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The super partition function of two-dimensional superconformal field theory on the super 
torus is analyzed. Its bottom component is the integer index of the Ramond representation. The 
top component measures chiral asymmetry in the Ramond sector. It is a sesquilinear form in the 
odd "super characters" of the Ramond algebra. Formulas for the characters are derived for the 
irreducible unitary highest weight representations. Modular invariance introduces constraints on 
the chiral asymmetry which can be satisfied for all models in the discrete series. 

1. Introduction 

Two-dimensional  conformal field theory and in particular superconformal field 
theory has been at the nexus of much recent activity in two-dimensional critical 
phenomena  and string theory. The investigation of two-dimensional superconformal 
field theory has generally parallelled the development of ordinary field theory. The 
unitary highest weight representations of the superconformal algebras were classi- 
fied [1-3], supersymmetric critical phenomena were found [1,2], a method for 

constructing correlation functions and obtaining operator product coefficients was 
developed [4-6], characters were calculated [7, 8, 3] and a method for constructing 
the genus one partition function and obtaining field multiplicities was developed 
[9-12]. There is a conjectured classification of models with superconformal central 
charge ~ < 1 based on unitarity [1, 2] and on modular invariance of the genus one 

part i t ion function [9-12]. In this paper the genus one super partition function is 
constructed f rom super characters of the Ramond algebra. This completes the 
description of the field multiplicities of superconformal models [10,12]. 

The present paper  starts from the observation [13] that e - ' n -¢Q  is the evolution 
operator  for a supersymmetric model with hamiltonian H = Q2 in euclidean "super  
t ime" (z, ~). The super partition function, for fermions periodic in time, would be 
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t r ( - 1 )  te-~H-~e. The bottom component of this trace is the supersymmetry index. 
The top component vanishes, since either Q = 0 or the states form doublets under Q 
and ( - 1) F. 

The Ramond sector of a superconformal field theory has an analogous structure, 
except that there are two anticommuting supersymmetry generators, G o and Go, 
with the hamiltouian given by H = G 2 + ~2. In complex euclidean "super  time" 

(z, ~) the super partition function is 

Zsu p = tr R ( -  1) ~'exp 2qri( rG 2 + ~G 0 - ~G-~ - ~G0 ) 

= Z++(~,  ~) + 4~r2i~'Ztop(z, ~),  (1) 

= - 1 )  tGoGoqG°q o, q= (2) Zto p trp,( r .  - -  2 _~-'~. e2~ri~,"  

The trace is over the Ramond sector. The bottom component Z++ = t r R ( - 1 )  r is 
the integer supersymmetry index. The top component Zto p now can be nonzero 
because there are two supersymmetry generators. 

The euclidean time ~ might be written as i t  + 0 with fl interpreted as inverse 
temperature and 0 as a translation in circular space, in a 1 + 1 dimensional system. 
More abstractly, z is a "modulus"  for the two-dimensional box or torus made by 
identifying points in the complex plane under the lattice of translations z --* z + mz 
+ n, for all integer m, n. The super time z, ~ is the supermodulus of the super torus 
z ~ z + m ( z  + 0~) + n, O ~ 0 + m~. These are the super toil with odd spin struc- 
ture - periodic fermion boundary conditions around both cycles. 

Different values of z, ~ can represent superconformaUy equivalent surfaces. The 
modulus r, ~ describes the same super torus as all its modular transforms. The 
generators of the supermodular group are the fractional linear transformations 
z ~ z + 1, ~ ~ ~ and z -~ - l / z ,  ~ ~ z - 3 / 2 ~  [14]. The super partition function is 
modular invariant, 

Ztop(Z + 1, ~+  1) = Z ( z ,  ~), 

Ztop( - l / z ,  - 1 /~)  = z3/Zrr3/EZtop(Z, ~). (3) 

The top component of the super partition function measures the chiral asymmetry 
of the two-dimensional fermions. It vanishes if the model contains chiral fermions, 
with separately conserved parities of left and right moving fermions, ( - 1 )  F and 
( - 1) p. More generally, the super partition function must be an even function of the 
odd supermoduli ~ and of the odd supermoduli ~" separately. This is necessary in 
superstring models where the GOS projection is done separately on left and right 
moving fermions. These theories are defined on chiral supermoduli space where 

---, - ~ and ~ ~ - ~" are both symmetry transformations. 
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Zto p will be decomposed, below, into a sesquilinear form 
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Ztop('r, 7) = Z 2Ia, bf(a(l")f~b(T) 
a,b 

(4) 

in the odd super characters 

( )  trx~(G0q c°~) ~a ~ ~ (5) 

The trace tr x is taken over the irreducible highest weight representation of the 
Ramond algebra with the single highest weight vector [A), Go I k)  = klk).  The 
indices a, b range over the inequivalent irreducible representations with weights 
ha, k b. These representations seem not to have been considered previously. They 
introduce an extra subtlety into the classification problem for superconformal 
models since their highest weight vectors are G O eigenstates. The L 0 eigenvalue, used 
in previous analyses, determines the G O eigenvalue only up to a sign. The matrix 
element lab is an integer which measures the net chirality in the spin fields 
(Ramond representations) of weights ka, k b. 

We proceed by reworking old representation-theoretic arguments to evaluate the 
super characters ~a(~.). In the now standard way [9] the modular transformations 
act by linear matrices on the odd super characters ~a(~.). The modular invariance of 
Zsu p becomes modular invariance of the sesquilinear matrix lab. The chirality 
matrix lab is found for each model in the conjectured complete list of the unitary 
discrete series. It did not seem a priori obvious that every model would have a 
consistent chirality matrix. 

