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A prescription for the calculation of any correlation function in orbifold conformal field 
theory is given. The method is applied to the scattering of four twisted string states, which allows 
the extraction of operator product coefficients of conformal twist fields. We derive Yukawa 
couplings in the effective field theory for fermionic strings on orbifolds. 

1. I n t r o d u c t i o n  

The classical equat ion of mot ion of string [1] is equivalent  to the condi t ion  that 

the two-dimens ional  quan tum field theory (QFT)  describing spacetime be confor- 

mal ly  invar ian t  [2,3]. The search for solutions becomes the classification of all 

possible 2d conformal  QFT ' s  [4]. Handicapped  by our lack to date of effective 
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methods for solving the bootstrap equations, we know very few conformal field 
theories explicitly [4-10], although we know of the existence of large classes [11] 
(nonlinear models on Calabi-Yau manifolds). Those we can solve exactly - realiza- 
tions of affine Lie algebras [8,9,12], the unitary discrete series [7], and orbifolds 
[13] - all have special simplifying features. Until effective methods are developed to 
solve the general conformal field theory, it is worthwhile to explore the possibilities 
in those we already know. Of these, the class of orbifold conformal field theories 
seems to offer the greatest potential for producing a phenomenologically acceptable 
string background. An orbifold is the quotient of a manifold ,¢t (typically a torus) 
by the action of a discrete group P whose action leaves fixed a number of points on 
,A¢. At the fixed points the manifold has conical singularities, but this makes no 
difference to the string. Here it is our aim to describe the orbifold conformal field 
theory - its spectrum of fields and their anomalous dimensions, operator products, 
and correlation functions. The string functional integral is a sum over maps from 2d 
parameter space into the orbifold. Over most of the orbifold, string propagation is 
essentially like that in flat spacetime. If the string world-sheet passes through one of 
the fixed points, the map is locally branched over the covering space Jr'. These 
"twisted" strings have interesting properties, and we will be especially interested in 
seeing how to work with them. 

The plan is as follows: in sect. 2, we present a general discussion of free field 
theory and the twist fields that create twisted states of string in both the bosonic and 
fermionic string theories, and we outline a method of solving for their correlations 
in terms of the Green function of the string coordinate fields in the presence of 
twists. The local behavior of the string coordinates in the neighborhood of these 
twist fields is worked out. In sect. 3 the global properties of the Green functions are 
related to the structure of the group of identifications which defines the orbifold. 
Bosonic twist correlation functions are then computed in sect. 4 and factorized to 
exhibit the operator product coefficients of the product of two twists. In sect. 5 
these results are extended to the fermionic string; here the operator product 
coefficients can be identified with the Yukawa couplings of certain massless states 
in the compactified string theory. Certain recent results on the violation of confor- 
mal invariance of chiral sigma models by instantons [14] are shown to agree with 
exact calculations in the orbifold limit. Finally, in sect. 6 we present our conclu- 
sions. 

2. Spin fields and twist fields 

2.1. CONFORMAL FIELD THEORY 

The general conformal field theory is made up of a set of conformal fields [15, 4] 
(creating highest weight vectors of the 2d conformal algebra), whose operator 
products form a closed algebra. For the application to string theory, one is 
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interested in those subalgebras of the theory which are local, i.e. such that the 
operator products are single valued. In this case one can construct well-defined 
correlation functions on any 2d surface, barring global anomalies. On non-simply- 
connected world-sheets, additional restrictions come from the requirement of 
single-valuedness of correlations as a function of the moduli (shapes) of surfaces. 
The local fields create asymptotic states of string; the correlation functions yield 
string scattering amplitudes. The conformal fields q~ are distinguished by their 
operator product with the stress-energy tensor T(z), the generator of 2d conformal 
transformations, which has the form 

= + + . - .  , ( 2 . 1 )  T ( z ) c k ( w ,  ( z  - w)  2 z - w 

where h is the conformal weight (scaling dimension) of ~. Non-highest weight fields 
have higher order singularities in their operator product with T. The field q,(w, if) 
has a similar operator product with the antianalytic stress tensor T(z?), defining the 
conformal weight h. 

