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We present a manifestly Lorentz covanant formulation of supersymmetnc stnng theory In part:cular, we construct the 
fermion vertex and the supersymmetry generators m a BRST quanUzatlon using the techmques of superconformal field theory 

L Introduction. The fermionic string has been 
proposed as a unified theory of matter interacting 
through gauge and gravitational forces. Attractive 
features of string theory include the rich massless 
particle spectrum - containing a graviton, gauge 
vectors and chiral fermions - spacetime supersym- 
metry, and most hkely finiteness as well. String 
theory is remarkably restricted. Internal con- 
sistency forces the string to be supersymmetric, the 
dimension of spacetime to be ten and the funda- 
mental gauge group, if any, to be SO(32) or 
E s × E 8. 

The original formulation of fermionic string 
theory was Lorentz covariant [1,2]. The covariant 
formulation was used in a number of interesting 
applications, but  it was never actually finished. 
The covariant formalism was used to discover the 
critical dimension D = 10, spacetime supersymme- 
try [3], to formulate the anomaly calculation in 
string theory [4] and to find the resulting restric- 
tions on possible gauge groups [5]. The proof of 
supersymmetry and the explicit finiteness calcula- 
tions were done in the light-cone gauge [6]. 
Supersymmetry has never been proved in the 

covariant formulation. The original covariant 
formalism gave scattering amplitudes only for 
processes involving zero or two spacetime ferm- 
ions and an arbitrary number of bosons. The first 
calculation of a four-fermion amplitude used the 
light-cone gauge [7]. The four-fermion amphtude 
was eventually calculated using the covariant 
formalism *x , but  there was no effective description 
of the multifermion amphtudes. In particular the 
vertex operator describing spacetime fermion 
emission was never fully constructed. A local field 
transforming as a spacetlme spinor was con- 
structed [10], but its scaling dimension or confor- 
mal weight was D/16 = 5/8,  while a physical 
vertex operator must have dimension one. 

In this letter we complete the covariant con- 
struction of the fermionic string following the 
program described in refs. [4,11]. We start with 
the Ramond-Neveu-Schwarz  model, which de- 
scribes the world-sheet of the string in terms of a 
superconformally invariant (1 + 1)-dimensional 
quantum field theory. Following a suggestion of 
Goddard  and Olive, we use the Faddeev-Popov 
ghosts resulting from fixing the covariant super- 
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conformal gauge [12-14] to construct the BRST 
[15] operator, the fermion vertex and the space- 
time supersymmetry generator. The resulting 
formalism is Lorentz invariant, reparametrization 
invariant, and supersymmetric. The choice of 
superconformal gauge allows us to utilize the 
techniques of two-dimensional conformal and 
superconformal field theory [16,17[. The advantage 
is that the theory is expressed in terms of an 
algebra of local conformal fields on the world 
surface, which is automatically defined on surfaces 
of arbitrary global topology by the principles of 
conformal field theory. The conformal algebra also 
provides powerful methods for calculating correla- 
tion functions. We will further explain and explore 
these aspects in a future communication [18]. 

2. Fermionic strings, A Lorentz covariant, 
reparametrization invariant action for the 
fermionic string is obtained by coupling string 
fields X ~' and their world-sheet superpartners ~U' 
to two-dimensional supergravity [19] 

s -- f d2z e [ lVaXtt, r a S P  __ ½i ~ ' yaVa~g  

+ ½i(~a'ybva~t~)( ObX" -- ¼i~b~k")], (1) 

where e ,  ~ is a two-dimensional vierbein and Xa its 
gravitino partner. For the heterotic string [20 t, the 
pieces of the action involving the left-handed parts 
of X ~ and tp ~ are replaced by an action for an 
E 8 × E 8 or SO(32) current algebra .2. Reparametri- 
zation invariance and local supersymmetry allow 
the Lorentz covariant gauge choices 

e~ = e*3~, X~ = Y~', (2) 

known as the superconformal gauge. One readily 
verifies that q~ and ~ decouple from the action (1) 
due to its super-Weyl invariance, leaving the 
free-field action 

Sga,.,~r,.,ea= f [ ~ (  OaX~)2-½i~yOq~']. (3) 