This construction completes the structural analysis of the genus one super 
partition function for superconformal field theories. 

Sects. 2 and 3 describe the representations of one and two Ramond algebras, The 
super partition function is analyzed in sect. 4. The super characters are calculated in 
sect. 5 and the chirality matrices Ia, b are found in sect. 6. Sect. 7 is the conclusion. 
Details are placed in the appendix. 

2. Representations of the Ramond algebra 

The commutation relations of the N = 1 superconformal algebras are 

[Lm, Ln] = ( m -  n)Lm+ n + xs~(m3- m)Bm,_n, 

[Lm,gn]=(½m-n)Gm+., 

1 8 --n" [G m, G. l+= 2L,.+~ + l e ( m 2 -  ~) m, (6) 

The central charge d commutes with all the generators and is represented by a real 
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number in each superconformal field theory (and in each irreducible representation). 
There are two inequivalent algebras. The Ramond algebra has anticommuting 
generators G. indexed by n integer while the Neveu-Schwarz algebra has n 
half-integer [15]. In this paper we study only the Ramond algebra. 

Previous treatments considered the extended Ramond algebra which includes a 
fermion chirality operator ( -  1) e satisfying 

[Lm,(-1)v]=[Gm,(-1)v]+=O. (7) 

The highest weight vectors of the extended algebra form a representation of ( - 1 )  r 
and G O and thus are two-fold degenerate, unless Go---0. The states with Go = 0 
(G O = 0) are left (right) supersymmetric. The irreducible representations with super- 
symmetric highest weight vector, G O = 0 or G0 = 0, can be ignored since they do not 
contribute to Zto p. 

The highest weight vectors I h, 5: ) of the extended algebra satisfy 

L+~lh, + )  = 0 ,  G+~lh, +__) = 0, n > 0 ,  

Lolh,+)=h[h,+ ), ( - 1 ) r ] h , + )  = + l h , + ) ,  

1 ^ Golh, +) = Ih , - ) ,  Golh,-) = ( h -  ~c)lh, +). (8) 

The irreducible highest weight representation Lext(h, d) of the extended Ramond 
algebra is generated by the raising operators L_ n, G_, acting on the highest weight 
states ]h, + ) .  

Every representation Lext(h, d) of the extended Ramond algebra is reducible as a 
representation of the unextended Ramond algebra. The zero modes of the unex- 
tended Ramond algebra consist of the commuting generators L o, Go so each 
irreducible representation has a single highest weight vector I ~) satisfying 

L,[X) = 0 ,  GnIX) ---0, n > 0  

Go[X) = •lh), LolX ) = h(h) lh  ) , h(X) = ~2 + i~c.1 ^ (9) 

Write L(X, d) for the irreducible highest weight representation generated by the 
raising operators acting on IX). 

a_ ̂  v~ 0, the irreducible For a non-supersymmetric highest weight vector, h 2 -- h - 16 c 
representation of the extended algebra decomposes into a direct sum of two 
irreducibles of the unextended algebra: 

Lext(h, $ ) = L ( X , d ) $  L ( - X , d ) ,  (-1)FI + X ) =  IT-X). (10) 

The operator R x is to be 1 on L(X, d) and - 1  on L(-X,  ~). R x is constructed by 
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having it act as 2~-1G 0 on the highest weight states I h, + ), and extending to the 
descendants by requiring IRa, G,] = [Rx, L,]  = 0. The projections onto L(___h, ~) 
are then ½(1 ___ Rx). 

The classification of irreducible unitary highest weight representations of the 
extended Ramond algebra was given in ref. [2, 3]. It is an immediate consequence 
that the unitary representations of the unextended Ramond algebra are for ~ > 1, all 
)~ real, and for c < 1 the discrete series 

e = e ( m )  = 1  m ( m + 2 )  ' m = 2 , 3  . . . .  

)k = )kp,q( m ) = 
(m + 2)p  - mq 

~8m (m + 2) 

p = l , 2  . . . .  , m - 1  
q = 1 , 2  . . . .  , m + l ,  
p - q odd. 

~p,q'~" --~m--p,m+2-q" (11) 

For odd values of m there is no state with 2~ = 0, so the unitary representations all 
pair under this symmetry. For m even, all representations again pair except the 
)t = 0 "'supersymmetric" representation p = ½m, q = ½m + 1. 

3. Representations of two Ramond algebras 

In superconformal field theories of the type we are discussing there are two 
superconformal algebras (L , ,  G, } and { L~, G, }. The odd generators of these two 
algebras anticommute, so the irreducible representations are not necessarily tensor 
products of irreducible representations of the individual algebras. Every irreducible 
representation of the two Neveu-Schwarz algebras is a tensor product. But for the 
two Ramond algebras the tensor product representation decomposes into the direct 
sum of two representations of opposite chirality. 

The zero modes of the two Ramond algebras are generated by G O and Go, 

o. (12) 

The highest weight states, as irreducible representations of the zero mode algebra, 
are doublets, excepting the representations with G O = 0 or G O = 0. The zero mode 
algebra is realized on the highest weight states by Pauli matrices 

0 0) Oo 
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Given G O and Go it is always possible to make an operator ( -  i) p. In fact, on the 
highest weight states there are two possibilities 

( - 1 ) r  ( 1 ~) = e  0 - ' e = + _ l .  ( 1 4 )  

The action on the descendants is then fixed by the (anti)commutation relations (7). 
The corresponding highest weight representations are called L'(X, ~, 2). 