The simplest conformal field theories are those of free bosons and fermions. For a 
boson, one typically considers the set of conformal fields consisting of the identity 
operator, the field OX(z), and its exponentials e ~px. We take the field X ( z ,  ~) to 
parametrize a circle of radius R; then the set of allowed exponentials is discrete. X 
itself is not a conformal field because its correlation functions contain logarithms 
[16]. For a fermion, one again has the identity operator and the field ~k(z). These 
fields describe fermion correlations which are well-defined in the local coordinate z; 
however, we know that fermions are allowed to be double-valued as representations 
of the 2d Lorentz group,  ~b(e2"ri~7) = -~b (z ) .  The point z = 0 in the local conformal 
coordinate is then the location of a branch singularity in the fermion field, which is 
a source of stress-energy: ( T ( z ) )  = (i~p 8~b) ~ h / z  2 as z ~ 0. Independence of the 
position of the branch cut ensures that this stress-energy is generated by a local 
(conformal) field S. There are in general fields S and S obeying 

~b( z ) S (O)  - z - 1 / 2 S ( 0 )  , (2.2) 

so that ~k changes sign when carried once around the origin. The fields S and S are 
known as spin fields [17]. As (2.2) shows, the full set of conformal fields I, ~k, S and 

is not local; one can however construct a local field theory via an appropriate 
projection on the allowed fields [19,17]. This is just the pattern found in the 
fermionic string: The fermionic vertex [18] is a spin field; locality is given by the 
GOS [19] projection. Several copies of this basic system can be used to form a 
free-fermion current algebra; then there can be an infinite number of conformal 
fields (one for each highest weight representation of the algebra). The reason is that 
the constraint of being a highest weight vector of the conformal algebra is restrictive 
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for a single fermion, but is only one constraint on several degrees of freedom for 
several fermions. These considerations apply as well to the free boson systems we 
consider. We will relax the condition for locality temporarily, to see what sorts of 
conformal fields there are in free field theory; later we will try to find mutually local 
subsets of these fields. 

It is often useful to consider the Hilbert space interpretation of conformal field 
theory. The vacuum 10> is the unique SL2(C ) invariant state. Each conformal field 
creates a highest weight state of the conformal algebra when acting on the vacuum. 
Acting further with components of the stress tensor fills out the full highest weight 
representation, or Verma module. Often there is a discrete quantum number which 
classifies the states. In the fermionic string theory, spacetime fermion number splits 
the states between the Neveu-Schwarz s e c t o r -  consisting of the vacuum 10>, the 
world sheet spinor state ~10>, and their descendants under the conformal algebra; 
and the Ramond s ec to r -  the states SI0 ), SI0), and their descendants. These 
sectors of the Hilbert space are distinguished in the free fermion case by the 
boundary condition on the field ~k. The fermion q~ acts within a given sector, 
whereas the spin fields S and S interchange sectors. 

Locally on the surface, the Hilbert space is the set of wave functions along a 
contour in z. Correlation functions on the sphere can be evaluated as operator 
expectation values in the Hilbert space. Particularly simple are fermion correlation 
functions in either sector; by Wick's theorem, all correlation functions are simply 
related to the two-point function of free fermions, 

Gys(Z,  w) = ( + ( z ) ~ ( w ) > N s -  
- 1  

z - w "  

z - w  2 

In the Ramond sector, the " in"  and "out"  states in the Hilbert space are created by 
conjugate spin fields at z = 0 and oo; the operator product (2.2) is responsible for 
the additional factor in parentheses. The Ramond sector Green function enables us 
to determine the conformal weight of the spin field S; the expectation value of the 
stress tensor is 

( ' )  
( r ( z ) >  = owa.(z, w) ( z -  w) 2 .. . .  

= ~z  -2 . (2.3) 

We recognize the leading term in the operator product expansion of T with the 
conformal field S and see that the dimension of S is 1~. 
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X--O 

S I ~ X = l / 2  
(2~R) 

Fig. 1. The map from the world-sheet (the z-plane) to a circle in spacetime. Points of the circle have 
been identified under X ~ - X ,  via the dotted lines. The hatched portion of the world-sheet near the 

twist field o(z0) maps to the neighborhood of the fixed point X = 0 (denoted by a heavy line). 

