such thatg~n = 0 ,  

P fP  gn+sgn(n) ~ 0 1 2 ~> 0 ,  for some n C Z .  

P~): b" < 1 ,b" = 1 - 21~,h = ~"/8 +/k/~ ,  

q = sgn(0) (j - k) /~ ,  for integer ~ / >  2 , 

a n d ] , k E Z , 0 ~ < / ' -  1 , k , ] + k < ~ -  1. 

For the T algebra the only possible unitaries are 

T 2: U~> 1 ,h~>~ ' /8 .  

TO: ~ < 1 , ~ = 1 - 2 / ~ , h  =b~/8 + ( ~ -  2r)2/16v~ 

for integers ~ ,  r such that 2 ~< 

and 1 ~<r ~<~ /2 .  

(The subscripts indicate the dimension of  the moduli 
spaces.) 

Observe that P~ and P~ are identical, while P~.0 
and P2,0 differ only at the supersymmetric value h 
= b~/8, with the allowed charges asymmetric around 
q = 0. Note also that, for the T O discrete series, only 
even ~ values allow h -- b~/8. Such information con- 
strains the spontaneous breaking of  supersymmetry 
in finite volume and in the presence of  supersymmetric 
mass perturbations [8,18]. 
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The representations A3, ~3, T2 are obviously un- 
itary; we conjecture that all of  the remaining possibly 
unitary representations are indeed unitary. This con- 
jecture is supported by examination of  the inner prod- 
uct matrices at low levels. Further support for the 
conjecture is provided by manifestly unitary construc- 
tions of  some of  the discrete series of  representations, 

1 
which we now describe. The b" = ~ representations are 
realised by a single periodic scalar field, at special val- 
ues of  the period, demonstrating N = 2 supersymme- 
try in the gaussian model [18]. A similar construction, 
applied to the free N = 1 scalar superfield, produces 

1 = ] representations. Tensor products of  these yield 
= ]  and b" = -s 

6 "  

Another construction method, which has proved 
useful in the context of  the N = 0, 1 superconformal 
algebras [31,32], uses "quark model" fermionic oscil- 
lators. For any semisimple Lie algebra g, let Hi,a(z)  
(1 ~< i ~< 2, 1 ~< a ~< dim(g)) be 2-dim(g) Fermi fields. 
Define 

i,a _ 1 • V (z)  - "~ lfab c :H i 'b ( z )n"C(z ) :  (no sum on i ) ,  

Wi(z)  = 1 v i ,a ( z )Hi ,a ( z )  (no sum o n / ) ,  

S l (z )  = v 2 , a ( z ) H l , a ( z ) ,  S2(z )=  v l , a ( z ) H 2 , a ( z ) ,  

a i ( z )  = ( l / x ~ )  [ Wi(z)  - Si(z)] , 

J (z )  = ~ t t  I ' a ( z )H2 'a ( z )  , 

r ( z )  = ( I I 4 o )  : v i,a (z) vi'a (z): 
--(1/60) :(V l ' a  + v 2 ' a ) ( z ) ( V  l 'a  + v 2 ' a ) ( z ) :  . 

(12) 

The operators T(z),  Gi(z) ,  J (z )  define a representa- 
tion of  the P, A or T algebras (depending on the 
choice of  moding). Here fabe are the structure con- 
stants of  g, while the constant o = cqj [2 is defined by 
fabcfbcd = --2Vfad" The (manifestly unitary) representa- 
tion on the fermionic Fock space has ~" = dim(g)/9, 
giving constructions for ~. =~,~,1 2 s .  In addition, a 
similar construction using two sets of  Fermi fields 
transforming under the fundamental representation 
of  G 2 and replacingfab c by the invariant anti-sym- 
metric three-tensor, yields b" = ~. 

An explicitly unitary construction of  the entire 
discrete series would be of  great value. One intriguing 
avenue of  investigation is suggested by an apparent 
relationship between the N = 2 discrete series and the 
unitary representations of  the aff'me algebra su('~ with 

6 
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q 

Fig. 1. Unitary representations of the A algebra at ~ = 3. I. 
The unitary representations in A 3 form the convex region 
bounded by solid lines. The unitaries in A 2 lie on the solid 
lines outside A3. The parabola isf 1A.2(3 , h, q) = 0. The lines 
are segments ofg A (3, h,q) = 0, Ikl ~< 7/2. 

generators fin" The discrete series o f N  = 2 central 
charges c = 3~" = 3 - 6 /~ ,  ~ = 2, 3 ..... are precisely 
the central charges c of  the Virasoro algebra LnSU (2) 
associated with the unitary representations of  s u ~ .  
The h, q weights of  the N = 2 representations are sim- 
ple functions o f  the possible ~u('~) highest weights 
(L~ u(2) and T30 eigenvalues). 