Acting on the highest weight states, 

The invariants characterizing these representations are h 2, ~2 and eXh. That is, 

L±(X, ~,, e) - L±(-X,  -~,, e) -- L ~ ( - x ,  X, e). (16) 

Every representation of two Ramond algebras automatically has an operator 
( -  1) r, and there are two such irreducible representations L±(X, ~, d) for every pair 
of weights h, h. If X is nonzero and real, which is implied by unitarity (and G O ~ 0), 
the invariant of the representation is the chirality eX~/IXXI -- + 1. This is the sign 
of that representation's contribution to Zto p. 

In a chiral theory there are two extended Ramond algebras, ( - 1 )  r, G, and 
( - 1 )  r, G,. It is useful to regard the irreducible representations of two extended 
Ramond algebras as the tensor product representations 

Lext(h, h, ~) = Lcxt(h, 2) ® Z e x t ( h  , C) (17) 

of two commuting extended Ramond algebras ( - 1 )  FL, G~ and ( - 1 )  FR, G~. The 
representation on the tensor product is 

G.=G~®t, ( - 1 ) F =  (--1)FL® 1, 

G~= (--1)FL ® G~, ( - 1 ) P = I  ® ( - 1 )  FR (18) 

The total fermion parity is ( - 1) F,o' - ( - 1)F( - 1) p. 
Lext(h, l'/, 2) splits under the two unextended algebras into the direct sum of two 

irreducible representations of opposite chirality, 

L=,(h, ~, e) = L+(X, ~,, e) * L-(X, X, e), (19) 

where X 2 --- h - ± ^ and ~2 = ~ _ ~2. This can be seen by writing an operator R 16c 
which is 1 on L+(X, X, 2) and - 1 on L-iX,  X, 2). In the tensor product represen- 
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tation 

satisfying 

R 2=  I ,  

and the projections are 

R - RL® i - t ( - -1)FRR R, (20) 

JR, ( -  1) v'°'] +------ 0, [R,G, ,]=[R,G, ,]  = 0 ,  (21) 

L±(X,  ~,  d) = ½(1 + R)L~xt(h, ~) ® L~xt(h, d). (22) 

This can be used to calculate the contribution of L±(~k, ~, ~) to Ztop: 

trt± ( - 1) riGoGoqa2°~ ~2° = trL,,,½(1 + R ) (  - 1) ViGoGoqag7t ~ 

= + ½ tr t~,R ( - 1 ) r ,- ,  o,- o,t ' ~  H .,ao 2 ,~r'~° ~ 

= + ½trL,~,RLG~q (aD2 ® GoRRR~t(or~)2 

= ..I- l t r  ] ? L / ' 7 ~ L , , ' r ( G L ) 2 t r  I ~ R I ' 7 . R ~ ( G o R )  2 (23) 
2 ~XLext  ~ '~.-r 0 ~ / V,~Lexta~ ",-* 0 ~ / • 

Each factor in this product is a super character, 

trLcxRLGLq(aL°)2 = 2 trL~ 1(1 + RR)GoR~! (c~)2 a2 = 2 trxG0q 0, (24) 

so the contribution of Z,o p is 

t rL±(_ l ) r . .~  ~- a~_~ 2 _ ltrotroq oq o = ++_ 2 trxGoqaOtrxGoqaO. (25) 

This uses the fact that t r ( ( -  1)FG0q c0~) = 0 on Lext(h, ~). The tr x is the trace on the 
representation L(h ,  d) of one unextended Ramond algebra. 

4. T h e  super  part i t ion func t ion  

The trace of the super evolution operator, eq. (1), is the genus one super partition 
function on the odd piece of genus one supermoduli space. The super partition 
function is a function on the supermoduli space of super-Riemann surfaces. In 
genus one this is the space of super toil. The supermoduli space for each genus 
consists of two pieces, characterized by the parity of the number of zero modes of 
the Dirac operator on the surface. For genus one, the even piece is an ordinary 
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space, without odd supermoduli. It is a three-sheeted covering of the moduli space 
of ordinary genus one Riemann surfaces. The odd piece of genus one supermoduli 
space is a superspace, with one even and one odd supermodulus, ~-, ?. The ordinary 
part  of this superspace, where + -- 0, is exactly the ordinary genus one moduli space. 
The super partition function on the odd piece of genus one supermoduli space is the 
trace of the super evolution operator, eq. (1). 

The odd piece of supermoduli space is described by the analytic euclidean super 
time ~', ? with • describing an ordinary torus and + being an odd analytic 
coordinate of weight {. The modular transformations are fractional linear transfor- 
mations of the 7, $, such that the original and transformed coordinates describe the 
same super torus. The generators of the modular transformations are ~', + ~  
~- + 1, + and "r, + ~ - 1 / ' r ,  't'-3/2~. The super partition function of a superconformal 
field theory is invariant under these transformations, as expressed in eq. (3). 

Now decompose the trace (2) into a sum over irreducible representations of the 
two Ramond algebras. Let the irreducible representations L±(h ,  4,  3) occur with 
multiplicity N-+(X, h). The top component of the super partition function can be 
expanded in the sum over irreducible representations 

Ztop= E 21a,b~(a(T)~(b(T), 
a,b 

(26) 

where 

Xa(~') = Xxo('r) = trxoG0q c°~ (27) 

are the odd super characters and 

1,,,b=N+(Xa, Xb)--N-(ha, Xb) (28) 

is a matrix of integers measuring the chiral asymmetry of the representations. The 
indices a, b range over the inequivalent irreducible representations. In the discrete 
series a ranges over the allowed pairs p, q with Xp, q > 0, and b likewise. 