Given the freedom to consider sets of fields which are not relatively local, we 
might try to construct the analogue of the spin field for bosonic fields X. The 
simplest example would be a twistfield o(z) about which X is antiperiodic [20]. The 
operator  product of the conformal field aX with o is then 

a x ( z )  o ( w ,  - - w )  + . . . .  

The field ~- is an excited twist field, also double-valued with respect to S. Note that 
the conformal weight h of • is ~ greater than that of o, whereas the two values for 
are the same. Unlike the fermion case, making X antiperiodic has consequences for 
the geometry of spacetime. As the point z on the world-sheet approaches w, the 
map X(z) must equal minus itself. X = - X  means that spacetime (the circle 
parametrized by X ~ [0, 2~rR]) has been identified under the action of a discrete Z 2 
symmetry. This is the simplest example of an orbifold. The condition of symmetry 
under X o  - X  is satisfied for either X =  0 or X =  ½(2~rR). Tracing X around an 
infinitesimal contour about z shows that the string wraps once around one of these 
fixed points (fig. 1). There is a separate twist field for each such fixed point. The 
term fixed point will always refer to the location of the twisted string in spacetime. 
The Hilbert space now has two sectors: the untwisted sector, containing the vacuum 
10) and its descendants, and the Verma modules of combinations of the highest 
weight fields aX and eipX; and the twisted sector, with the states created by twist 
operators together with various untwisted fields acting on them. The simplest twist 
field ~ turns out to play a role in 2d critical phenomena. It completes the 
correlation between the operators of the gaussian model and the Ashkin-Teller 
model [211. 

The above Z 2 twist field can be generalized to any finite group. In particular, we 
will be interested in Z N twists. In the neighborhood of a twist field located at the 
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origin the coordinate field X undergoes a phase rotation 

X ( e Z , , z , e - 2 , , £ )  = e2,,k/UX(z, ~) (2.4) 

(k integer) which is called the monodromy of the field X. For this definition of the 
twist to make sense the coordinate X must be complex. We adopt the convention 
X = X~ + iX  2, .~= X~ - iX  2. The basic twist field o .  twists the field X by e + 2~k/~, 
and its antitwist o_ twists X by e -2"~k/'~. In terms of operator products, we have 

a:xo, (w,  ~)  - (~ - w) -~ ' -* /" '~  +(w, ~)  + . . . ,  

o.~o_(w, ~) - (~-  w)-*/G" (w,  ~ )  + . . . ,  

o~xo+(w, ~) - (~-  ~) */"~'~(w, ~) + . . . ,  

o ~ o  +(w, ~) - (~-  ~)-"-*/~'¢+(w, ~) + . . . ,  (2.5) 

with similar equations for a_. The above relations define four different excited twist 
fields % (and four v_'s). The primes distinguish between two different types of 
excited twist fields, of different conformal weights h but the same h (or vice-versa). 
The tildes denote fields related by complex conjugation on the world-sheet, z o L 
h o h. The non-integer power of the singularity in (2.5) is determined by the phase 
condition (2.4), the integer power by the fact that 0X acting on the ground state in 
the twisted sector of the Hilbert space creates an excited state (and also by the 
requirement that o be a highest weight field), as we will see shortly. We will discuss 
the relation of the conformal fields to the orbifold geometry in the next section. 

Just as Z 2 twist fields have their partners in the ordinary spin field S, Z N twist 
fields for X have their counterparts in the theory of free fermions. Again we must 
group the fermions into complex pairs qJ = +l + ihb2, f =  ~1 - i~b2. We might begin 
the discussion of Z u spin fields with a description of their operator products with 
q,,~, in analogy to (2.2), (2.5); but it is simplest just to bosonize. Write 

~q, = 2i OH, 

~/~ i+ = e+ ," ,  

~/~i~= e - ' n  ; (2.6) 

then the Z u spin fields are simply s . =  e +ikn/u with dimension h =  ½ ( k / N )  2. 