In the euclidean superspace defined by the 
complex coordinates (z, Y) and their anticommut- 

,2 The use of rank 16 current algebras in incorporating gauge 
symmetnes m stung theones was also suggested by Freund 
[21] 

ing partners (0, 0), the action may be written in 
terms of scalar superfields X~(z, Y, 0, 0) as 

Sgauge fixed = f d2z DX., (4) 

where D = 00 + 00z. For the heterotic string, 0 is 
absent and D is replaced by 0~. The solution to 
the equations of motion is 

X ~ = X~(z)  + X~(~) + 0 ~ ( z )  +0--¢(Y). (5) 

From now on we focus on the z-dependent fields, 
in particular Lp~'(z). If needed, the entire construc- 
tion may be duplicated for the Y-dependent pieces. 
The two-point function is 

(X~'(zl,01)X*(z2,02)) = -g~log(z12) ,  (6) 

where za2 = z a - z 2 - 0102. 

The time components X ° are negative metric 
fields. The states created by X ° decouple [22] due 
to the residual invariance of the gauge choice (2) 
under superconformal transformations (z, 0) --, 
f ( z ,  0). These transformations are generated by 
the moments of the super stress-energy tensor 

T(z ,O)= -½DX~'D2X ~'= Tv+OT B (7) 

= - + o ( a z x ,  a=x  + 

(8) 
T B is the ordinary stress-energy tensor and TF is 
its dimension-3/2 partner. The conformal proper- 
ties of string operators are an essential element of 
our construction. 

The coordinates (o, z), In z = ~- + io, describe 
a cylindrical string world sheet which admits two 
possible spatial (o)  boundary conditions for the 
fermion ~ ~': anti-periodic (Neveu-Schwarz [2]) 
boundary conditions describe spacetime bosons 
and periodic (Rarnond [1]) boundary conditions 
describe spacetime fermions. The ermssion of a 
string state which is a spacetime fermion changes 
the boundary condition on the world sheet from 
NS to R or vice versa. The fermion field ~k" must 
be double-valued around the operator describing 
this process, which therefore opens or closes a cut 
in ~p~'. It is called a spin field [17] (for a single 
Majorana fermion ~, the corresponding spin 
field S would be the dimension-I/16 order or 
disorder operator of the Ising model [23]). The 
basic spin field S" has dimension D/16 = 5 /8  
and transforms as a 32-component spacetime 
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Majorana spinor. On the other hand, the emission 
of spacetime bosons maintains the boundary 
condition on q,~ and can be described by 
operators which are the 0 integrals of superfields. 
For  instance, the z-dependent part of the emission 
vertex for a massless vector of momentum k and 
polarization ~ is [24] 

VB(k, L z ) =  f dOe 'k xDX~,~'(k)  

= e  'k x(~)[a~X~,+i(k'~b)q%]~"(k),  (9) 

with k" ~ = 0. 
A subsector of this N S - R  string theory is 

spacetime supersymmetric; it is obtained by 
projecting onto the states of even world surface 
fermion number ( - 1 )  r =  1. In the R sector, 
( -  1) F acts as ~'n, so the even subspace corre- 
sponds to left-handed Majorana-Weyl spinors (we 
use the conventions [)% "t~] += - g ~ ,  Sa = S~%a, 
%~ = -ca~,  , / ~  = yf~). The lowest energy states 
now describe a massless ten-dimensional super- 
multiplet. 

In order to calculate fermion scattering ampli- 
tudes we shall have to compute spin field correla- 
tion functions. In principle these can be calculated 
as the free energy of double-valued fields ~ ~ with 
cuts on the world surface connecting pairs of spin 
fields. More practical methods [25] employ the 
SO(1,9) currents ~p~k~(z) and either the null 
vector [26] or vertex operator [27] construction of 
their spinor representation. For instance, in the 
vertex operator construction for the Wick rotated 
SO(10) currents, one begins by bosonizing the ten 
~P ~ to obtain five scalar fields O, which parametrize 
the maximal torus of SO(10). The spin fields are 
then the 25 exponentials :e '~ °:c,, with a =  
( + ~  > . . . ,  + ½) corresponding to the spinor weights 
of SO(10). % generates a two-cocycle in commuta- 
tion relations. This construction is analogous to 
that used for the E 8 × E 8 and SO(32) currents of 
the heterotic string. 

