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The boundary � function generates the renormalization group acting on the universality classes of
one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the
boundary. We prove a gradient formula for the boundary � function, expressing it as the gradient of the
boundary entropy s at fixed nonzero temperature. The gradient formula implies that s decreases under
renormalization, except at critical points (where it stays constant). At a critical point, the number exp�s�
is the ‘‘ground-state degeneracy,’’ g, of Affleck and Ludwig, so we have proved their long-standing
conjecture that g decreases under renormalization, from critical point to critical point. The gradient
formula also implies that s decreases with temperature, except at critical points, where it is independent
of temperature. It remains open whether the boundary entropy is always bounded below.
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gab����b��� � �@s=@�a; (3) equivalent to a gradient formula conjectured in string
For a one-dimensional quantum critical system with a
boundary, lnZ � lnTr exp���H� takes the universal form
[1] �c�=6��L=�� � lng, whereH is the Hamiltonian, � �
1=T is the inverse temperature, L� � is the length, c is
the numerical coefficient of the bulk conformal anomaly,
and g is the ‘‘universal noninteger ground-state degener-
acy’’ at the boundary (using natural units in which 
h �
k � v � 1, v being the velocity of ‘‘light’’). This formula
applies in the limit of large L. The number g is an
invariant of the universality class of the critical boundary
condition. It was conjectured that g decreases from criti-
cal point to critical point under renormalization [1,2].

For a 1D quantum system that is critical in the bulk but
is not critical at the boundary, the logarithm of the
partition function at low temperature can be written in
the form lnZ � �c�=6��L=�� � lnzL, and the boundary
partition function z can be defined as limL!1zL. That is,
the partition function takes the universal form

lnZ � �c�=6��L=�� � lnz (1)

up to corrections that vanish in the limit L! 1.
Given that the bulk system is critical and that L � 1,

the only dimensionful parameter is the temperature T.
The logarithm of the boundary partition function is thus
a function lnz���� that depends only on the temperature,
in units of�, where � is a small temperature that sets the
renormalization scale (or, equivalently, a small energy or
inverse time or inverse distance). The total entropy then
takes the universal form

S � �1� �@=@�� lnZ � �c�=3��L=�� � s����; (2)

where s���� � �1� �@=@�� lnz is the boundary entropy.
At a critical point, s is equal to the constant lng.

We prove here a gradient formula
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where the �a form a complete set of boundary coupling
constants, gab��� is a certain metric on the space of all
boundary conditions, and �a��� is the boundary � func-
tion. It follows directly from the gradient formula that
�@s=@� � �a@as � �gab�a�b, so s decreases under
the renormalization group except where �a � 0 at the
critical points. The gradient formula eliminates the pos-
sibility of esoteric asymptotic behavior under renormal-
ization. Recurring trajectories such as limit cycles are
excluded. The g conjecture for the renormalization group
(RG) flows between critical points follows as a corollary
of the gradient formula.

The gradient formula implies equally that the bound-
ary entropy decreases with temperature, �@s=@� �
�@s=@� < 0. The total entropy S obviously decreases
with temperature because @S=@� � ��h�H � hHi�2i.
However, the decrease of the bulk contribution
��=3��L=��c masks the change in s, so it is not obvious
that the boundary entropy by itself must decrease with
temperature. The gradient formula implies that it does. It
follows that the thermodynamic boundary energy also
decreases with temperature, ��@u=@� � @s=@� < 0.

Complete control over the possible behavior at asymp-
totically low temperature is still lacking because we do
not prove that s is bounded below. If s is bounded below,
then the system must go to a critical point at zero tem-
perature. Of course, the total entropy S of any system is
bounded below, as long as the system is of finite size.
So, for any finite size L, sL � S� �c�=3��L=�� is
bounded below as T ! 0. However, the lower bound can
descend without limit as L! 1, so s � limL!1sL is not
necessarily bounded below as T ! 0. It still remains to be
proved that s���� is bounded below as T ! 0. If the
boundary entropy is bounded below, then the boundary
energy is also bounded below.

