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We discuss the realization of superconformal invariance in two dimensional quantum field theory. The Hilbert space of a 
superconformal theory splits into two sectors; one a representation of the Neveu-Schwarz algebra, the other of the Ramond 
algebra. We introduce the spin fields which intertwine the two sectors and correspond to the irreducible representations of 
the Ramond algebra. We give the determinant formula for the Ramond algebra and the discrete list of possible unitary repre- 
sentations. We have previously noted that the Z 2 even sector of the tricritical Ising model is a representation of the Neveu- 
Schwarz algebra. Here we complete the picture by showing that the Z 2 odd sector forms a representation of the Ramond 
algebra. This system is the first experimentally realizable supersymmetric field theory. 

Superconformal field theories are the supersymmet- 
ric generalizations of  conformally invariant field theo- 
ries. Every supersymmetric local field theory is supercon- 
formally invariant at short distances, so the realizations 
of  superconformal invariance completely determine 
the possible supersymmetric field theories. In statistical 
mechanics superconformal field theories describe spe- 
cial critical points at which the macroscopic physics is 
supersymmetric. 

In two dimensions the superconformal algebra has 
infinitely many generators. The structure of  the algebra 
is rigid enough to place significant restrictions on the 
field theories in which it is realized, extending the re- 
strictions imposed by the ordinary infinite dimensional 
conformal algebra, the Virasoro algebra [1,2]. 

The first examples of  supersymmetry appeared in 
string theory [3,4]. In fact, they were examples o f  two 
dimensional superconformal invariance - theories of  
free massless superfields on the world-surface o f  the 
string. The two superconformal algebras, the Ramond 
[3] and Neveu-Schwarz [4] algebras, act as gauge sym- 
metries o f  the string. 

In ordinary conformal field theory the scaling dimen- 
sions of  fields are determined by the unitary representa- 
tions o f  the Virasoro algebra [2]. In superconformal 
field theory the superfields correspond to irreducible 
representations o f  the Neveu-Schwarz algebra. In ref. 
[2] we gave the discrete list of  possible unitary repre- 
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sentations of  the Neveu-Schwarz algebra and thus the 
possible dimensions of  superfields in two dimensions. 
We pointed out that the simplest nontrivial examples 
in the discrete list corresponded to the Z 2 invariant sec- 
tor of  the tricritical Ising model, which describes generic 
tricritical phenomena in two dimensions [5]. The super- 
symmetry of  the corresponding conformal field theory 
was also noted by Zamolodchikov [6]. 

In this letter we point out that a superconformal 
field theory has a richer structure than given by its 
superfields alone. The Hilbert space of  the theory also 
contains irreducible representations o f  the Ramond al- 
gebra, corresponding to conformai fields distinct from 
the superfields and in fact nonlocal (i.e., double-valued) 
with respect to the fermionic parts of  the superfields. 
We call these the spin fields. The Z 2 odd operators of  
the tricritical Ising model are spin fields. 

The fermion parity ( - 1 )  F is multiplicatively con- 
served so we can project on the sector of  even fermion 
number. This selects the bosonic parts of  the superfields 
and a subset o f  the spin fields. The result is a new local 
bosonic field theory. We call this the spin model  corre- 
sponding to the original superconformal theory. The 
construction of  the spin model from a superconformal 
field theory is a direct generalization of  the construction 
of  the superstring from the free fields of  the R a m o n d -  
Neveu-Schwarz model [3,4,7], which is based on the 
construction o f  the critical Ising model from the mass- 
less Majorana fermion. 
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The infinite superconformal algebra is generated by 
the super stress-energy tensor T(z) = T F (z) + OT B (z) 
where z = (z, 0) is a complex super coordinate, T B (z) is 
the ordinary stress energy tensor (spin = dimension = 2), 
and T F (z) is its fermionic superpartner (spin = dimen- 
sion = 3/2). We omit discussion of  the ~ dependence 
since it is equivalent to the z dependence [1,2]. The 
correlation functions of  T F (z) can be double-valued 
because its spin is half-integral. Thus the Hilbert space 
of  the theory divides into two subspaces: the Neveu -  
Schwarz subspace on which T F (exp (2hi)z) = T F (z), 
and the Ramond subspace on which T F (exp (27ri)z) = 
- rF(Z) .  