Properly these relations include a cocycle for the lattice of charges in the exponen- 
tials of the bosonized representation, which will also depend on the fields o as well; 
we leave the determination of this cocycle to future work. The correlation functions, 
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and in particular the operator product expansions, are then simply those of free 
field exponentials: 

~b(z)s+(w)  - (z  - W) +k/Nt'+(W), 

~ ( z ) s + ( w )  - ( z - -  w)-  k/Nt+(W) + "'" , (2.7) 

where t~. = - i~ /2e  ~(k/u+x)tt, t+ = -iqr2e i(k/~c-1)H, and so on. The nonsingularity 
on the r.h.s, of the first line means that ff annihilates the ground state in the Z N 
spin sector created by s+ ( a~  will not, because the z-derivative of (2.7) is singular). 
The fields t:~ and r_+ will be important in what follows, for they are used to 
construct the lowest dimension conformal superfields in the twisted sector; the 
fields t'+_, ~'~_ will appear only in the twist superfields for massive fermionic string 
states. 

One way to obtain the operator product expansions (2.5) is to look at the Hilbert 
space interpretation of the twisted sectors. Think of a twist field o placed at the 
origin; then the field aX must pick up a phase e 2~ik/'v when taken around the 
origin. The Laurent expansions of aX, 0X must have the form 

oO 

Oz X =  E am-k/N z-m-l+k/ 'V,  
t ' t l ~  - - 0 0  

o o  

E (2.8) 
t n ~  - -  O 0  

with m integer. The mode operators have the canonical commutation reations 
[a , ,+k/u,  a , -k /N]  = (m + k / N ) S m . _ , .  The twisted ground state 1o) = o(0)10) is 
annihilated by all the positive frequency mode operators 

a,._k/~la ) = 0 ,  m > 0 ,  

~m+k/~ lo )  = O, m >/O. 

When OX(z),  a X ( z )  act on the twisted ground state, one finds precisely the 
operator product expansion (2.5); the antitwist operator products follow similarly, 
as do those for twisted fermions. 

2.2. CORRELATION FUNCTIONS 

The operator product relations (2.5) describe the behavior of the string coordi- 
nates in the neighborhood of a twist field. More generally, we would like to study 
the global surface properties of the twists - to calculate their correlation functions. 
One might hope to find operator expressions for the a ' s  and ~" 's analogous to those 
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for X and X. Then one could compute amplitudes using operator matrix elements 
in the Hilbert space. This was actually the method first used to construct the spin 
and twist fields [18, 20]. The reason this is difficult to carry out in practice is that the 
twist and spin fields are nonlocal with respect to the fields X and qJ; they 
implement a change in boundary conditions. The procedure used was to invent an 
operator which annihilated any state in the untwisted sector and replaced it by a 
collection of states in the twisted sector, and vice versa. Any of the sectors of the 
HUbert space contains a complete set of states, so a state in one sector can be 
re-expanded in terms of another. The operator so constructed is rather unwieldy; 
computation of its correlation functions involves the evaluation of exponentials of 
infinite sums over modes in the different sectors. It was a remarkable feat to 
calculate the four-spin operator correlation function by this method [221. Now the 
spin operator correlations can be obtained more simply through bosonization of the 
free-fermion current algebra [23]. Nevertheless, the twist operator correlations 
cannot be found so simply; the generic twist field has no apparent local realization 
in terms of free fields. Such a realization would be difficult because the twist fields 
can be defined for spacetime manifolds of any characteristic radius, whereas the 
equivalence of different QFT's typically works only for special values of the 
couplings. Therefore, we are forced to proceed in a rather indirect manner. 