3. The ghosts. Vertex operators for physical 
state emission must have dimension one to make 
their z-integrals reparametrization invariant. The 
vertex operator S~e ~k X(z) will not work since it 
has dimension 5 / 8  + k2 /2  = 5/8.  We need a 
dimension-3/8 operator to complete the vertex. 

Goddard  and Olive suggested that the operator 
might come from the Faddeev-Popov ghosts. 

The Faddeev-Popov (super) determinant com- 
pensates for fixing the intrinsic super metric on the 
world surface. This superdeterminant is the 
jacobian for the change of variables 

3e~' = V,fl$ m, 3Xa = Va3c, (10) 

used to factor out the super-reparametrization 
group [12,14]. The jacobian may be represented by 
a path integral over a conjugate pair of free ghost 
superfields 

CZ = c~ + O'l °, Bze = flze + Obzz, (11) 

whose action is 

Sghost = f d2z d2OB~o[)C ~. (12) 

From this action we find the ghost super stress- 
energy tensor 

Tghost = - -  (D2B)C + ½(DB)(DC) - 3B(D2C),  

(13) 

and the two-point function (C(zt ,  8t)B(z2,/t2) ) = 
012/z12, where//12 =//1 -/92. It is the full stress- 
energy tensor T,~ = Tmatter(X, ~b) + T~ost which 
generates conformal transformations. In the 
algebra of conformal transformations resulting 
from the operator products [13] 

c /2  2Tz~ 1 
- - 4  - - +  
( z - w ) "  ( z - w )  2 z - w  

(14) 
the coefficient c of the Schwinger term receives 
contributions of 

c x = D ,  c ~ = D / 2 ,  Cb, C = - 2 6 ,  C a , r = l l .  

In D = 10 spacetime dimensions c = 0 so there is 
no anomaly in reparametrizations. 

The key point to realize is that the world sheet 
gravitino X~ and the spinor superconformal 
parameter ~ must obey boundary conditions 
corresponding to the NS and R sectors in order 
that the action (eq. (1)) be well-defined and locally 
supersymmetric. Thus the correct fermion emis- 
sion vertex introduces a cut in all the world sheet 
spinor fields, and will therefore involve a spin field 
E for the (commuting) spinor ghosts flzS, 7 ° in 

3zTz: + ...  , 
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addition to the spin field S a. E is most conve- 
niently constructed using an exponential represen- 
tation of the fl, ~, algebra. In order to do this we 
reconstruct the algebra of ghost operators by 
decomposing the c = 11 spinor ghost system into 
two subsystems, one with c = 13 and the other 
with c -- - 2. The former is obtained by bosoniz- 
ing the ghost current corresponding to ghost 
fermion number 

j ;  = (15)  

This current satisfies the anomalous conservation 
law 

0 , Z  = ~I/~QR (2), (16) 

with R ~2) the intrinsic scalar curvature on the 
world sheet and Q = 2. This anomaly is reflected 
in the operator product expansion 

T z z ( B , ' y ) j w - Q ( z - w ) - 3  + ( z - w ) - Z j z .  (17) 

On the general world surface with g handles the 
integrated anomaly gives the Riemann-Roch 
index 

# zero modes (V) - # zero modes (B)  

= X [dim (f l )  - 1/2]  = X" Q/2, (18) 

where X is the Euler characteristic X = 2 - 2g. On 
the sphere the anomaly is related to the two 
globally defined superconformal spinor zero 
modes which have been omitted from the 
Faddeev-Popov  determinant. A careful treatment 
of ghost zero modes in the bosonic string theory 
is given in ref. [28]; the supersymmetric case will 
be sketched in ref. [18]. 