The natural operator representation of superconfor- 
mal field theory comes from the radial quantization. 
We write z = exp (r  + ia) and take 7- to be euclidean 
time, a to be periodic space. The complex super coor- 
dinate (log z, z - l / 2 0 )  describes a cylindrical superspace. 
The super stress-energy tensor can be expanded in 
operator Fourier coefficients 

TF(Z ) + OTB(Z ) = ~ z - n - 3 / 2 T F ,  n + O z - n - Z T B ,  n. 
n 

(1) 

We will use the more conventional notation G n = 2 TF,n, 
L n = TB, n. In the Ramond sector the indices of  the G n 
are integers; in the  Neveu-Schwarz sector they are 
half-integers. The Fourier coefficients satisfy 

L ?n = L _ n ,  G?n = G_n, 

[Lm,Ln l  =(m - n ) L  m 1 ^ +n + ~ C (m 3 - m ) ~ m +  n, 

1 d(m2 x [Gm, Gn]+ = 2Lm+n +2 - ' ~ ) 6 m + n ,  

[Lm, Gn ] = (4 m - n )  Gm+ n . (2) 

The hermiticity conditions follow from reality of  the 
super stress-energy tensor. The (anti-)commutation re- 
lations are equivalent to the operator product expansion 

T(z 1)T(z2) -- ¼ d z i  3 

+(2O12z~- ] 1 - 1  + 2  z12 D 2 + 012z~ 1 02) T(z2) , (3) 

where z12 =z  1 - z  2 - 0 1 0 2 ,  012 = 0 1 - 0 2 ,  and 
D = O  0 + 0~) z. 

The coefficient 0 is a number which characterizes the 
operator implementation of  superconformal invariance 
in a particular theory. The usual central charge of  the 

Virasoro algebra is c = 3d/2. A single free super field has 
= 1. It  consists of  a free scalar field with c = 1 and a 

Majorana fermion with c = 1/2. 
A superfield ¢(z) = ¢0(z) + 0¢l(Z ) is a conformal 

superfield if it obeys the operator product expansion 

- 2  1 
T(Z l )¢ ( z2 )~hO12Zl2  ~(z2)+ 2 z]-21 D2~b+ 012z]-21+ ~2~b. 

(4) 

This is equivalent to the commutat ion relations 

[To, q~(z)] : 08¢ + 4  (Dv) D4~ + h O v )  ¢, (5) 

where 

T o = 2 ~ , f d z  dOu(z)  T(z)  (6) 

is the generator of  the infinitesimal superconformal 
transformation 6 0 = Do/2, 6z = u - 06 0. The complete 
algebra of  superfields is generated by products o f  the 
super stress-energy tensor with the conformal super- 
fields. 

In radial quantization the dilation opera torL 0 acts 
as hamiltonian. The L n and G n are lowering operators 
when n > 0 and raising operators when n < 0. A state 
Ih) of  energy h is called aground state if it is killed by 
all the lowering operators. The raising operators acting 
on a ground state generate an irreducible representation 
of  the algebra. The eigenspace L 0 = h + n is called leveln. 

The vacuum 10) is the ground state of  lowest energy 
h = 0. It  belongs to the Neveu-Schwarz  sector. It is invari- 
ant under the global superconformal group OSP (211), 
i.e. it is annihilated by the five generators L _  1, L 0, 
L1,  G1/2 and G 1 / 2  . The conformal superfields of  
the theory are in one to one correspondence with the 
ground states of  the Neveu-Schwarz algebra, the super- 
field ¢(z, 0) of  dimension h being associated with the 
ground state [h) = q~(0,0) 10) of energy h. 