What does a twist correlation look like? The location of vertices are punctures on 
the world-sheet; since the twist fields put branch cuts in the coordinates X, ,~, the 
twist correlations will be branched about the punctures for the twists, with branch 
cuts running between them. Note that it is not the z-plane which is cut; rather, the 
fields are muitivalued about points in z. For example, in the Z~. case described 
above the cuts in X and )(  are not identical. Now the path integral in the presence 
of a collection of operators O,(z,) (including the twist fields) 

(aj)  Z(z , )=e -S ' "=  f .¢Xexp - Ox~x 1-IO,(z,) 
i = l  

is some function of the z, which we wish to determine. Choose one of the O's, say 
d~, to be the stress-energy tensor T(zl). As we bring z I near one of the other z,, the 
operator product expansion (2.1) gives the dimension of d~ as the leading term; 
more important, the residue of the subleading singularity is the derivative of the 
correlation function with respect to z,. Integrating this residue, one obtains the twist 
correlation functions. 

The expectation value of the stress tensor T = - ½ aX8,~ in the presence of twist 
fields can be determined from the properties of the gaussian fields X and X. The 
classical stress-energy is obtained from the solution(s) to the equation of motion 

88 Xc, ( z, i )  = 88 Xc,( z, .;) = O, (2.9)  
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with the correct monodromy about the points zi; then T¢I = - ½  OX d OX¢l. The 
quantum contribution to the stress tensor Tq~ is determined from the connected 
Green function of the 3 X ' s  at coincident points (cf. eq. (2.3)) in the presence of 
twists: 

g(g ,  W ) ~  (O1(Z I ) . . .OM(ZM))  , 

(T(z)%(Z,)...OM(ZM))[ 1 ] 
( O , ( Z , ) . . - O M ( Z M ) )  = g(Z,W) . . .  (2.m) 

The classical term is just the disconnected part of this correlation function 
- ~ ( a X ) ( c g X ) .  Eq. (2.10) is of course singular, but subtracting the leading singu- 
larity amounts to normal ordering the composite operator T. The connected Green 
function is in turn uniquely specified by the fact that it has a double pole at z = w, 
must change by the appropriate phase when taken around any z,, and is otherwise 
single-valued. Such a Green function can be constructed on surfaces of arbitrary 
genus [24]; here we restrict attention to correlation functions on the sphere. 

The Green function g(z ,  w) in the case of two twists is completely determined by 
the operator product relations (2.5). SL2(C ) invariance allows us to put one twist o+ 
at z = 0 and its antitwist o_ at z = oo. Then the behavior as z, w ---, 0, oo and the 
property that g(z, w) - 1 / ( z  - w) 2 + finite as z ---, w force g to be 

gu_2(z.w)=z-,1-,/U)w-k/.,[ (1- k/N)z + kw/N ] (z_w)2 (2.11) 

This is determined as follows: the factors outside the brackets are the singularities 
of the operator products (2.5) of 8X, 3)7 with o ~(0); then one puts in the double 
pole; then the numerator in brackets must leave untouched the residue of the double 
pole while cancelling any single pole terms. Since the arrangement is precisely that 
of a correlation of the basic fields X, ) (  in the twisted sector, one can also calculate 
(2.11) via operator methods. The expectation value of the stress tensor is found in 
the coincidence limit z --* w upon subtraction of the leading singularity. We find 

1 ,k( k) 
<o_ IT(z)lo+> = 22 2 N 1 

so that the twist field o has dimension h = h = ½ ( k / N ) ( 1  - k / N ) .  

One thing we would also like to determine are the coefficients in the operator 
product  expansion of products of various combinations of conformal fields 

~i(/1, Z1){~)(Z2, Z2)--~..CikjOk(gl, Z. 1 ) (12- -Z l )  h'~ h;-h'(,~2--zl)hk hj-h' (2.12) 
k 
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For instance, the C's  are the three-particle couplings in the low-energy effective 
lagrangian of the string theory. We might try to determine them directly from the 
three-point correlation functions. If one of the 0~ on the I.h.s. is not a twist field, 
then (2.12) can be found from the two-twist Green function or by operator methods. 
For  products of twist fields only, we might try to use the stress tensor procedure 
outlined above. The problem is that the z dependence of a three-point function is 
completely determined by SL2(C ) invariance [4], so the single pole term in (Tolo203) 
contains essentially no information. However, the information can be determined 
from the four-point function in the limits where it factorizes on three-point 
functions. Then the correlation function has nontrivial dependence on the SL2(C) 

invariant ratio x = (z 1 - z 2 ) ( z  3 - z 4 ) / ( z  I - z 3 ) ( z  2 - z 4 )  of the four points, so that 
the derivative with respect to x is nontrivial. Also, factorization of the four-point 
function on a known three-point function serves to normalize the amplitude for 
factorization in other channels. For instance, we can calculate 

Z(x) = (o+(oo)a._(1)o+(x)o_. (0)) .  