The gradient formula that we prove is mathematically
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theory [3–7]. Evidence was given for the string theory
conjecture [4,6,8], but the formula was never proved. It
has been claimed that a proof was given in Ref. [7], but it
was assumed there that the boundary � function �a��� is
linear in the coupling constants �a. This is an invalid
assumption. The � function cannot be linearized when
there are marginally relevant couplings or, more gener-
ally, whenever resonance conditions occur (as discussed,
for example, in Ref. [6]). Moreover, the conjectured string
gradient formula is expressed in unphysical quantities, in
terms of unnormalized correlation functions. Our contri-
bution is to express the gradient formula in terms of
normalized correlation functions and the boundary en-
tropy, which are physical quantities, and to prove the
formula using physical properties of the 1D quantum
system. Some of the ideas used in the proof can be found
in the string theory work [3,6]. The rewriting of the
conjectured string gradient formula is based on an idea
that is implicit in Ref. [7] and was mentioned explicitly to
us [9]. Here, to avoid distracting from the physical mean-
ing, we first prove the gradient formula in physical terms
and only afterwards explain the connection to the string
conjecture.

The proof of the gradient formula applies to all local
1D quantum systems. It uses only the basic principles of
quantum mechanics and locality. The gradient formula
must therefore hold in every local 1D quantum mechani-
cal model. The point of proving a result such as the
gradient formula is to give reliable theoretical informa-
tion about what is physically possible. For instance, when
building devices out of low temperature 1D quantum
systems joined at boundaries, it will be useful to know
in advance, with certainty, what kinds of boundary be-
haviors are possible. It will be useful to know that the
boundary must always behave as a thermodynamic sys-
tem, except that it does not obey the third law. Proof also
reveals what must be done to evade the theoretical limits.
The gradient formula itself is not likely to be avoidable,
since the proof depends only on the basic principles
of quantum mechanics and renormalization, assuming
only the existence of a local stress-energy tensor, which
is assured by microscopic locality. Rather, attention is
directed towards exotic systems, where the metric
gab��� degenerates, or where s is infinite [10,11], or
even where s might not be bounded below, if this cannot
be proved impossible. A lower bound on s would have to
depend on the details of the bulk system. The bound could
not be uniform, not a function of c alone. This can be seen
in the critical c � 1 Gaussian model, where the values of
g depend on the marginal coupling constant of the bulk
model and can become arbitrarily close to zero [12].

The equilibrium observables of the system live on the
cylindrical Euclidean space-time, periodic in Euclidean
time with period �. The spacetime coordinates are x� �
�x; ��, where 0 � x < L and �� �� �. The boundary is
at x � 0. The stress-energy tensor T���x; �� expresses the
response of the system to an infinitesimal local variation
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of the metric, g�� ! ��� � �g���x; ��,

� lnZ � �1=2�
ZZ
�2d�dx h�g��T

���x; ��i: (4)

To avoid potential confusion, we stress that the metric
here is not dynamical. The metric describes the back-
ground geometry in which the 1D quantum system exists.

We specialize to 1� 1 dimensions the general analysis
of the stress-energy tensor in space-times with boundary
[13]. The stress-energy tensor can be written as a bulk
part plus a boundary part:

T�� � Tbulk
�� �x; �� � ���x�t�����: (5)

There could also be a boundary operator proportional to
�0�x�1, but the identity operator makes no contribution to
connected correlation functions, so we can ignore it.