The relation between ground states of  the Ramond 
algebra and conformal fields is more complicated. G O 
commutes with L0, so it acts on the ground states, 
which therefore come in orthogonal pairs [h +) and 
I h -  ) = G O I h +). By the general principle that ground 
states for the Virasoro algebra are associated with ordi- 
nary conformal fields [ 1,2], the Ramond ground states 
I h ± ) are created from the vacuum by spin fields 0 2 (z) 
which are ordinary conformal fields of  dimension h: 
I h ±) = O 2 (0) 10). From the action of  T F (z) on the 
Ramond ground states we find the operator product 

TF(Z)O±(w)  ' 2 (z - w ) -  3/2 as O* (w), (7) 
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wherea+ = 1 , a  =h  - ~/16. Thus TF(Z ) is double- 
valued with respect to the spin fields. In fact, all o f  
the fermionic parts of  the superfields are double-valued 
with respect to the spin fields, and all of  the bosonic 
parts are single-valued. Ramond boundary conditions 
can be regarded as due to a cut connecting spin fields 
at z = 0 and oo. The operator product (7) is equivalent 
to the relations 

K?_n - 1/20+(1) +- iO-+(1) K n = a+O~(1), (8) 

where 

1 f d z z n + 1 / 2 ( l _ z ) l / 2 2 T F ( Z )  
Kn - 27ri 

Izl<l  

1 Gn + . . . .  (9) =Gn --'~ 1 

These nonlocal relations between spin fields and the 
fermionic part of  the super stress-energy tensor can 
be regarded as the defining property o f  spin fields. 

If  we make the conformal transformation from the 
plane to the cylinder we find that in the Ramond sec- 
tor all o f  the fermionic parts o f  the superfields become 
periodic in space. The superfields acting in the Ramond 
sector form a self-contained supersymmetric field the- 
ory on the cylinder, with periodic spatial boundary 
conditions. The global supersymmetry is expressed by 
G0 2 = L 0 - ~ / 1 6 .  Supersymmetry is unbroken if and 
only if there are ground states with G O = 0, i.e. with 
h = ~/16. 

The fermion parity operator F = ( - 1 )  F anti-com- 
mutes with all the fermionic parts of  the superfields and 
commutes with the bosonic parts. Because of  its role 
in the fermionic string theory we refer to I" as the 
chirality operator. Since G O reverses chirality, the paired 
Ramond ground states have opposite chirality. I f h  = d/ 
16 then I h - )  is a null state and decouples, leaving a 
chirally asymmetric ground state. Witten's index [8] 
tr ( - 1 )  F for the supersymmetric theory on the cylinder 
with periodic spatial boundary conditions counts the 
chiralities of  the h = ~/16 Ramond ground states. I f  the 
index is nonzero then supersymmetry cannot be broken 
and there must be some chirally asymmetric h = d/16 
ground states. I f  the index is zero then there is no chiral 
asymmetry and in the generic case the supersymmetry 
will be broken. 

The fermionic string theory in D space-t ime dimen- 
sions is described by D free superfields X u (z) = x u (z ) 
+ Off u (z) on the world-surface of  the string. The super 

stress-energy tensor is T = DX u D2XU/2, and the oper- 
ator product (3), with 0 = D, can be verified using the 
two point function (XU(zl)  Xv(z2)) = 6 u In z12. For 
a single free superfield, the Majorana fermion ~b is equiv- 
alent to the Ising model at its critical point. The ground 
state energy with Ramond boundary conditions is 1/16. 
The spin fields are the dimension i /16 order and disor- 
der operators of  the Ising model. For arbitrary D the 
spin fields are products o fD  Ising order or disorder 
operators and have dimension h = D~ 16 = ~/16. They 
form the fermionic vertex constructed by Corrigan, 
Goddard and Olive [9], who wrote the relations (8) 
for the degenerate case h = 0/16. The connection be- 
tween the fermionic string and the Ising model was first 
pointed out by Aharonov, Casher and Susskind [ I0].  

With Ramond boundary conditions, the fields t~U(z) 
contain zero modes qJ~ which obey the anti-commuta- 
tion relations of  the Clifford algebra 3, u. They com- 
mute with L 0 and therefore act on the Ramond ground 
states. Thus fo rD  even the spin field O a transforms as 
a space-t ime Dirac spinor. For D odd, e.g. D = 1, the 
spin fields must transform as a pair of  spinors of  oppo- 
site chirality in order for I" to be defined. For all D, 
the chirality operator acts by F O F  = 7D+I O. Projec- 
tion on the I" = 1 sector o f t h e D  = 10 fermionic string 
yields the superstring [7]. The spin field O a becomes 
a Weyl spinor. 

