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An algebraic approach to string field theory is proposed. The string field is written as the quantum stress-energy tensor of 
two-dimensional nonlinear field theory. The equation of motion is the condition of two-dimensional conformal invariance, 
expressed as a quadratic operator product relation. The gauge structure of the linearized equation of motion is analyzed. Some 
of the remaining problems are discussed. 

A clue to the structure of  string theory is given by 
the renormalization group equation o f  the general 
nonlinear model in two dimensions [1,2]. The non- 
linear model consists of  a fieldxU( O which is a func- 
tion from points g = (E 1 , 42) on the plane to a d-di- 
mensional manifold, call it spacetime. The action of  
xu(~) is 

S(x) = 4~ fd2~ guAxla~xua.x". (1) 

The coupling is given by a spacetime metric &,,(x) .  
The renormalization group (RG) equation, expanded 
in powers o f  (,gtzv) - I  , is 

a 
A ~ g,,~ = R,,~ + ~ R , , , , ° , R / O ,  + . . . .  (2) 

where A -1  is a distance scale on the plane. The RG 
equation is covariant under spaeetime reparametriza- 
tions, to all orders in the perturbative expansion. The 
crucial point is that the RG fixed point equation in a 
two-dimensional quantum field theory (2D QFT) 
gives a generally covariant equation of  motion for 
gravity, In the long distance limit on spacetime, 
(guu) -1  "-} 0, the fixed points become the solutions 
of  Einstein's equation Ruv = 0. 

For a string theory to be a complete theory of  
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physics [3], the string field must describe the envi- 
ronment in which string moves. It seems reasonable 
to suppose that the string field is exactly this descrip- 
tion. The dynamics of  string is described by a sum 
over world surfaces, i.e. a 2D QFT [4]. For example, 
eq. (1) can be interpreted as the action o f  the param- 
etrized world surface of  a string moving in a curved 
spacetime with metric guv(x). The metric coupling 
describes the environment, as a component of  the 
string field. The complete description of  the environ- 
ment of  a string is the general 2D QFT, with all pos- 
sible local self-interactions of  the world surface xU(~). 
The coupling describing the self-interactions are ten- 
sors on spacetime, for example rut ...Uk(X) × 
aa t x  ut ...aalcX uk is a self-interaction of  naive dimen- 
sion k. 

A 2D QFT gives consistent dual Born amplitudes 
for string scattering only if it is conformally invariant * l 
and scale invariance, the RG fftxed point condition, is 
equivalent to conformal invariance in a local QFT ,2 
[13]. The same techniques which show that eq. (2) 
is invariant under general coordinate transformations 

, t  This is described from the point of view of 2D QFT in 
ref. [51, see also ref. [6]. 

,2 The eormeetion between refs. [1,2] and [5,6] was dis- 
cussed in the period 1983-84 by, among others, Friedan, 
Lovelace, Shenker, and Witten. The author was interested 
in the connection by Bardacki [7]. Recent work on con- 
formal invarianee and string theory includes refs. [8-12 ]. 
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of spacetirne [2], can be applied to the completely 
general nonlinear model to show that the RG fixed 
point equation gives a generally covariant equation of 
motion for the string field. 

In order to find the long distance effective field 
theory of string, it is useful to describe the 2D QFT 
by its classical action, because the RG decouples (at 
long distance) the nonrenormalizable parts of the 2D 
action (massive string modes) from the renormalizable 
parts (massless string modes), leaving a classical long 
distance equation of motion on the relevant modes, 
e.g. Ruv = 0, whose solutions do not excite irrelevant 
modes [13]. But the classical 2D action is not a use- 
ful description for string field theory. The dynamics 
must be nonlocal in the tensor fields in order to ac- 
complish the long distance decoupling. The RG equa- 
tion is not uniquely det'med, since it depends on the 
choice of renormalization scheme. There is no sign of 
the string-like structure expected in a string field 
equation. The interaction term in the string field 
equation should be bilinear in the field, representing 
the joining and splitting of string. Finally, the only 
obvious symmetry of the f'Lxed point equation is 
spacetime coordinate invariance. String field theory 
should have a much larger gauge invariance. 

The RG ftxed point equation is equivalent to 
Taa(~ ) = 0, where the 2D stress-energy tensor Taa is 
written as a functional of the 2D action. In complex 
tensor notation (z = ~1 + i/~2), Tz_ i = 0. Conformal 
invariance can also be expressed as the singular oper- 
ator product expansion [6]: 

r z z r w w  ~- (z - w ) - 4 c / 2  + (z - w)-22rww 

+ (z - w ) - l a w r w w  + . . . ,  (3) 

T z z T ~  ~ 0 + .... (4) 

where c = d. This version of the 2D conformal invari- 
ante condition, using only linear and bilinear expres- 
sions in Tzz, seems a promising source for the string 
field equation. 