From the ghost current j~ we construct another 
stress-energy tensor 

7"13 = - ½( JzJz - O O~jz), (19) 

which has the same operator product (eq. (17)) 
with j~ but conformal anomaly c = 13. This 
current and stress-energy tensor can be repre- 
sented by a scalar field .3 q~ with two-point 

,3 Thas modafication of the scalar field was first thscussed m 
ref [29]. It has  been extensively developed in the context 
of  conformal field theory m ref [30] D. F would hke to 
thank Vl S. Dotsenko for pointing out the role of the 
anomalous  current  m these scalar field systems 

funct ion (ep(z),l,(w)) -- l n ( z  - w). 

y z = - a ~ ,  T z z = - l ( a / o a ~ , - Q a ~ e p ) .  (20) 

The integrated anomaly can be interpreted as the 
existence of a background charge coupled to ~b of 
magnitude X" Q/2. 

The difference T_ 2 = T(fl, 3') - 7"13 commutes 
with j~ and has c -  - 2 .  It may be written in 
terms of a pair of anticommuting free fields ~l(z) 
of dimension 1 and ~(z) of dimension 0 as 

T 2 = (Oz~)~. (21) 

The free field theory for ~(z), ~(z) has the 
two-point function (~(z)n(w))  = (z - w) - t .  The 
exponential e ~ is a conformal field of dimension 

- ½a(a + 2); the dimension-3/2 and - 1 /2  fields 
flz0, go are represented by 

BzO = e-*Ozli, ~,0 = e*n. (22) 

Of course ~ and ~ can also be represented as 
exponentials of a free scalar field, of opposite 
signature to 4~ and with background charge 
Q = - 1 .  We observe that the conjugate fields 
e -*/2 and e * :  have dimensions 3 /8  and - 5/8,  
respectively, and are therefore candidates for 
inclusion in the fermion vertex as the spin field F.. 

Since ( has dimension 0 there is always a single 
constant zero mode in ~ for any world sheet 
topology. Note that the zero mode of ~ does not 
appear in the fl, "y algebra; only derivatives of 
appear. This is important, because the irreducible 
algebra of BRST-invariant operators will only 
involve factors of 0~.  We are only interested in 
correlation functions of such physical operators, 
so we can dispense with the zero mode of ~, and 
calculate expectation values in the vacuum 10) of 
the smaller algebra. Alternatively we can carry out 
the same calculation in the larger Hilbert space 
where the zero mode acts, but then the vacuum is 
doubly degenerate because of the zero mode. The 
two vacua can be written 10) and ~(0)10), with 
(010) = 0 but  (0[~(z)[0) = 1. One consequence 
is that a factor of ~(z) must be included in 
correlation functions to absorb the zero mode. The 
location of this extra ~(z) on the world sheet is 
irrelevant since only the constant zero mode 
contributes. 

The Hilbert space of the spinor ghosts fl, ,/is 
rather exotic because it derives from a first order 
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action for Bose fields. The SL(2, Iq) invariant NS 
vacuum state 10)sh of the ghosts is annihilated by 
the superconformal generators 

dz 
L n = t ~ - - z n + l T .  gh°st n = 0 ,  +1 ,  

~r 21ri . . . .  

dz  
Gn=g~--zn+l /2T ~a°st n = +_1/2, (23) 

)v 2~ri z ,  , 

but  is not a highest weight state (i.e., not 
annihilated by all the lowering operators of the 
fields b, e,/3, 7- Rather the highest weight state is 
e-*(°)c ~(0) 10), which has L 0 eigenvalue (energy) 
- 1 / 2 ;  this is the tachyonic NS vacuum state. 
Similarly, the highest weight state in the Ramond 
sector is e-*/2(°)c~(0)10), which has energy - 5/8.  
When we take the tensor product of this state with 
the states of energy 5 /8  created by the spin 
operator  S~, we find the massless R vacuum states. 
The coherent state operators :e-~*(z): act to 
redefine the "Bose sea level" by filling a given set 
of energy levels of the/3, 3' system. For instance, 
10)~ is annihilated by the Fourier components 

fdz 
y, = 2rriz"-3/27(z) (24) 

for n >I 3 / 2  whereas e-*(°)10)~ is annihilated by 
7, for n >i 1/2.  In contrast to the Fermi case, these 
different sea levels are unitarily inequivalent 
representations of the fl, ~, algebra. Note also that 
e-~(°)c~(O)lO) carries one unit of @charge and 
therefore has ( - 1 )  F=  - 1 ;  the tachyonic NS 
ground state will be eliminated upon projecting 
onto even (total) sheet fermion number. 