This expression is the decomposition of the top component of the super partition 
function into a sesquilinear form in the odd super characters. In a trivial way the 
constant bot tom component can be regarded as a sesquilinear pairing in the unique 
nonzero even super character, the constant. The description of the super partition 
function as a sesquilinear form in even and odd objects generalizes [16] to the super- 
moduli space of all finite genus super-Riemann surfaces [17,18]. 

The absolute multiplicity of L±(A,,, ~b, c) disregarding chirality is 

&,b = N+(Xa, Xb,) + N-iXo, (29) 
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The chirality matrix I~, b satisfies the constraints 

II~,bl < Na,b, I~,b=-- N~,b (modE).  

787 

(30) 

For any index a write - a  for the index such that ~-a  = --?'a" In the discrete series, 
if a is p, q then - a  is m - p ,  m + 2 - q. The symmetries are 

Na,b = N - a , - b  = N - a , b ,  l : ,b  = I - a , - b  = - - I - a , b .  (31) 

The supercharacters ~a and the chirality matrices I~, b of the discrete series 
models are considered in the next two sections. 

The analogue of Zto p for higher loops (surfaces with handles) is the part of the 
superpart i t ion function which is odd in the left supermoduli ~ and in the right 
supermoduli ~ separately. This must vanish in a theory with chiral fermions, since 
right ( - 1 )  r and left ( - 1 )  ~ are separately conserved. 

The existence of Zto p was due solely to a property of Clifford algebras: an odd 
number of generators yi can form an irreducible representation in two different 
chiralities, while an even number d of generators can always be multiplied together 
to form a nontrivial operator ,/d+l which anticommutes with all the "t i, a ( - 1 )  r 
operator. In Zto p there is an odd number (1) of ~ supermoduli and an odd number 
(1) of r~. The left and right representations give an even number of generators Go, G0 
which can always be extended to include ( - 1 )  ~, but with a choice of chiralities, 
which is encoded in the chirality matrix Ia, b. The problem is to check that this 
choice of chiralities can be made consistently. If the absolute Ramond multiplicities 
N,,, h are all even the zero chirality matrix Ia, b = 0 is trivially modular invariant. 
Then there exist chiral ( -  1)F, ( _  1)~operators and the representations are all tensor 
products or representations of the left and right extended Ramond algebras. 
However, this does not guarantee that the operator product coefficients will have 
the same chiral symmetry or that a modular invariant mixing of left Ramond and 
right Neveu-Schwarz algebras exists. 

The Ramond sector representations L -+ (~, ~, d) also give one branch (of three) of 
the partition function on the even piece of supermoduli space. This is 

2 ~ - - 2  
Z+_(~', ~) = trRqC°q C° = E 2Na,bxa(q)xb(q) 

a,b 
(32) 

a sesquilinear form in the even characters 

xa(  q)  = x - a (  q)  = trL~xo)q"Oq-o q °. (33) 

The factors of two in Zto p andZ+_ come from the two-fold degeneracy of the 
highest weight states of the irreducible representations L-+(2,, ~,  d). 
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The branch Z+_(r,  ~) corresponds to periodic boundary conditions in space, 
antiperiodic in time. It produces under modular transformations the other two 
branches, Z_ + and Z__, corresponding to the other two even boundary conditions. 
These branches are also given by traces over the representations of the two 
Neveu-Schwarz algebras (see appendix B.2). 

For every superconformal field theory there is a corresponding ordinary confor- 
mal field theory - its nonchiral GOS projection - the spin model. The spin model 
partition function is the sum over both sectors, projecting on ( - 1 )  F= 1 in each 
sector. 

Zspi~ = ½( Z ++ + Z 4-)  + ½(Z-+ + Z__) .  (34) 

Z++ is the integer index t rR(-1)  F. 
The partition function on the even piece of supermoduli space has been analyzed 

in refs. [10,12] where the absolute multiplicities Na, b for the two Ramond algebras 
are found. 

The various pieces of the super partition function in genus one are all given by 
the Ramond representations - on the odd part Zsup(% ¢, ~, ~) is given directly and 
on the even part analytic continuation of Z+_(r,  q) gives the rest. 

The present paper analyzes the top component of the super partition function on 
the odd piece of supermoduli space. It gives the chirally asymmetric part Ia, b of the 
multiplicities for the representations of h ~ 0, ~ ~ 0. It does not deal with the 
bottom component, the index. 

A certain amount is known about the index. If m is odd then the index Z++ is 
zero by unitarity [2]. If m is even then the index is known only to the extent that the 
absolute multiplicity of the representation h = ~ = 0 is known [10,12] (see appendix B). 
This multiplicity is congruent to the index modulo two. 

5. The super characters 

The basic building blocks of the irreducible highest weight representations 
L(h ,  ~) of the unextended Ramond algebra are the Verma modules V(h, ~). The 
Verma module V(?x, ?) is the universal representation generated by a highest weight 
state I X), G o I X) = X I h). A basis of linearly independent descendants on level n, the 
eigenspace Go 2 - ?x 2 + n, is given by the states 

G~i . . .G~L~x . . .LI~sIX) ,  mr=  0,1; Is = 0,1,2, . . . ,  (35) 

with n = ~.rrm, + ~,ssl,. 
The dimension of level n of V(h, ~) is written PR(n). The character of the Verma 

module is 

X v(x)(~) = ~ qX2+nPR (n) = q x2 FI  
1 + qg 

n-0 kffill q~" (36) 
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The highest weight space is one-dimensional, Pp.(0)= 1, but for n > 0 level n is 
even dimensional, Prt(n) is even. 