To begin investigating the structure of these equa- 
tions, consider the simpler case of the open string. 
Tzz = T(z) describes the environment on the boundary 
Im(z) = 0 of the open string, and eq. (3) is the con- 
formal invariance condition. Choose a background 
conformal field theory with stress--energy tensor 
To(z) = ~"n=-** z -n-2Ln"  Eq. (3) is equivalent to 

the Virasoro algebra commutation relations 

[L m ,Ln] = (m - n)Ln+ n + ~ c ( m  3 - m)Sm+ n. 0 , 
(5) 

with c = d. Expand T(z) around the background, 
T(z) = To(z ) + ~ z )  with 4(z) a translation covariant 
quantum field in the QFT described by T0(z): 

¢(z) = e zL -1 4(O)e-zL -1 . (6) 

This amounts to allowing only translation invariant 
nonlinear models, that is models whose couplings 
have no explicit ~ dependence. Then eqs. (3), (4) can 
be rewritten, 

r0(z)¢(0 ) + ~(z)r0(0 ) + ¢(x)¢(0) 

z-224(0)  + z -  la¢(0) .  (7) 

To get an operator representation of the fields, 
perform a radial quantization with the background L 0 
as hamiltonian. The radial quantization gives a one to 
one correspondence between the quantum field ¢(z) 
and the Hilbert space state 14) = ¢(0)10), where 10) is 
the SL 2 invariant ground state of the background 2D 
QFT, satisfying L n [0) = 0, n I> -1 .  Let Ln~Z ) be the 
translation covariant quantum field corresponding to 
the state Ln¢(0)10). Then 

ro(z)¢(w)~ ~ ( z - w ) - " - 2 L , ¢ ( w ) .  (8) 
n = - I  

Use the correspondence between states and 2D quan- 
tum fields to put eq. (7) in the form 

z -n-2[(Ln  - S n , _ l Z _ l  - 26n,O)14 °) 
n = - 1  

+ (-l)nLn4(Z)lO)] + ~(z)14) ~ 0 .  (9) 

Note that the string fields have now been identified 
with the states of the first quantized string. 

Now consider the linearized equation of motion. 
Expanded in powers of z, it is (n I> -1 )  

O=(Ln + ~ ( -1)  n+k 
k=0 k! Lk--lLn+k 

\ 
- L - 1 8 - 1  m - 280m)14). (10) 

After some algebra - applying Virasoro operators to 
eq. (10), taking linear combinations of the resulting 
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equations for different n, and using the fact that 
L_ I  IX) = 0 implies IX) = 0 - eq. (10) becomes 

LnlC~)=LI[(Lo-1)-IL1]n-II¢) (n~>2),  (I1) 

0 = L  1 ~(1 + r ) l $ ) ,  (12) 

0 = (L 0 - 1) ~(1 * r)l$) • (13) 

The operator 
o o  

r = ~ ~ L n l  [LI(L 0 - 1)-1] n (14) 
n = 0  • 

is the twist operator in the universally envelopping al- 
gebra of SL 2 : r 2 = 1, and rL n = (-1)nLnr for n = 
- 1 , 0 ,  1. 

The projection condition vie) = le) is equivalent to 

L2m+lle )= ~ p-L 2k+l 
k=O x -1 

X [LI(L 0 -1 ) - l ]2k+ lL21m+l le )  (m>~O) (15) 

(actually m = 0 alone is also equivalent). The equa- 
tion (rL 1 + L 1 r)le) = 0 then leads to a recursion rela- 
tion, 

P0 = 1/2,  

n 

=An+ 1/2(s) - k~l= Ak(S)Pn_k, (16) Pn 

Ak ( s )= l  2 P(2s+ 1)F(s+2k) 1 (17) 
r (2s . ,  2k)r(s + 1) (2k!) ' 

which gives the same seriesp n whatever the value of 
s. The recursion relation is used to show the equiv- 
alence between eq. (I0) and eqs. (11)-(13).  

Eq. (10) is local, i.e. polynomial in the L n for any 
regular state I~) (killed by all L n for n large enough). 
Eqs. (11)--(13) are local everywhere except at the 
singular points L 0 = 2, 3, 4 . . . . .  The equivalence is 
between solutions of (10) and solutions of(11)--(13) 
which continue analytically from the nonsingular re- 
gion. Alternatively, eqs. (11)--(13) should be multi- 
plied by analytic functions o fL  0 with the minimal 
set of zeros needed to remove the singularities. 