4. Verttces. We are now ready to assemble the 
various pieces of the fermion vertex. A physical 
vertex in either the NS or R sectors is one which 
respects BRST invariance, which is to say it 
commutes with the BRST charge 

1 
QBRsT= "~'~i ~)dzdOCZ(rmatter + l Tghost) 

- r ~  dz [ Z[T~(x, tl/)+ ½T~(b,c,/3,7)] - ; r  2,ri t c  

+7°[T~a(x, tl/)+½Tzo(b,c,/3, y)]}.  (251 

Reparametrization invariance in the quantum 

string theory means that 

2 (26) QBRST = 0. 

Physical states satisfy 

QBRsTIphys) = 0. (27) 

Operators such as [QBRsT, O], O any operator, 
automatically commute with QBRST but create null 
states. The superspace integrals of dimension-I /2  
superfields (e.g., eq. (9)) commute with QBRST and 
are appropriate vertices for boson emission. We 
find that the operator 

Vl=e-*/2S,,e 'k Xu"(k), 7 . k u = 0 ,  (28) 

is physical; this is to be expected since we have 
shown that it creates a physical R vacuum state. 
Since q~-charge is conserved in interactions we 
need a second piece of the fermion vertex with 
opposite q~-charge in order to have nonvanishing 
amplitudes; it is 

V 2 = [e*/2Savfl.( OzX ~ + ¼ik. ¢ ~ )  

+e3*/2"qbzzS~]e ik Xu"(k), 7 .ku=O.  (29) 

The second term will not contribute to expectation 
values due to b-charge conservation. Note that 
although S a has the opposite chirality compared 
to S~, V 2 differs from V x by carrying one more 
unit of @charge so that the overall value of ( -  1) r 
remains the same. One might at first think that V 2 
is a null operator since it can be written 

V2 = [QnRsa', ~Vl], (30) 

by taking the contour integral of the BRST current 
over a contour winch circles the operator ~Vl(z ). 
However ~ is not part of the/3, 7 algebra and 
therefore this description is just an artifact of our 
representation. Nevertheless this presentation of 
V 2 will be a useful tool. In particular it im- 
mediately implies that V 2 is BRST invariant. The 
full fermion vertex is now 

V F = l ( V  1 + V2). (31) 

This vertex is a local dimension-one conformal 
field so amplitudes constructed using it are 
manifestly dual. We can picture V t acting to create 
a cut in the world sheet spinors and V z acting to 
close a cut. Their operator product factorizes on 
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the physical NS boson vertices [31] 

Vl(k ,  z, u )V2(p ,w ,  v) - (z  - w)k'p-l~i'yP'u 

× [ OzX~' + i (k  + p ) "  t ~ / ~ ] e  l(k-ep) X(Z) 

+ . . . .  (32) 

Duality creates an apparent problem: how can we 
arrange the vertices so that they occur in the (time) 
order Kl(z)K2(w)Vl(t)V2(u ) . . . .  always taking us 
between the canonical NS and R Hilbert spaces? 
In the crossed channel we could not prevent the 
successive occurrence of V1V 1 or V2V 2. These 
operator products factorize the amplitude on what 
seem to be unphysical states associated with 
non-canonical Bose sea levels. We resolve this 
problem by the following argument. 

Consider any correlation function of fermion 
vertices. It is a sum of correlation functions each 
containing an equal number of V x and V 2 vertices 
by @ charge neutrality. We show that any such 
correlation function satisfies the identity 

< " ' "  V l ( k l ,  u 1, z1) " ' "  V2(k2, u2, z2) . - .  > 

= ( - - -  u a ,  . . .  v 1 ( / , 2 ,  . . .  ). 
(33) 

This allows us to rewrite all of the correlation 
functions of V 1 and V 2 in the canonical order 
V1V2Vy 2 . . . ,  ensuring that multifermion ampli- 
tudes factorize on only physical poles. 