In the general superconformal theory, spin fields of  
opposite chirality are nonlocal with respect to each 
other, since their operator products contain fermionic 
fields, while spin fields o f  the same chirality are mutual- 
ly local. Therefore, projecting on the sector I" = 1 in 
any superconformal field theory gives a local field the- 
ory, the spin model. Of course, in a complete treatment 
o f  superconformal field theory we must take into ac- 
count the (~, 0) dependence of  the fields. The full su- 
perconformal algebra is the tensor product of  two al- 
gebras, one describing transformations in (z, 0), the 
other in (2, 0). The natural chirality operator is F 
= ( - 1 )  F where F is the fermion number of  the full the- 
ory. It is interesting to note, however, that in the fer- 
mionic string two chirality operators, P and F, are de- 
fined, one in the (z, 0) sector, the other in the (~, t~) 
sector. The superstring requires projection on P = r = 1. 

In summary, the Hilbert space of  a superconformal 
theory divides into two subspaces, the Neveu-Schwarz 
and Ramond sector. The vacuum is in the Neveu-  
Schwarz sector. The operators o f  the theory can be pic- 
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tured in two by two block form. The superfields of  
the theory are block diagonal, taking the Neveu-  
Schwarz sector to the Neveu-Schwarz sector and the 
Ramond sector to the Ramond sector. The spin fields 
are block off-diagonal. The dimensions of  the super- 
fields are given by the ground state energies in the 
Neveu-Schwarz sector, since they make Neveu-  
Schwarz states from the vacuum. The dimensions of  
the spin fields are given by the ground state energies 
in the Ramond sector, since the spin fields make 
Ramond states from the Neveu-Schwarz vacuum. The 
complete superconformal field theory is not local, 
since the fermionic operators are double-valued with 
respect to the spin fields. There are two ways to pro- 
ject onto a local field theory. The first is to restrict to 
the Neveu-Schwarz sector, giving the usual algebra of  
superfields. The second is to restrict to the I" = 1 sec- 
tor, giving the spin model. The complete superconfor- 
mal theory can be reconstructed from the superfields 
by representing a pair o f  spin fields as endpoints of  a 
cut in the plane across which the fermionic fields 
change sign. The fermionic fields can presumably be 
reconstructed from the P = 1 spin fields by a general- 
ization of  the Jordan-Wigner construction of  the fer- 
mion field from the Ising order parameter. It is not  yet 
clear how to characterize those local field theories 
which are spin models of  superconformal field theories. 

We focus now on unitary superconformal theories. 
Unitarity requires that the Hilbert space of  a theory 
contain no negative metric states. Irreducible represen- 
tations of  the conformal algebras can be free from neg- 
ative metric states only for certain values of  the super- 
conformal anomaly 0 and the ground state energy h. 
IfO >f 1 then all representations with h />  0 are unitary. 
For 0 < 1 there is a discrete list of  possible unitary 
representations. For p and q positive integers, define 

and hp, q by 

e(rh) = 1 - 8/rh(th + 2), 

hp, q = ([(th + 2 )p  - rhq] 2 - 4)/8rh(th + 2) 

+ ~  [ 1 -  ( - 1 ) P - q ] .  (10) 

The possible unitary representations of  the supercon- 
formal algebras with ~ < 1 are 

d = d(rh), rh = 2 , 3 , 4  . . . .  

h=hp, q(rh), 1 ~ < p < r h ,  l ~ < q < r h + 2 .  (11) 

The Neveu-Schwarz representations are given by the 
hp, q with p - q  even [2] ; the Ramond representations 
by the hp, q with p - q  odd. 

Each unitary field theory with d < 1 must be built 
from the possible representations on the list for some 
fixed rh. The striking feature of  the list (11) is that the 
possible representations of  the two superconformal al- 
gebras occur at the same values of  0. This strongly in- 
dicates the existence of  a discrete series of  supercon- 
formal models in the sense described above. 