The conservation equations follow from invariance of
the physics under localized coordinate reparametriza-
tions �x� � v��x; �� where the vector field v� is tangent
to the boundary, i.e., vx�0; �� � 0. A nearly critical sys-
tem is insensitive to the detailed coordinate labeling of its
local degrees of freedom (e.g., the coordinate labeling of
lattice sites in a lattice model). The coordinate reparamet-
rization is equivalent to a change in the metric tensor
�g�� � @�v� � @�v�. Plugging this into the formula for
� lnZ and setting the variation to zero, we obtain, after
integration by parts, the bulk conservation equation
@�Tbulk

�� � 0 and also
R
�d���Tbulk

x� v
� � t��@

�v�� � 0
at the boundary, which is equivalent to the boundary
conservation equations txx � tx� � t�x � 0 and

�Tbulk
x� �0; �� � @�� � 0; (6)

where ���� � t�����. The boundary operator � was de-
scribed in Ref. [14]. The trace of the stress-tensor is

T�� � ��x; �� � �bulk�x; �� � ���x�����: (7)

The system is critical in the bulk, so �bulk�x; �� � 0 up to
contact terms. The full trace is � � ���x�����, entirely a
boundary operator.

The space of boundary conditions is parametrized by
the coupling constants �a, which couple to the renormal-
ized local boundary fields  a, @a lnZ �

R
�d� h a���i.

The boundary trace � can be decomposed into a linear
combination of the boundary fields and the identity op-
erator

� � �a��� a � h���1; (8)

where �a��� is the boundary � function. We will not have
to worry about the term h���1 because � will only appear
within connected correlation functions.

The foregoing are operator statements. In correlation
functions, the stress-energy tensor will also have contact
terms. The generator of dilatations �g�� � 2���=�����
is
RR
�2d�dx��x; ��, so the renormalization group equa-

tion for lnZ is
030402-2
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��@=@�� lnZ �
ZZ
�2d�dxh��x; ��i

� �a@a lnZ���h���; (9)

where � is given by Eq. (7). For the one-point functions,

��@=@��h b��1�i�
ZZ

�2d�dxh��x;�� b��1�ic

���a@a�cb�!
c
b��

c
b�h c��1�i; (10)

where the coefficients !cb � �
c
b come from contact terms

of �bulk and � with  b. Because of the contact terms,
�bulk cannot be omitted. The identity !ab � @b�

a follows
from ��@=@�; @a� � 0, which in turn follows from the
definition of the �a as the coupling constants renormal-
ized at scale �. We will need one last property of the
stress-energy tensor: that Tbulk

�� �x; �� decays as
exp��4�x=�� in connected correlation functions far
from the boundary. This follows from the fact that when
x is far from the boundary, Tbulk

�� �x; �� behaves as in the
bulk theory without boundary.

We prove the gradient formula, Eq. (3), with the metric
on the space of boundary conditions given by

gab��� �
Z
�d�1

Z
�d�h a��1� b���icf��� �1�;

(11)

where f��� � 1� cos�2��=��. This is essentially the
metric proposed in Ref. [3], except that Ref. [3] used
the unnormalized, full two-point function, while we use
the normalized, connected two-point function. Because
we are using the connected two-point function, we can
write

gab�
b �

Z
�d�1

Z
�d�h a��1�����icf��� �1�: (12)

The identity component of � makes no contribution to the
connected two-point function. Let us deal with the term
containing the cosine:

Aa��1� �
Z
�d�h a��1�����ic�� cos�2���� �1�=���

�
Z
�d�h a��1�@�����ic2v

��0; ��; (13)
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where we integrate by parts on the boundary and define
v��0; �� � ��=4�� sin�2���� �1�=�� as a tangent vector
field on the boundary. The correlation functions are dis-
tributions, so integration by parts is justified. By the
boundary conservation law Eq. (6),

Aa��1� �
Z
�d�h a��1��Tbulk

x� ���ic��2�v��0; ��: (14)

Next, we extend the boundary vector field v��0; �� to a
conformal Killing vector field v��x; �� in the bulk. That
is, vx�0; �� � 0 and @�v� � @�v� � g��@$v$. Such a
vector field is most easily found as an analytic vector
field vw � �2�=���vx � iv�� in the complex coordinate
w � 2��x� i��=�, vw � �exp�w� w1� � exp��w�
w1��=4. Then @$v$ � cos�2���� �1�=�� cosh�2�x=��.
Now we integrate by parts in the bulk, using the bulk
conservation equation, to obtain