Eq. (13) can be interpreted as a conventional equa- 
tion of motion, and eqs. (11), (12) can be interpreted 
as conventional gauge conditions. The gauge, however, 
is not completely fLxed. The linearized gauge genera- 

tors are the pure gauge solutions of (11)-(13). The 
pure gauge solutions of eqs. (12), (13) are 1¢) = 
L 1 le) with tie) = le), i.e. eq. (15). The gauge condi- 
tions (11) fix 

n + l  
Lnle) ='h--g--2 (2L° + n)[LI(Lo - 1)- l ]nle)  

+(L0 + n +  1) 
c o  

X : ~  (--1)k(n + l~'Lk ] -1 [LI(Lo - 1)-l]k+nle) 
k=l (n + k - 1)!(n + k + 1)(n + k + 2) 

(n t> 1), (18) 

which is consistent with e q  (15), 
On reach of the infinitely many levels of Hflbert 

space there are gauge generators. For example, any 
state satisfying all the usual gauge conditions L nle) = 
0, n i> 1 gives a gauge invariance of eqs. (11)--(13). 

When To(z ) is the flat spacetime background, the 
lowest level gauge generators are le) = ~p) where 
~o) is the ground state of energy-momentum pU. 
These are the gauge generators of the low energy ef- 
fective gauge theory of the open string. For the 
closed string the corresponding generators would be 
the spacetime reparametrizations. 

The additional gauge condition L 1 kb) = 0 produces 
the standard completely gauge fixed free theory with 
inverse propagator L 0 - 1. 

Note that this approach to string field theory 
would also lead to a new formulation of the theory of 
critical phenomena. The nongauge solutions of eqs. 
(11)-(13) correspond to the marginal operators of 
critical phenomena. The gauge generators correspond 
to the redundant operators [14] ,3 

For supersymmetric strings [11,15,16] the analog 
of conformal invariance ,4 is the condition of two- 
dimensional superconformal invariance, expressed as 
an operator product condition on the super stress- 
energy tensor [10,17]. Every superconformal field 
theory can be enlarged by introducing the spin fields 
[10]. These are the local quantum fields which are 
double valued in the neighborhood of any fermionic 

,3 I thank S. Shenker for pointing out the redundant operators 
and ref. [141. 

,4 Recent work on 2D superconformal invarianee in super- 
string theory includes refs. [9-11,13 ]. 
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field. The enlarged theory is not strictly speaking a 
quantum field theory, because of the doubling. The 
spin model is the local QFT which results from pro- 
jecting on the sector of even fermion number, ( - 1 )  F = 
1. This construction generalizes to nonconformal 
QFTs for which ( - 1 )  F is defined and conserved. 
These are the 2D QFTs which correspond to the 
string fields of the supersymmetric string. For type II 
superstrings the 2D supersymmetry isN = 1;for 
heterotic strings it isN = 1/2. Eq. (2) has an analogue 
for supersymmetric nonlinear models [ 18], the crucial 
difference being that the RHS vanishes to all orders 
ifRuv = 0, at least if the spacetime is Kahler [19], 
and for the heterotic case if the background gauge 
field is the metric connection. 

Clearly this appproach to string field theory is 
not finished. The above calculations might be thought 
of as a feasibility study for the idea that the commu- 
tation relations of the 2D stress-energy tensor could 
provide a gauge invariant string field equation with a 
bilinear interaction term. There are many problems 
remaining. The gauge algebra found above is too small. 
The closed string and the interaction must be investi- 
gated. Note that eq. (3) is written in the Heisenberg 
picture associated with Tab. But gauge fLxed calcula- 
tions are done in the Heisenberg picture of the back- 
ground 2D QFT. There must be an covariance under 
change of  picture. There is the difficulty that the bi- 
linear term in eq. (9) is not restricted to integer 
powers ofz .  The bilinear term in eq. (9) is closely 
related to the overlap integral which gives the usual 
string vertex. To see this perform the Klein transfor- 
mation w = t~ log(1 - z) + (1 - or) log(z), which takes 
the upper half plane to the split strip. The operator 
product of conformal fields is taken to the overlap 
integral of the corresponding states. The compli- 
cated algebraic manipulations leading to eqs. (11)-  
(13) need to be rationalized. The use of only the 
traceless part of the stress--energy tensor in the equa- 
tion of motion seems artificial, and it must be shown 
how to construct the rest of the stress--energy tensor 
off-shell. Finally, there is as yet no action principle 
for the conformal invariance equations. It is not ap- 
parent that the RG generator is the gradient of an 
action functional. 