The super character of a Verma module is trivial to calculate. G O is linear in the 
free variable ~ as a matrix on the states (35). So if n > 0 the Go eigenvalues must 
occur in pairs + ~ + n of opposite sign and must cancel in the trace (5). The 
super character of the nondegenerate representation is then given entirely by the 
contribution of the highest weight state, 

;~ v(x)('r) = Xq x: . (37) 

For ~ > 1 the unitary representations L(X, ~) are those with ~ real. All of the 
states 35 are then linearly independent, the Verma module V(X, d) is itself irreduci- 
ble and L(X, 6) = V(X, d). The super partition function then takes the form 

x 2, 
Ztop(~, ?) = E 21a,bXaq °Xbq b. 

a , b  

(38) 

If the result is to be a modular invariant, the number of irreducibles a, b will have 
to be infinite. It should be enough, however, to consider only the "rational" 
case - when Na, b and la, b have finite rank [19, 20] - as is always true if d < 1. 

For d < 1 the unitary representations are degenerate, meaning that some of the 
states (35) are linearly dependent L(~, 8) is the quotient of V(~,, d) by the subspace 
of the null states. The null states are generated by two highest weight vectors in the 
Verma module. Each of these generates a sub-Verma module inside the original 
Verma module, which together span the null states. The intersection of the two 
sub-Verma modules is generated by two highest weight vectors which are not on 
vanishing curves of the original 7~. But the intersection of their sub-Verma modules 
is generated by two highest weight vectors on vanishing curves of the original h. The 
pattern repeats ad infinitum. 

To calculate the super character, start with the super character of the Verma 
module, subtract the super characters of the first two sub-Verma modules, correct 
for the double subtraction by adding the super characters of the second pair of 
sub-Verma modules, and continue in an infinite alternating sum. 

This nesting picture of alternating pairs of sub-Verma modules is exhibited in the 
ordinary character formula [18, 21] 

oO oo 

E = q " ~ ' " -  E (39) q p , q , n  

n ~ ~ 0 0  I1 e - - 0 0  

where the weights - G o eigenvalues - are given up to sign by 

(m + 2)p - mq + nN (m + 2)p + mq + nN 
Xp,q, ,  = 4- 2vt~ ' ~P'q'" = + 2~/-N (40) 
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with N = 2m(m + 2). The lowest order term in the q-expansion for the character X a 
comes from the first sum in eq. (39), and corresponds to the original highest weight 
state. The next two terms come from the second sum and are subtracted, corres- 
ponding to the first two highest weight null vectors; the next two terms come from 
the first sum and so on. 

To calculate the super characters it is necessary to determine which branch 
_+ ~ n is taken by G O on each highest weight vector. The arguments which give 
these choices are summarized in appendix A. The result is 

oo oo 
X2 - ~?.  

f (a ( ' r )=f (  p 'q= E ~kp,q, nqs"q'"-- E ~kp,q, nqP'q'"' (41) 
1,1~--00 n~--O0 

with the weights 

? ~ , q n = ( - 1 )  " m ( m + 2 ) p - m q + n N  

' '  2 v ~ -  ' 

~p q , = ( - 1 )  q+'m(m+ 2)p+mq+nN 
' '  2 v ~ -  

(42) 

Symmetries of the super characters are then 

^ m ^  t x q + l ^  
Xp,q = -Xm_p.m+2_q = ( - 1 )  Xp+m,q_m_2 = (-.1_) Xp, -q  = - - f ( _ p , _ q .  ( 4 3 )  

6. The modular invariance condition 

In this section the modular transformation properties of the super characters are 
described as those of higher level, weight -32 modular forms. The absolute multiplici- 
ties N,, b were calculated by imposing the modular invariance of Zspi~ [10,12] and 
are summarized in appendix B. Here the modular invariance of Zto p is imposed as a 
constraint on the chiral asymmetry I~, b. Solutions were found for all of the known 
sets of absolute multiplicities N~, b" These are presented in appendix B. 

It is only possible to have chiral symmetry, Ia, b = 0, if all the absolute multiplici- 
ties Nab are even. This happens in only two examples on the d < 1 discrete series list 
(appendix B). These are at m = 10 and 12 (corresponding to the E 6 lattice). 

Two extended Ramond algebras act on the Hilbert space of a model if and only if 
I,,. b = 0. This is because the tensor product representation is exactly two irreducibles 
of opposite chirality, eq. (10). But Ia, b = 0 is not sufficient to guarantee a chiral 
theory since the operator product coefficients must also respect both symmetries, 
( - 1 )  F and ( - 1 )  ~. The chirality condition on the operator product coefficients 
amounts to the condition that no odd "generalized characters" participate in the 
partition function at genus > 1. And in genus one every chiral theory has a chiral 
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OOS projection and must have a modular invariant partition function composed as 
a sesquilinear forms in the Ramond and Neveu-Schwarz characters XxO') and 

The modular transformations of the characters ~a('r), a = p, q are 

~(~" + 1) = e 2 " x ~ ( ~ ' ) ,  

f(a(  - 1 / r )  = ( - i ~ . ) 3 / 2  
2 

E (44) 
~m(m+ 2) b,-b 

The sum over b, - b  is meant to be over two of each irreducible, i.e. over all p - q 
odd, 1 < p < m, 1 < q < m + 2, ~,p, q > 0 and ~p, q < 0. These super characters are 
explicitly modular forms of weight -32 . 