The limit x ~ 0 factorizes the amplitude on states in the untwisted sector, 

lim Z ( x )  = ICotx] . . . .  12. [xh~-h. -h_ [2, (2.13) 
x ~ 0  

because the two twists cancel. The resulting operator product coefficients, 

G, txl . . . .  = <o__ l O [ X ] l o + > ,  

may be calculated using operator methods in Hilbert space or from the Green 
function (2.11). The simplest way to normalize the four-point function is to choose 
• to be the identity and use the known normalization of the two-point function. The 
limit x---, oo factorizes the amplitude on "doubly twisted" fields o__ consistent 
with conserved quantum numbers, 

12 . - 2 h +  lim Z ( x ) =  ICo . . . . .  ] xh 12 , 
X --~ O0 

since the twists "add"  rather than cancel. To recapitulate, the strategy is as follows: 
from the Green function of X in the presence of twists, the logarithmic derivative of 
the four-point function is evaluated. One then integrates the amplitude, determining 
the overall normalization by factorization on a known channel. The desired three- 
twist operator product coefficients are then determined by factorization in the 
crossed channel. Of course the normalized amplitude contains much more informa- 
tion than this, in particular four-particle couplings in the low-energy effective action 
as well as dynamical scattering amplitudes. 

A variation on the above procedure is somewhat simpler to carry out in practice. 
As alluded to above, the field X can be split into a classical piece Xcl and a 
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quantum fluctuation Xq~. The evaluation of the gaussian functional integral natu- 
rally divides into a sum over classical solutions, times the quantum effective action, 
both evaluated in the presence of twist fields. The classical equation of motion (2.9) 
is solved by holomorphic and antiholomorphic fields 3Xd(z  ) and 0Xd(E ) which 
have the appropriate monodromy about the locations of the twist fields. One 
normalizes these solutions as described in the next section, and then sums e-'% over 
these solutions to obtain the classical contribution to the amplitude. The quantum 
contribution is determined as before via the stress tensor and is independent of the 
particular classical solution. The combined result is 

Z(z,) = E e - S j ' Z q u ( Z , )  • (2.14) 
(x~l> 

This method has the advantage of determining the relative normalization of differ- 
ent classical solution sectors in (2.14) automatically; the normalization is somewhat 
harder to dig out in the previous method since each classical solution sector has a 
separate integration constant upon integrating T~ + Tqu. 

So far we have discussed Z u twist and spin fields without regard to making a 
local conformal field theory out of them. To do this we should construct mutually 
local combinations of twist and spin fields. For example, consider the case of a 
closed bosonic string compactified on a circle twisted by X ~ - X. Physical vertices 
are conformal fields of dimension h = h = 1. The lowest dimension field in the 
twisted sector is o, with h = h = ~. We can make a physical vertex by combining o 
with a plane wave in the uncompactified dimensions (parametrized by ~ )  

vo [ ] = o e 'k .  , 

with k 2 =  2 -  ~ so that Vo has dimension one. Other fields in the twisted sector 
consist of products of this with even numbers of X fields, e.g. o(e'pX+ 
e- 'pX)e ~k.~", ~'(e i p x -  e-~pX)e ik.~", even numbers of derivatives of X applied to 
any of these (again with appropriate k2), etc. There are also fields which create 
states in the untwisted sector when acting on the vacuum. In order to be local with 
respect to the twist fields, these must again contain even powers of X, for instance 
(eipX+ e-ipX)e ik,''~', 9 X a 2 X e  ~k~", and so on. The locality constraint is much like 
the fermion parity projection in the superstring. The general condition is that only 
untwisted fields which are singlets under the twist group are allowed, together with 
the twist fields (which only factorize on the singlet untwisted fields). 