Aa��1� �
ZZ
�2d�dxh a��1�Tbulk

�� �x; ��ic2@�v�: (15)

There is no boundary term at large x because of the decay
condition Tbulk

�� �x; �� � exp��4�x=��. Then we use the
fact that v� is a conformal Killing vector to write

Aa��1� �
ZZ
�2d�dxh a��1��bulk�x; ��ic@$v

$: (16)

Finally, we can approximate @$v$ � 1 because �bulk �
0, except for contact terms. The boundary operator a��1�
is renormalizable, and �bulk has dimension 2, so the
most singular contact terms in the two-point function
are of the form ��x��0��� �1� and �0�x����� �1�. But
@$v

$�x; �� � 1 vanishes to second order at x � 0, � � �1,
so there is no error. Thus

Aa��1� �
ZZ
�2d�dxh a��1��bulk�x; ��ic: (17)

Using Eqs. (17) and (7) in Eq. (12), we arrive at
gab�
b �

Z
�d�1

ZZ
�2d�dxh a��1���bulk�x; �� � ���x������ic �

Z
�d�1

ZZ
�2d�dxh a��1���x; ��ic

�
Z
�d�1��@=@��h a��1�i � ��@=@�� 1�@a lnZ � �@as; (18)
which is the gradient formula.
Each element of the gradient formula is covariant under

renormalization. The boundary entropy s is covariant,
�@s=@� � �a@as, even though the partition function is
not [see Eq. (9)]. Using Eq. (9),

��@=@�� �a@a�s � ��@=@�� �a@a��1��@=@�� lnZ

� �1��@=@�����h� � 0: (19)
That is, the entropy is not sensitive to a shift of the ground
state energy. The covariance of �a is just its � indepen-
dence. The metric gab is covariant under renormalization
because it is defined in terms of normalized, connected
correlation functions, in Eq. (11).

To show that the metric gab is positively definite, we
need only remark that gab��a��b is given in Eq. (11) as a
030402-3
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positive two-point function of  � ��a a, integrated
against a positive function.

The cosine term in the metric plays a twofold role. On
the one hand, it provides the �bulk term in the correlation
function of � with the boundary operator. On the other
hand, the cosine term renders the metric independent of
contact terms in the two-point functions of the boundary
operators. Such terms could spoil the positivity of the
metric. The metric, as defined by Eq. (11), is independent
of contact terms. During the proof of the gradient for-
mula, we split it into two parts, each of which does
depend on the contact terms. At that point, the two-point
functions have to be treated as distributions. In the end,
when the two terms are joined together, the result is
independent of the contact terms. The technical roles of
the cosine term are evident, but we do not see a deeper
meaning. The cosine first appeared in the string theory
metric proposed in Ref. [3]. But the proposal was not
natural in string theory, as it involved integrating dimen-
sion zero fields. So we still do not see a natural interpre-
tation of the cosine term.

The conjectured string theory gradient formula in-
volves an additional boundary coupling constant �0

which couples to the identity operator  0 � 1. The string
partition function is Zs � exp����0�z����, where
z���� is the boundary partition function, from Eq. (1).
The string � function, �as , is the ordinary �a for the
ordinary coupling constants; plus, from Eq. (9), �0

s �
�0 � h���. The conjectured string theory gradient for-
mula is Gsab�

b
s � �@ags, where gs � �1��@=@��Zs

and the string metric is

Gsab��� �
Z
�d�1

Z
�d�Zsh a��1� b���if��� �1�:

(20)

These string formulas are unphysical when applied to 1D
quantum systems. No physical probe couples to the iden-
tity operator  0 � 1, so �0 is not a physical coupling
constant. Unnormalized correlation functions are not
measurable. Changes in gs are not locally measurable
because gs is constructed from z, not lnZ. On the other
hand, all of the elements of the physical gradient formula,
Eq. (3), can by measured by local operations at the
boundary of the 1D system. The string gradient formula
is formally sensible from the string theory perspective.
The �a are the wave modes of space-time fields; �0 is the
zero mode of the tachyon field. The equation �as � 0 has
the form of a space-time equation of motion. The function
gs��� has the form of a space-time action.