The symmetries of the ~ allow the modular transformation equation (44) to be 
rewritten 

f (~ ( -1 / ' r )=( - i r )  -3/2 • S~a,~(W(r), (45) 
a', --a '  

with transformation matrix 

= ( )(oqq  
Sg~'= ~m(m+ 2) (-1)<<P-q)<P'-q')-l)/2sin ~rpp___~'m sin m+ 2]" (46) 

Symmetries of S~ a, are 

_ -~ _ -a (47) - -  S _ a ,  - -  - -  S A ,  

Modular invariance of the super partition function as decomposed into super 
characters in eq. (26) becomes modular invariance of the sesquilinear form I~, b 

Ia, b, = ~ S~,la,bS~,. (48) 
a, -a ,b ,  - b  

This is the only new genus one modular invariance constraint because z ~ r + 1 
invariance follows from the conditions (30) and invariance of the ordinary partition 

function Zspin. 
For each of the previously known absolute multiplicity matrices Na, b in the 

discrete series (appendix B) exactly one modular invariant chiral asymmetry matrix 
Ia, b satisfying the conditions (30) has been found. It seems plausible that no other 
possibilities exist. The chiral asymmetries 1~, b for the various infinite series and 
exceptional models are given in appendix B. 
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7. Conclusion 

We have seen that representations of two Ramond algebras, as occur in supercon- 
formal field theories in two dimensions, are labelled by a chirality + 1 which is the 
sign of ( -  1)FiGoG0 on the highest weight vectors. The top component of the super 
partition function in genus one, Ztop(r, ~), detects the net chiral asymmetry of the 
model in each representation. It can be written as a sesquilinear form Ia, b in the 
odd super characters of the Ramond algebra. The modular transformation law of 
the super characters puts constraints on the chiral asymmetry matrix. It is possible 
to find a solution of the modular invariance constraint for each of the models in the 
discrete series. 

Chiral asymmetry is an obstruction to writing separate left and right chiral 
fermion parity operators ( -  1) y, ( - 1 )  p. Thus no superconformal model with chiral 
asymmetry can be a string compactification. Additional obstructions arise in higher 
genus. A superconformal model has a chiral symmetry only if no odd super 
characters contribute to its partition function for all values of the genus. 

The matrix Ia,  b provides detailed information on the chiral asymmetry of a 
superconformal field theory. It would be interesting to find applications for this 
information. 

We are grateful to D. Kastor, A. Kent, H. Riggs and S. Shenker for helpful 
conversations. We especially acknowledge the useful advice of A. Kent on calculat- 
ing the super character formula (appendix A). We thank the Institute for Advanced 
Study for its hospitality at the beginning of this work. 

Appendix A 

CALCULATION OF SUPER CHARACTERS 

The ordinary character and the odd super character of the irreducible representa- 
tion L(X, ~) can be calculated as the character of the Verma module V(X, ~) with 
the contributions from the null states subtracted away. The submodule of null states 
is generated by highest weight states, themselves generating degenerate representa- 
tions. The super character requires knowledge of the G O eigenvalues on this series of 
highest weight vectors in Verma modules. Fortunately, most of this work has been 
done elsewhere, in that the determinant formula [1,8,21,22,23] and character 
formulas [3, 22, 8] for the extended algebra have been proved following the treat- 
ment [7] of the Virasoro algebra. The construction of the null states and their G O 
eigenvalues can be obtained with the Feigin Fuchs [7] representation of the 
superconformal null vectors in terms of vertex operators [8, 21]. The supersymmetric 
anomalous G L  1 current is used to construct null states which saturate the bounds 
for the total number of null states. The same construction can be used to calculate 
the null states for the unextended algebra. Here we give the numerology of the 
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construction. The arguments are all to be found in the treatments of the unextended 
algebra [8, 21]. 

Define M,(A, ~) to be the inner product matrix for the PR(n) states (35) of level 
n in the Verma module V(A, ~). The determinant formula for the unextended 
algebra is simply the square root of the determinant formula for the extended 
algebra: 

det M.(X, ~ )=  pq/l~I2< (h 2 - ~kp,q(~)2)PR(n--pq/2). (A.1) 

This is seen by calculating the inner product matrix for the Verma module of the 
extended algebra starting at level zero with a basis of eigenstates of G o. The matrix 
of inner products is block diagonal in this basis, and each block is the inner product 
matrix for the unextended algebra. 

The determinant and character formulas are derived from the theory of an 
anomalous super current. This is the theory of one free super scalar • = ~ + 06 
with current J(z ,  0) = D~b = e/(z) + 00ep(z) and super stress-energy tensor T 
= ¼JDJ - N-1 /2Dj .  The central charge is d = 1 - 16/N,  agreeing with the notation 
N --- 2 rn (m + 2) previously used for the discrete series. In previous applications the 
super current algebra was extended by ( -  1) r but here it is left unextended. 

The weight of the superconformal vertex operator of charge k, e k~ = e k* + Oe/e k~', 
is k ( k  + 2N-1/2). In Ramond representations the highest weight states IX) of the 
unextended super current algebra are characterized by G O eigenvalue h and by 
charge ~ - N -1/2. The charge zero highest weight state I N-1/2) has weight h = ± 

1 6  ' 

which is just the zero point energy of the weight { fermionic component of the super 
current. The charged state IX) is created by acting with the charge k = ~ -  N-1/2 
vertex operator on IN-x /z ) .  The formulas for the conformal weight of I~,) agree: 
k ( k  + 2N -1/2) + ~ = h  2+ ~d. 

The screening operators Y± are the super contour integrals of the two supercon- 
formal vertex operators of weight ½. Their charges are k + = N - 1 / 2 m ,  k _ =  
- N - 1 / 2 ( m  + 2). The super contour integral of a weight ½ superconformal field is a 
superconformal invariant. Explicitly it is the ordinary contour integral of the top 
component ~e k±*. This is fermionic so the screening operators Y± anticommute 
with the G,. 