2.3. FERMIONIC STRINGS 

For fermionic string theories (type II or heterotic), world-sheet supersymmetry 
constrains the possible fields; whatever twist is imposed on the coordinate field X 
()(),  a compensating twist should be put in ~ (Lk), so that the superpartner of the 
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stress tensor 

r~  = - ¼ ( a x e +  ox-+)  

is single-valued. The OPE's (2.5), (2.6) show that the lowest dimension field with 
this property is ~o = s+o+ of dimension ½k/N. The fact that the term quadratic in 
k / N  cancels in the conformal weight greatly simplifies the construction of local 
fields. World-sheet supersymmetry implies that this field must have a superpartner; 
since it is the field of lowest possible dimension, it must be the lowest component of 
a 2d superfield. The upper component may be found by applying the superstress 
tensor T F, and noting the general form of a superfield OPE 

1 

TF(Z)Oo(W)- ~--L--q,,(w) + . . . ,  
Z - - W  

± 
h z 

) 2 '/ '0 ( w ) + O. , / ,0  + " ' "  • r F ( z ) ~ , , ( w )  ( ~ -  w z - w 

Here the superfield is • = q'0 + 0q'l- The OPE's (2.5), (2.6) imply that the super- 
partner of ~0 is 3rl = - ~t +~ +. 

However, neither J0  nor -Y'x is an acceptable conformal field for us; they violate 
2d Bose (Fermi) spin-statistics because their dimensions h and h don't differ by 
(half) integers. To remedy the situation we must consider the addition of another 
field g or i" to make up the fractional difference between h and/~ caused by s and t. 
Obvious candidates are spin fields for world-sheet fermions ~,(~) of opposite 
chirality. In the superstring, these fermions are superpartners of X under an 
antisuperconformal algebra; for the heterotic string they are gauge fermions of 
Spin(32)/Z2 or E s ® E s. It is again somewhat simpler to pass to the bosonized 
representation of the fields; we write XX = 2i 0/1. The parts of twist fields that act 
on this system are then simply fractional charge exponentials, just as for ~b. The 
heterotic twist superfield is therefore 

~+(z, ~, 0)= ~(s+o+- ~ o t + ~ , ) .  (2.15) 

For the superstring we are instructed to complete a multiplet of the antianalytic 
supersymmetry, for instance 

- ' - "  " . t ~ o L t + ~ +  • ~-+(z,~,O,O)=g+s+o+-tzO~+t.r+ iOt.s+z++ , (2.16) 

with v+ obtained from OXOX.o+. 
In the standard presentation, vertex operators for physical states are 0-integrals of 

dimension-12 conformal superfields. This conformal weight can be arranged for 
spacetimes of n complex dimensions by taking combinations of k for each dimen- 
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sion so that the total ~,,"..lki = N .  This choice for the k, is of interest because it 
leaves some of the spacetime supersymmetry charges unbroken. For example, let's 
consider the case of a Z N twist on a spacetime of three complex dimensions. The 
twist need not act effectively on all three coordinates; also the k 's  for each 
dimension need not be the same. The dimension-~ heterotic twist superfield is 

3 (, ) 
VI o,')+o E < , ' ) F I J o ,  J, ; (2.17) 
i = 1  t = l  . /~i  

its superstring counterpart is 

3 

~ =  I- IY(O(z,  £ , 0 , # )  (2.18) 
i - 1  

and contains many terms. The theta integral picks out the highest component of 
each twist superfield in turn. This field combines with fields of the uncompactified 
directions ~ ( z ,  ~, O) = ~ ( z ,  ~?) + 0~/,(z) to make a vertex 

V0(z, e)  = 

3 3 

= ]~ ..~l(°Vl~o(J)e'k,~"(z, zT) + I - I .Y-o(OikJ i ,~ ,e ,k ;r" (z ,  £ ) .  
i = 1  j# , i  i= l  

(2.19) 

Other fermionic string twist vertices are similarly fashioned. 
Actually, in the fermionic string theory there are many equivalent ways of 

representing the same physical state - different "pictures" of the Hilbert space [25], 
which correspond to different choices of the vacuum of the superconformal ghost 
system. The different pictures are labelled by an integer-valued charge, the "Bose 
sea level" of the superconformal ghosts r ,  y. These ghost fields are part of a chiral 
superconformal field theory made out of the superfields 