To go from the right-hand side of eq. (33) to the 
left-hand side we calculate both in the large 
algebra which includes the ~ zero mode. Recall 
that a factor of ~(z) must be included in 
correlation functions to absorb the zero mode. The 
location of this extra ~(z) on the world sheet is 
irrelevant since only the zero mode contributes. 
Note  that the calculation in the smaller algebra 
(without the zero mode) is manifestly BRST 
invariant, but  in the large algebra it is not because 
QBRST ~l 0) 4= 0. Otherwise eq. (30) would imply 
that V 2 decouples and all fermion amplitudes 
would vanish. 

To demonstrate the identity (33) perform the 
following manipulations. The left-hand side of eq. 
(33) is pictured in fig. la. First move ~(z) to z 1. 
Next write V2(Z2)= [QBRsT, 2~Vl(z2)], expressing 
the commutator  as a contour integral as in fig. lb. 
Deform the contour to surround z I instead of z 2 

o) 

,((z) 

c) 

,Vt(zO 

.v2(z2) 

,EV1(z2) 

b) 

d) 

o((Z) 

.(vl(zt) 

@ 
,V2(z~) 

.V1(z2) 

Fig 1 Mampulations necessary to demonstrate eq (33). 

(fig. lc). Finally replace the contour integral with 
V2(zl) and m o v e  ~(gl )  back to z (fig. ld)  to obtain 
the fight-hand side of eq. (33). 

This manipulation shows that there is a 
remarkable redundancy in the representation of 
the fermion amplitude. In order to accommodate 
the fermion vertex we were forced to extend the 
Hilbert space to include an infinite number of 
inequivalent representations of the ghost algebra 
associated with the Bose sea levels. The fermion 
vertex generates a closed subalgebra of the 
enlarged matter-ghost  system which describes all 
physical particles. As we have just seen all Bose 
levels are equivalent under the algebra of vertex 
operators. We also note that the picture changing 
operation of the old NS dual model [32] can be 
implemented by the above operations along with 
the identity 

[QBRsT, ~e-q,q,~e~k x] = VB" (34) 

The supersymmetry current is VF(k = 0). The 
operator product  eq. (32) shows that contour 
integrals of the supersymmetry current will change 
a fermion to a boson vertex as the contour is 
deformed through it. The potentially troublesome 
V1V 1 and VEV 2 operator products are removed by 
the above procedure. The supersymmetry algebra 
is made more transparent by interpreting e ~/2S '~(z) 
as the dimension-0 superspace partner 6 ~ to 
X~(z),  with e-q'/ES,(z) and P~= OzX ~ their 
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canonica l  conjugates.  Then  we can write 

Vv( k = O) - ½( 8/~0" + O¢'),2pV ~') (35) 

for the supersymmetry  current.  
I n  conclus ion,  we have constructed the fermion 

vertex opera tor  in a Lorentz covariant  BRST 
quan t i za t ion  us ing conformal  field theory tech- 
niques ,  comple t ing  a covariant  quant iza t ion  of the 
superstr ing.  We have proven that the scattering 
ampl i tudes  of superstr ing bosons  and  fermions are 
Lorentz  invar ian t ,  BRST invariant ,  supersymmet-  
ric, and  dual ;  further details will be presented 
elsewhere [18]. This  formalism simplifies the 
ca lcula t ion  of fermion mul t ipoin t  correlations; the 
four - fe rmion  tree ampl i tude  will be reproduced in  
ref. [25]. The  method  generalizes to mult i loop 
correct ions in  a straightforward way; in  part icular;  
supersymmet ry  is apparent  to all orders (at least 
to the extent  that  the expansion itself is sensible). 

I t  should also be possible to give a superficial 
fo rmula t ion  of the superstring along the hnes 
envis ioned by  Siegel [33], thus relating the N S - R  
quan t i za t i on  to the quantized version of the 
G r e e n - S c h w a r z  covariant  theory [34]; the idea is 
tha t  the two should be related by a version of 
Wi t t en ' s  non -abe l i an  bosoniza t ion  [35]. 

We  would  like to thank T. Banks, J. Cohn,  
VI. S. Dotsenko ,  P. Goddard ,  D. Olive, Z. Qiu, R. 
Robin ,  W. Siegel, and  E. Wit ten  for their insights. 
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