For th odd, ~/16 is not an allowed ground state ener- 
gy, so the supersymmetry of  the periodic model on the 
cylinder is broken. When rh is even, hrh/2 ' r h / 2 + l  = ~/16, 
so the supersymmetry on the cylinder is unbroken. 

The constraint of  unitarity applies level by level, 
since the eigenspaces o fL  0 are orthogonal The nth 
level of  an irreducible representation is spanned by the 
vectors 

G_mlG_m2. . .  L_nlL_n2 ... Ih), 

0 < m l < m  2 ..., 0 < n l  ~<n2.. . ,  

n = ~ m  i+ ~ n i ,  (12) 

where I h) is a ground state vector. In the Neveu-  
Schwarz sector the m i are half-integers; in the Ramond 
sector the m i are integers. A chirality operator can be 
defined by 

r l h )  = Ih) or I ' l h  -+) = -+lh+), 

[I', Gn] + = [P, Ln] = 0. (13) 

Each Ramond level splits into I ~ = + 1 eigenspaces, 
while each Neveu-Schwarz level is itself a P = + 1 eigen- 
space. In each sector, at each level n and in each I" = + 1 
eigenspace we can calculate the matr ixM n of  inner 
products of  the states (12). Unitarity requires that all 
o f  these matrices be nonnegative. 

The essential tool for finding negative metric states 
is a formula for det(Mn). Kac [11] gave the formula 
for the Neveu-Schwarz algebra: 

det(Mn)= l-I [h-hp,  q(d)] PNS(n-pql2), (14) 

where the product runs over positive integers p, q with 
pq/2 <~ n and p - q  even. PNS (k) is the dimension of  
level k: 
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tkPNs(k) = H ( l + t k - 1 / 2 ) / ( 1 - t k ) .  (15) 
k=0 k=l  

We arrived at the determinant formula for the Ramond 
algebra by numerical calculations: 

det(M~) = 1, det(M~) = h - ~/16, 

det (M'~n) = det (M n ) = (h - ~/16) PR (n)/2 

X H [ h  h (~)] PR(n-pq/2) f o r n > 0 ,  (16) 
- p,q 

where the product runs over positive integers p,  q with 
pq/2 <~ n and p -q  odd. PR (k) is half the dimension of  
the kth level: 

tkPR (k) : H (1 + tk)/(1 - tk). (17) 
k =0 k=l  

Both determinant formulas (14), (16) have now been 
proved by Meurman and Rocha-Caridi [12] using the 
technique that Feigin and Fuchs [13] applied to prove 
the Kac determinant formula for the Virasoro algebra. 
Curtwright and Thorn [14] have independently proved 
these determinant formulas. 

As with the Virasoro algebra, M n becomes diagonal 
and positive ash ~ 0% and det(Mn) has no zeros in the 
quadrant d > l, h > 0. Thus there are no negative met- 
ric states fo rd />  0, h />  0. On the other hand, f o r d <  1 
and any h, there is always some n for which 
det(M n (d, h)) ~< 0. A negative determinant indicates 
at least one negative metric state, so every unitary 
representation with d < 1 must lie on a vanishing curve 
h = hp, q (d) or, in the Ramond case, h = ~/16. The rest 
of  the argument which gives the list (I  l) is essentially 
the same as used in ref. [2] for the Virasoro algebra. 
The list (11) consists of  the so-called first intersections 
[2] of  the vanishing curves h = hp, q (d). It can be shown 
that there is a negative metric state between first inter- 
sections on each vanishing curve, which leaves only the 
first intersections as possible unitary representations. 
For the Ramond algebra there is a slight variation in 
the argument, because the collection o f  curves (hp p+l) 
makes first intersections with the single curve h = c/16 
while for k :~ 1 the collection (hp, p+k) makes first in- 
tersections with the collection (hp, p+2-k). 