The unphysical parameter �0 can be eliminated by
extremizing gs [7,9]. We carry out this idea. We calculate
that @gs=@�0 � 0 at �0 � a0, ��a0 � ��@ lnz=@�. We
calculate that, at �0 � a0, gs � Zs � z exp���a0�, which
is the physical quantity exp�s�. It now becomes straight-
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forward to show the equivalence between the string gra-
dient formula and the physical gradient formula. The
string gradient formula is trivial in the direction of �0

and is precisely the physical formula on the subspace
�0 � a0. To be explicit, the components of the string
metric are Gs00 � ����2Zs, Gs0b � ��Zs@a lnZs, and
Gsab � Zs�gab � @a lnZs@b lnZs�, where the indices a; b
now range only over the physical coupling con-
stants. The string gradient formula splits into two equa-
tions: Gs00�

0
s �G

s
0b�

b � �@0gs and Gsa0�
0
s �G

s
ab�

b �
�@ags. The first is satisfied identically; it is just the RG
equation for Zs, �@Zs=@� � ��a@a ����0

s�Zs. The
second equation, after substituting and then using the
RG equation for Zs, becomes Zsgab�b � Zs��1�
�@=@��@a lnZs, which is exactly the physical gradient
formula, since @a lnZs � @a lnZ. So, by proving the
physical gradient formula, we have also proven the string
gradient formula.

We would like to thank G. Moore and A. B.
Zamolodchikov for stimulating discussions. We espe-
cially thank G. Moore for pointing out a deficiency in
an early version of the proof. This work was supported by
the Rutgers New High Energy Theory Center, which A. K.
thanks for warm hospitality. The work of A. K. was
supported in part by BSF-American-Israel Bi-National
Science Foundation, the Israel Academy of Sciences and
Humanities-Centers of Excellence Program, and the
German-Israel Bi-National Science Foundation.
*Electronic address: friedan@physics.rutgers.edu
†Electronic address: tolya@phys.huji.ac.il

[1] I. Affleck and A.W. Ludwig, Phys. Rev. Lett. 67, 161
(1991).

[2] I. Affleck and A.W. Ludwig, Phys. Rev. B 48, 7297
(1993).

[3] E. Witten, Phys. Rev. D 46, 5467 (1992).
[4] E. Witten, Phys. Rev. D 47, 3405 (1993).
[5] S. Shatashvili, Phys. Lett. B 311, 83 (1993).
[6] S. Shatashvili, Alg. Anal. 6, 215 (1994).
[7] D. Kutasov, M. Marino, and G. Moore, J. High Energy

Phys. 10 (2000) 45.
[8] A. Konechny, hep-th/0310258 [IJMP (to be published)].
[9] G. Moore (private communication).

[10] See two notes on conformal boundary conditions for
the c � 1 Gaussian model by D. Friedan, http://
www.physics.rutgers.edu/pages/friedan.

[11] S.-L. Tseng, J. High Energy Phys. 04 (2002) 51.
[12] S. Elitzur, E. Rabinovici, and G. Sarkissian, Nucl. Phys.

B 541, 246 (1999).
[13] D. M. McAvity and H. Osborn, Nucl. Phys. B 406, 655

(1993).
[14] S. Ghoshal and A. Zamolodchikov, Int. J. Mod. Phys. A 9,

3841 (1994); ibid. 9, 4353(E) (1994).
030402-4