The unitary representations A 2 and W2, which lie 
on vanishing planes in the region b" 1> 1, are a novel 
feature in the representation theory of  infinite-dimen- 
sional Lie algebras. They imply, for fixed b" and q, a 
discrete spectrum of h-values lying below the contin- 
uum of unitary representations. The unitary repre- 
sentations for b" = 3 are pictured in figs. 1 and 2. 

Representations with b" ~> 1 arise in the compactifi- 
cation of  supersymmetric string. N = 2 supersymmetric 
nonlinear models based on Calabi-Yau spaces are su- 
perconformaUy invariant, at least to all orders in per- 
turbation theory [21 ]. They give representations of  
the A and P algebras with b ~ = d[2, where d is the real 
dimension of  the Calabi-Yau space. The value b ~ = 3 
corresponds to compactification from ten to four di- 
mensions. The A representations determine the boson- 
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Fig. 2. Unitary representations of the P algebra at b" = 3, sgn(0) 
= 1. The unitary representations in P~ form the convex region 
bounded by solid lines. The unitaries in P~ lie on the solid 
lines outside P+. The parabola isf  P 9(3, h, q) = 0. The lines are 

p~ . 2 -  
s e g m e n t s  ofg k(3, h,q) = 0, Ikl ~< 3. The equivalent diagram 
for sgn(0) = - 1  is given by the reflection q ~ -q .  

ic spectrum of  the compactif ied string; the P represen- 
tations determine the fermionic spectrum. Certain spe- 
cial operators in the nonlinear models correspond to 
unitary representations in the classes A2, P~. In partic- 
ular, the (anti-)holomorphic e-tensors correspond to 
the A 2 representations with q = -+b ~, h = b~/2, at inter- 
sections ofg~_+ 1/2 with)~l,2" The covariantly constant 
spinors corresponds to the P~ representations with q 
= sgn(0) b ~/4, h = ~ /8 ,  which are at intersections orgy0 
with flP,2 . Any  compactif ication (Calab i -Yau or not  
[22] ) with unbroken spacetime supersymmetry must 
have a superconformal field with these quantum num- 
bers. A key problem in the study of  string compactifi-  
cation is to show non-perturbatively that  these opera- 
tors are present and that they satisfy the operator  
product  relations needed for the construction of  the 
gravitino vertex and the world sheet spacetime super- 
symmetry current [33]. 

The N = 2 unitary representation theory has two 
immediate consequences for compactification. First,  
if operators with the quantum numbers of  the covari- 

antly constant spinors and the (anti-)holomorphic e- 
tensors occur in a compactification, then they must 
keep those quantum numbers in any compactification 
nearby, because o f  the gap in allowed h values. This 
assumes that q is not  renormalised (even nonperturba- 
tively). Second, the fact that the interesting (h, q) val- 
ues lie at the intersection o f  vanishing surfaces can be 
used, by the methods o f  refs. [2,26,27,8,28], to prove 
the operator-product  identities which imply space- 
time supersymmetry [34] *2 

These algebraic results are interesting because they 
are nonperturbative in the compactif ication radius. 
They suggest that further algebraic investigation of  
string compactif ication could be fruitful. 

We are grateful to J. Cohn, D. Kastor and Z. Qiu 
for their insights and most especially S.H. Shenker for 
many helpful discussions. A.K. thanks P. Goddard 
and D. Olive for useful conversations about the N = 2 
algebras. Exploratory computer  calculations were car- 
ried out using Macsyma. 

,2 Note that, at special values of b", namely b" = 1 + 2/n, n 
= 1 ,  2 ..... there is a discrete series of algebraically special 
representations, identified by a triple intersection of vanish- 
ing surfaces. It is not clear whether this condition is signif- 
icant. However, for n = 1 and n = 2 it does apply to six- 
and four-dimensional Calabi-Yau compactifications. 
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