The first nontrivial model has rh = 3, ~ = 7/15. c = 
7/10. This is the only value o f c  which occurs in the dis- 
crete lists for both the superconformal algebras and the 
Virasoro algebra [2]. In ref. [2] we identified c = 7/10 

with the tricritical Ising model and KadanoIt | lb  I con- 
firmed the identification using correlation functions 
calculated by himself and Nienhuis [16]. The tricritical 
Ising model [5] is an Ising model with annealed vacan- 
cies. It has a tricritical point at a certain temperature 
and vacancy chemical potential. The model is invariant 
under the Z 2 symmetry which flips both the order 
operators, the Ising spins, and the disorder operators 
[17]. We pointed out in ref. [2] that the Z 2 even sec- 
tor is described by representations of  the Neveu-  
Schwarz algebra. Here we complete the picture by 
pointing out that the Z 2 odd sector is described by 
representations of  the Ramond algebra. Thus the tri- 
critical Ising model is a superconformal field theory. 

The ground state energies allowed by unitarity and 
ordinary conformal invariance are [2] h = 0, 3/80, 
1/10, 7/16, 3/5, and 3/2. The ground state energies al- 
lowed by unitarity and superconformal invadance in 
the Neveu-Schwarz sector are hl ,  1 = 0 and h2, 2 = 1/10. 
They decompose into irreducible representations of  the 
Virasoro algebra: 

(0)N S = (0)VIR • (3/2)VI R , 

(1/10)N S = (1/10)VLR $ (6/10)VIR. (18) 

These are the dimensions o f  the Z 2 even operators of  
the tricritical Ising model [ 18]. The allowed representa- 
tions of  the Ramond algebra are hl ,  2 = 3/80 and h2,1 
= 7/16, each consisting o f  exactly one irreducible rep- 
resentation of  the Virasoro algebra *1. These are the di- 
mensions of  the Z 2 odd operators of  the tricritical 
Ising model, i.e., the leading and subleading magnetic 
spin operators [ 19]. These operators take Z 2 even states 
to Z 2 odd and vice versa and so intertwine the Ramond 
and Neveu-Schwarz sectors of  the theory. The disorder 
operators are the P = - 1  spin fields. The F = 1 projec- 
tion of  the superconformal model is a maximal mutual- 
ly local algebra of  operators. This picture of  the tricriti- 
cal Ising model is supported by the operator product 
relations o f  ordinary conformal field theory [ 1 ]. 

All of  the Z 2 even operators can be constructed 
from the super stress-energy tensor and a single con- 
formal superfield. To do this we use the complex con- 
jugate coordinates (~, 0) _and the (h, tt) notation which 
gives the dimension (h + h) and the spin (h - h) of  a 

4:1 A superconformal representation does not typically decom- 
pose into only a f'mite number of Virasoro representations. 
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conformal field [1,2]. The Z 2 invariant operators con- 
sists [18] of the energy operator e with (h, h) = (1/10, 
1/10), the vacancy operator t with (6/10, 6/10), and an 
irrelevant operator with (3•2, 3/2). There are also Z 2 
even fermionic operators ~ with (6/10, 1/10) and T F 
with (3/2, 0). The ordinary stress-energy tensor is 
combined with T F to form the super stress-energy 
tensor, and the (3/2, 3/2) operator is interpreted as 
TF TF. The remaining even oper_atorsare combined to 
form a superfield ~b = e + 0 ~0 + 0ff + OOt with (h,/70 
= (1/10, 1/10). All of the correlation functions of the 
Z 2 even operators can be derived from the correlations 
of the superfield d;, since correlation functions of the 
super stress-energy tensor are completely determined 
by the commutation relations (2), as in ordinary con- 
formal field theory [1]. 

We have calculated correlation functions of the su- 
perfield of the tricritical Ising model by a supersym- 
metric version of the method of null vectors and linear 
differential equations [ 1,20]. Here we present the re- 
sult for the four point function. Derivations and addi- 
tional results will be presented elsewhere [21]. The null 
vector [G_ 3/2 - (5/3) L_IG_I /2]  I1/10) gives rise to 
a linear super differential equation on correlation func- 
tions of d~ which, along with the appropriate singular- 
ity and monodromy conditions, determines the four 
point function: 