The first quantized theory given by the string field 
as background field only has the duality property 
when the string field is on-shell. There must be a 

more general invariance in the off-shell string fields. 
Translation invariance on the surface is clearly not a 
natural condition, which presumably explains the 
limited amount of gauge invariance in eqs. (I 1)-(13). 
The environment in which a string moves is not a 
QFT on any particular surface. In fact, the RG equa- 
tion does not see the global structure of the surface; 
the infinitesmal RG transformation acts locally on 
the surface. 

All that is needed to describe the motion of a 
string is a description of infinitesimal motion, because 
finite motion can be described by patching infmitesimal 
surface elements together with reparametrizations. A 
reparametrization covariant QFT is a QFT on an ar- 
bitrarily small piece of parametrized surface, along 
with a stress--energy tensor which generates infinite- 
smal reparametrizations. The QFT is not necessarily 
translation invariant the stress-energy tensor is not 
necessarily conserved. 

Dirac [20] gave a language for quantum field 
theory which is well-suited to reparametrization co- 
variant QFT. Correlations between regions of the 
surface are mediated by wave functions on the 
boundaries. Each closed curve C is associated with a 
space of states L2[C ] , e.g. L 2 of maps from C to 
spacetime. A QFT assigns to each curve C a state 
10) C in L2[C], i.e. the functional integral overxU(~) 
inside C, depending on the boundary value xU(s) on 
C. There is a composition law taking L 2 [C 1 ] X 
L 2 [C2] ~ L 2 [C 3 ] whenever C 1UC 2 = C3, i.e. the 
functional integral over the common boundary. The 
states 10) C are closed under composition. 

Define L 2 [~] and 10)e as the limits of L 2 [C] and 
10) C as C contracts to ~. The QFT is completely de- 
termined by the 10)~. Local fields can be identified 
with functions ¢(~) fn L 2 [~]. Operator realizations 
are given by radial quantizations, using systems of 
concentric circles (around arbitrary points ~). 

The propagation of information in reparametriza- 
tion covariant 2D QFT parallels the propagation of 
information on the string, ff the state of a string is as- 
sociated not with a global parametrization of the 
string, but with a covering of  the string by infmitesmal 
parameter patches. 

The stress---energy tensor acts at boundaries by the 
linear operator 

f d ~  a l'ab(~)ob(~): L 2 [C] ~ I., 2 [C'] , (19) 
C 
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where the repararnetrization ~a ~ ~a + oa(~) takes 
the curve C to C',  and ~ b  c = CaTch. The transform 
of 10) c is not equal to 10)C,, which is to say that the 
2D QFT is not reparametrization invariant. 

On any surface covered by infinitesimal parameter 
patches, the reparametrization covariant QFT deffmes 
a QFT on each patch, and the reparametrization 
generators for the infinitesimal transition functions 
can be used to glue the local QFTs together. Re- 
parametrizations give different but equivalent QFTs. 
This picture - systems of parameters and systems of 
local QFTs - is derived from the systems of coordi- 
nates construct defined in ref. [2]. 

A reparametrization covariant QFT can be thought 
of as a connection for the infinitesimal local reparam- 
etrizations (germs of reparametrizations) in the local 
bundle of Hllbert spaces 1. 2 [~]. Conformal invariance 
means that the connection has no torsion for the 
local analytic reparametrizations. Then the reparam- 
etrization covariant QFT defined on an inf'mitesimal 
piece of surface extends naturally to a globally de- 
Freed conformal field theory on any Riemann surface, 
because the patching reparametrizations of a Riemann 
surface are locally analytic. 

The local conformal transformations at z 0, z -* 
z + en(Z - z0)n+l ,  n/> - 1 ,  are generated by opera- 
tors Ln(~O) acting on !-2 [G0]-Conformal invariance 
is the condition Ln(~)10) t = 0, n 1> -1 ,  which again 
is bilinear in form. Since the reparametrization co- 
variant QGT is def'med on an arbitrarily small piece 
of surface, the ~ dependence can be represented by 
formal power series around ~ = 0. 

An especially interesting mode is the dilaton zero 
mode, which is the string coupling constant. In the 
nonlinear model the dilaton zero mode only enters 
the boundary interaction, in the form 

ds K(s)~b(x(ss)), (20) 
C 
K(S) being the geodesic curvature density on the 
boundary C. The corresponding mode in the re- 
parametrization covariant QFT is possibly the density 
10)~ modulo total divergences. 