The current algebra acting on [h) generates a representation which is identical to 
the Verma module V(A, ~) of the Ramond algebra. States in the Verma module can 
be represented by screening operators acting on the highest weight states ~,. In 
particular, let 

yr(m+ 2)ysml ~ \ lP, q, n )  = -+ - -  I " p + n r a , q - - n ( m + 2 ) / ,  (A.2) 

with n = r - s .  The charge of Ir, s, p , q )  is the same as the charge of Ihp.q). 
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Because G O anticommutes with the screening charges G O has eigenvalue hp, q, n given 
in eq. (42). The states In, p, q) are exactly the highest weight states which contrib- 
ute to the first sum in the super character formula (41). 

Similarly, the state 

vq+r(m+2)ysral~ \ IP, q, n) '  = - +  - -  I " p + n m , - q - n ( m + 2 ) /  

= yr(m+2)yp+sra ~ \ 
+ - -p+nm,q-n(m+2) /  (A.3) 

with n = r - s has the same charge as IXp,q) and has G O eigenvalue ~kp, q, n given in 
formula (42). The states IP, q, n) '  are exactly the highest weight states whose 
contributions are subtracted out in the super character formula (41). The relative 
levels of these states are given by the formula 

~2,q ,  2 ~ h 2  __ = 
n ' - - X p , q , n  p+rm,-q--s(m+2) ~k2+rm,q+s(m+2) ½ ( P + r m ) ( q + s ( m + 2 ) ) ,  

(A.4) 

where r = n' + n and s = n' - n. 

Appendix B 

MULTIPLICITIES AND CHIRAL ASYMMETRY 

This appendix summarizes conventions, give the absolute multiplicities No, b for 
the conjectured complete list of discrete series models [10,12] and gives a modular  
invariant chiral asymmetry matrix Ia, b for each model. There is no uniqueness 
result - these are not necessarily the only possible modular invariant Ia, b- 

B.1, NOTATION 

The characters and super characters are 

X$- ('r) = trNsq zo-e/16 -- qho-e/16 , 
q-O 

a "r FqLo-~/16 qho-~/16,  X-+( ) = t r ~ s ( - 1 )  
q - 0  

X~_(,r) = trRqC0 z - qX~, 
q - 0  

f(a('r ) ---- trRGoq c~ - ~kaq ~ . (B .1)  
q-O 

The index a labelling the representations stands for a pair p, q of positive integers, 
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p < m, q < m + 2 and p - q is even for Neveu-Schwarz representations, odd for 
Ramond representations. The index - a  stands for m - p ,  m + 2 - q. The highest 
weights are 

(m + 2)p - mq 
~'a=Xp'q(m)= ] 8 m ( m +  2) (B.2) 

for the Ramond algebra and 

¼((m+ 2 ) p - m q )  2 -  1 
ha = hp,q(m) = 2m(m + 2) ' (B.3) 

for the Neveu-Schwarz algebra. 
The partition function of the spin model is 

Zspin = ½( Z + .  4- Z + _ )  --I- ½( Z _ +  --~ Z _ _ ) .  (B.4) 

The super partition function on the odd part of genus one supermoduli space is 

Zs, p = Z++( r ,  ~) + 4~r2i~'Ztop(~ ", ~),  (B.5) 

where the bottom component Z++ is the index and the top component is 

- -  Ztop(~', ~) E 2I~, ^~ 
a,~ 

(B.6) 

The indices a, fi stand for p, q and p, q. 
The superpartition function on the even piece of supermoduli space has three 

branches: 

Z+_(~', ~) = E 2Na,~X~--('r)Xn+-("r) , 

NNS_ a [,/,'~_ ~ (,,r h z _  E a, X--t JX--t J ,  
a,~ 

Z_+('r ,  ~) = S" N Ns- a [T'L /,~ a,~,~--+ I, ]X--+(q') - 
a,~ 

(B.7) 

Na, r~s is the multiplicity of the Neveu-Schwarz representation with h = ha, h = h~. 
The sums in the partition function are over the irreducible representations, each 
counted once. Only one of a and - a  is included in each sum. If the sum is 
expanded to cover both a and - a  then a factor of ½ should be included for each 
index. 
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B.2 MULTIPLICITIES 

In the discrete series there are three infinite series of models [10] and eight 
exceptional models [12], corresponding to pairs of root diagrams of simply laced Lie 
algebras [12]. The scalar series corresponds to the diagrams (Am_I,A,,+I),  the 
alternate series to (Am_l,D}m+2) and the spin series to (D}m+l, Am+l), and the 
same naming for the series where m ~ m + 2. The eight exceptional models corre- 
spond to 

(Am~l ,E6) ,  m = 10,12, 

(D}m+I,2, E6),  m = 10,12, 

(A,n ~: 1 ,ET), m = 16,18, 

(A,~ ~: 1 ,Es ) ,  m = 28,30. (B.8) 

Except for the models (E6, D},~+x,2) at m = 10,12 the Neveu-Schwarz multiplicity 
N~ Ns is given by the same expression in p, q, p, q as the Ramond multiplicity N~, ~. 