(qb(1) d/,(2) d/,(3) qb(4)} = [z12z23z34z411-1/5 
× (If(r / ,  ~')12 +hlg(r / ,  ~')12), (19) 

where r / = z 1 2 z 3 4 / z 1 3 z 2 4  , ~ = 1 - r l - z14z23 / z13z24  
and 

f =  (1 + ~'~ d/dr/) ([~(1 - r / ) ] - l / l ° F l (  1, --g,-g, r ~ ) ) 2  2 

+~s ~[r/(1 - r / ) ]  9 / l °F l (~ ,  ~ ,  1~ ,r/), 

g = ( l + ~ r l d / d ~ ) ( [ r l ( l _ r l ) ] l / 2 F l ( s , 4 _ g ,  "g,8 rl)) 

1 - 1 / 2 F 1  3 2 +-g ~-[~(1 - ~ ) ]  (_ 6 ~- , - -e , - -e ,  ~), 

_ 4  A - ~ U(4/5) 1-' (2/5) 3/F(1/5) F(3/5) 3 . (20) 

It is also possible to construct correlation functions 
for conformal superfields by a straightforward super- 
symmetric extension of the Feigin-Fuchs Coulomb gas 
integral representation [22] *2. Conformal superfields 

.2 For related works, see refs. [18,19]. 

are represented by exponentials of a free superfield. 
An extra supercharge is placed at infinity and the net 
charge is neutralized by superconformally invariant 
contour integrals ofh  = 1/2 exponentials of the free 
superfield. To obtain nonvanishing correlation functions 
of bosonic fields there must be an even number of neu- 
tralizing supercharges. By this method it is possible to 
describe correlation functions of all conformal super- 
fields corresponding to degenerate representations of 
the Neveu-Schwarz algebra (as well as certain others). 
Bershadsky, Knizhnik, and Teitelman [23] have inde- 
pendently constructed this integral representation and 
used it to study the operator product structure of con- 
formal superfields. 

The correlation functions of the tricritical Ising mod- 
el can also be calculated using ordinary conformal prop- 
erties. The results of Dotsenko and Fateev [22] show 
that there is a unique conformally invariant theory with 
the appropriate field content (at least in the Z 2 even 
sector), so it must be the supersymmetric theory. Rela- 
tions like eq. (7) can be checked by the ordinary con- 
formal techniques. We are currently constructing ex- 
plicitly supersymmetric representations of combined 
spin operator and superfield correlation functions. 

We should note that Rocha-Caridi [24] calculated 
the partition functions of the representations with 
c = 7/10. We should also mention interesting recent 
work by Goddard and Olive [25]. Using Kac-Moody 
algebra techniques they have found a fermionic oscilla- 
tor realization for the c = 7/10 representations, among 
others, thus proving their unitarity. 

There are several applications of superconformal 
field theory in superstring theory. The Faddeev-Popov 
ghosts of the fermionic string [26] form a superconfor- 
mal system. The ghost spin fields complete the covariant 
construction of the fermionic vertex [27]. Ising model 
techniques can be used to calculate multi-fermion am- 
plitudes [28]. Nontrivial superconformal field theories 
with d = 6 give possible compactifications of superstring 
theories from ten to four dimensions [29]. In particular, 
the N = 1 supersymmetric nonlinear sigma models with 
Ricci-flat internal spaces are conjectured to have zero 
beta function [30], which implies superconformal in- 
variance. Such models can be defined on the world-sur- 
face of the open type I superstring if they are extended 
by boundary terms which depend on a Yang-Mills 
gauge field on the internal space. The Ramond represen- 
tation of the superconformal sigma model determines 
the fermionic spectrum of the compactified superstring, 
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and the index tr(P) gives the chiral fermion content. 
Another set of  superconformal models which can pro- 
vide compactifications of the string are t h e N  = 1 super- 
symmetric generalizations of the nonlinear sigma mod- 
els with Wess-Zumino term, at zeroes of their beta 

functions [31 ]. The super Kac-Moody current algebras 
of these models can be used to show the absence of 
massless fermions in the closed string sector, and thus 
the breaking of supersymmetry in the compactified 
string. 

Finally, we remark that the tricritical Ising model 
can be realized experimentally (for example by adsorb- 

ing helium-4 on krypton plated graphite [32]) and so 
provides the first instance of a supersymmetric field 

theory in nature. 
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