Other attempts to construct gauge invariant string 
field theories [21-26] start from the known gauge 
Fixed flat space theory, then add fields and interac- 
tions by hand to achieve gauge invariance. Sections 
1 - 7  of ref. [24] present a somewhat different ap- 

proach. There the attempt is to construct the theory 
by bootstrap methods assuming only gauge invariance 
and spacetime locality. But in none of these attempts 
is there suggested an underlying role for conformal 
invariance. The role of conformal invariance must 
be understood, because in these approaches the back- 
ground is a conformally invariant QFT. The Virasoro 
operators and the overlap integral of that background 
conformal QFT are used to write the action functional 
of the string field. When the background is shifted 
(staying on-shell), the string field must appear in the 
new Virasoro algebra and overlap integral. 

The present approach is an attempt to realize some 
of the suggestions in sections 10 and 11 ofref.  [24]. 
The string field as stress--energy tensor is a variation 
on the idea of the ground state of the 2D QFT as 
string field, as can be seen by making the Klein trans- 
formation written above. Actually the stress--energy 
tensor always accompanies the identity operator, so 
the ideas must be essentially the same. Eqs. (7), (9) 
embody the idea that the condensate of the string 
field provides the kinetic part of the equation of mo- 
tion. This approach is itself based on the suggestion 
in ref. [24] that the linear/bilinear equation of mo- 
tin is the RG fixed point condition. 

One idea of ref. [24] - linear gauge symmetry in 
the interacting theory - is not followed here ,s  
Shifting the (on-shell) background shifts the con- 
formal operators by an expression linear in the field. 
It would be difficult to make the gauge invariance 
linear for an arbitrary background. Curiously, though, 
it is possible to write an extremely simple gauge in. 
variant quadratic action functional 

S(~, X n) = (~ - L_nXn)~(Lo - 1)($ - L _ n X  n) (21) 

employing Stuckelberg fields X n , n = 1,2 . . . . .  The 
linear gauge invariance is $ ~ $ + L _ n  en, X n 
xn +~n .  

Fradkin and Tseyflin [27] have proposed an ap- 
proach to off-shell string theory based on Polyakov's 
formulation [5] of the first quantized string. The 
string is still described by the classical action of the 
general nonlinear mode, an infinite collection of 
tensor fields on spacetime. But the nonlinear model 

, s  Arguments against linear gauge invarianee came from 
Shenker and Banks. Shenker pointed out that linearity 
would imply duality off-shell. 
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is made to be invariant under reparametfizations by 
introducing the 2D metric as a dynamical variable. In 
conformal gauge for the 2D metrics, the local scale 
factor o f  the 2D metric remains a dynamical variable, 
to ensure that the 2D QFT of  Polyakov and Fradk in -  
Tseytlin is always conformally invariant, on-shell and 
off. Fradkin and Tseytlin's classical action for the 
tensor string felds is the partition function o f  the 
conformally invariant QFT on the sphere;the quan- 
tum corrections are the partition functions on sur- 
faces of  higher genus. One difficulty with this ap- 
proach is that the string field interaction does not  yet  
have the bilinear form of  the joining-splitting interac- 
tion. Another difficfilty is that the dynamics of  the 
local 2D scale factor is not  understood. 

The basic principle underlying the approach to 
string theory suggested here is that the string field 
exactly describes the environment in which string 
propagates. The string fields are thus two dimen- 
sional quantum field theories. The RG equation (2) 
is taken as a clue that conformal invariance (duality) 
is exactly the on-shell condition of  classical string 
field theory. Given that the off-shell string field lies 
in a larger space o f  conformally non-invariant QFTs, 
the on-shell quantum string field will not  be con- 
formally invariant ,6 .  The string field as 2D QFT 
should not be described by its classical action, but 
by the.quantum stress-energy tensor and/or the 
quantum action functional 10)~. Gauge invariance of  
the string field theory should be associated with 
equivalence of  2D QFTs. There should be an ef- 
fective calculus o f  2D QFT in which to do string 
field theory. 

The algebraic structure of  the string field theory 
should be the origin of  locality in spacetime and of  
spacetime geometry. The algebraic origin of  the 
string field equation of  motion should explain the ap- 
pearance o f  only bilinear interactions, which allows 
the dual string theory to express geometry. The com- 
mutation relations o f  the conformal algebra, ex- 
pressed as an operator product condition on the 
stress--energy tensor o f  2D QFT, provides a possi- 
bility. 

*6The importance of non-scale invadant 2D QFT in string 
theory was emphasized by Lovelace, private conversation. 
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