The scalar series is 

m> 3, Na,~=~p,p-q~q,O+~p+.~,m~q+~-l,m+ 2 . (B.9) 

The alternate series is 

m = 4 k > 4 ,  

m = 4 k + 2 > 6 ,  

The spin series is 

m = 4 k > 8 ,  

Na,~-~- ( ~p, ~ "l'~p+~,m)( ~q,O"~=~q+O,m+ 2 ) , 

Na,~= ( ~p,~ @~p+~,m)( ~q,O =]=~q+O, m+ 2), 

q odd,  

p odd.  (B.10) 

[ ~p,p-~q,O+~p+~,m~q+~,m+2, p odd 
No 

+ m+, ,  p even 

m = 4 k + 2 > 6 ,  N a ~= ( 1 8p'~gq'O+gp*~''*Sq+O'm+2, 
q o d d  

(B.11) 
-- " 8p+~,mSq, O"+gp,~Sq+O,m+2, q even. 

The four pairs of exceptional models have a combination of delta functions in 
either p or q related to the exceptional groups E6,7, 8. In each case there is a second 
model obtained by p, ff +-) q, ~/, m --) m + 2. 

For (Am:~I, E6), the m = 10 model is 

Na,~=~p+~,m[(~q,5 "I- (~q,ll)((~0,1 ~" (~0,7) + ((~q,l "+" (~q,7)((~0,5 =1- (~F/,ll)] 

")'~p,~ [(~q,l "1- ~q,7)(~0,1 + 80,7) dr" (~q,5 + ~q,ll)(~F/,5 + ~F/,ll)] 

+ (Sp,~ + 8p+~,,~)(gq, 4 + 8q, S) (80,4 + 80,8) <B.12) 
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and the rn = 12 model is obtained by exchanging p, ff ~ q, ~/. 
In the (D[,,+x, 2 E6), models, N~,~ and Na, ~s are different. For m = 10, 

N , , a =  2(Sp,p + 6p+p. m)( ~q,4 "~ ~q,8)(~,4 -I- ~,8) ' (B.13) 

N,,  5 --NS--(~p,~"~-~p+~,m)(~q, 1 Jr ~q.7dt'~q,5dt'~q,11)(~,1 q- ~/,7 "l" ~,5 "q- ~,11) . (8.14) 

The m = 12 model is given by exchanging p, ff ~ q, ~. These two are the only 
models with even multiplicities in the Ramond sector, so the only ones where 
I~, ~ = 0 is possible. 

For (Am~:I, E7), the m --- 16 model is 

( (~q,1 "[" ~q.17)(~.1 "~ ~,17) q- (~q,3 + ~q.15)~,9 
Na,5=(~p,~-l-~p+~,m) +(~q,7+~q,ll)(~71,7+~,a1)'F(~q,9~?l,9) 

"l- (~q,5 "l-~q,13)(~/,5 "1-~/.13) "]- (~/,3 "1- ~/.15) ~q,9 

(B.15) 

and the m = 18 model is obtained by exchanging p, ff ~ q, ~. 
The (A,,_ 1, E8), m = 28 model is 

Sa.~=(~p.~'~-~p+~.m)[(~q,1 "Jr~q,11-~ (~q,19 "[-8q,29)(~/,1 "1" ~.11-I'- (~/,19 "1- (~,29) 

+ ((~q,7 -{" (~q,13 "[" ~q,17 "{- ~q,23)( (~/,7 "l" ~,13 q- (~F/,17 q" ~,23)] 

(8.16) 

and the m = 30 model is obtained by exchanging p, ff ~ q, ~ and taking m --> m + 2. 

B.3 CHIRALITIES 
Chiral asymmetry matrices Ia, ~ are given here for the discrete series models 

whose absolute multiplicities were given in the previous section. 
The scalar series has 

m > 3, I . ,~ = ~P,P~q,~I --~P+P,m~q+q,m+2 " (B.17) 

The alternate series has 

m = 4 k > _ 4 ,  Ia,~=(~p,~--~p+~,m)(~q,~+~q+~l,m+2), q o d d  

m = 4 k  + 2 > 6 ,  Ia,~(~p,~'-[-~p+,~,m)(~q,?l--~q+~,m+2) , p o d d .  (8.18) 



798 ,I.D. Cohn, D. Friedan / Superconformal fieM theory 

The spin series has 

( ~p,:q,~--~p+~,m~q+gl, ra+2, p odd 
m = 4 k > 8 ,  la'a= ~p+~,raC~q, gl--~p,:q+gl, m+2, peven 

m = 4 k  + 2 > 6,  1 a ~= ( ~ ~p'~q'~l-~p+~'m~q+~l'm+ 2 ' 
q o d d  

' ~, --~p+~,m~q,~l+~p,p~q+~l, rn+2, q even. 
(B,19) 

For (A,,~:l, E6), the m = 10 model has 

I a , ~ =  ~p+,,m[(~q,,- ~q,ll)(~{,1- ~/,7) + (~q,1- ~q,7)(~/,5- ~/,11)] 

+ ( 8 ~ -  ~+~ ~)( ~q, + 8q,)(8~. + ~ )  (B.20) 

and for m = 12 exchange p, ~ ~, q, q. 
The (D~m+l,2, E6), m = 10,12 models have 

Ia, ~ ~ 0 .  (B21) 

For (Am~:I, E7), the m = 16 model has 

Ia,fi=(~.~--~+~,m) "k(~q,7[-~q,ll)(~l,7+~l,ll)-F (aq,9~(i,9) 
+(aq, + 8q . ) ( ~ ,  + 8 ~ . ) -  ( ~ ,  + 8~ .)~q, 

(B.22) 

and for the m = 18 model exchange p, ~ ,~ q, ~. 
For (A=:~I, Es), the m = 28 model has 

I ~ , b =  (BV.~--By+,,.,) [ (8qA- 8 q , n -  8q,19 + 8q,29)(B~a- 8rT.n - 8~,19 + 8~,29) 

(B.23) 

and for the m = 30 model exchange p, ~ ~, q, ~. 
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