B = f l  + O b , C = c + O"t , 

which can be thought of as "differential forms" on the superconformal algebra [26]. 
Their role is to ensure the consistency of string propagation generated by the stress 
energy tensor. Eq. (2.19) is not the only vertex for the creation of physical twisted 
string states, rather it is one canonical choice. The alternate representations are 
related by a "picture-changing" operation [25]. To describe it, we bosonize the 
superconformal ghosts [25]. 

- /= ~7 e ~' , 

( q ) ( z ) d p ( w ) )  = - l n ( z  - w),  
1 

Z - - W  
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The zero mode of the field ~ does not appear in the bosonization formulae, so its 
inclusion would cause an unwanted degeneracy in the representation of the algebra 
of fields. Therefore we can restrict our attention to those fields which contain no 
undifferentiated ~'s. Nevertheless, in some instances it is convenient to use ~j itself 
in the representation of fields in this smaller algebra. The picture-changing field is 
one example; it can be represented as 

{QBRsT,'~} = e~TF[X,~]  + . - . .  (2.20) 

The BRST charge QBRST is the exterior derivative on the Virasoro algebra [26], 
valued in the representation given by the spacetime conformal field theory: 

QBRST= ~JBRsT= ~C(T[ X, tp ] + ½ T[ B, C]). 

Physical states are created by vertices or conformal fields V which are representa- 
tives of the cohomology classes of QBRs'r. This means that they satisfy ¢:jBRs-rV(z) 
= 0, but V itself cannot be written as a contour integral of the BRST current 
around some other field. Each Bose sea level contains an equivalent copy of these 
representatives, related by the application of the field (2.20). That is, given a 
physical vertex Vo, then V l = {QsRsT, ~)Vo represents the same state of string, but 
in the next Bose sea up. conversely, every V o can be written as { QBRST, ~ } V. 2" The 
canonical set of V0's is the collection of upper components of highest weight, 
dimension- -~ superfields. The corresponding V _ ~'s are the lower components of the 
superfields, times e-*.  The form of the picture-changing field (2.20) guarantees that 
we obtain V 0 from V_ 1, because that was how we constructed the higher component 
from the lower one by the application of T r (the exponentials of the ghost boson q5 
cancel). The set of manipulations used here are formally identical to those used in 
the flat-space case discussed in [25]; they apply to any fermionic string background 
since the picture-changing procedure requires only the BRST charge and the ghosts. 
For example, in the heterotic twist field constructed above, the picture V_ ~ of the 
vertex is (compare (2.19)) 

3 

V_ 1 = e-~, 1-[ ,~oU'~eik,,:r"( z, £ ) .  
i = l  

In the Hilbert space interpretation, this vertex at k = 0 creates states I.~ ° )  = V l(k 
= 0)10) analogous to the "usual" NS ground states qJ~'l/2lO) t = e - ~ ( 0 ) 1 0 ) .  
Superficially, these states bear little resemblance to the superfield vertex operators 
Vo (eq. (2.19)) and (OX~'+ ik.q~+~')e ikx they correspond to. The relationship be- 
tween them is of course given by picture-changing. In the picture-changed Hilbert 
space corresponding to superfield vertices, these latter operators create the states 
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E3 oti ,~i I~0\ and a~_l[0) at zero momentum. The Hilbert space i--1 - k , / N ~ - ( 1 / 2 - k , / N ) l  + / 

description will be useful for the enumeration of fermionic string states in sect. 5. 
On any given topology of world-sheet, there are ghost zero modes which are the 

globally defined solutions to the equations of motion cSB = JC = 0. In the path 
integral these produce a "background charge" which must be cancelled in order for 
the correlations not to vanish. Since the ghosts reflect the geometry of the world- 
sheet, the amount of charge depends on the topology of world-sheet. Note that 
twists do not change the world-sheet topology, so we don't twist the ghosts. For the 
sphere, there are three c zero modes and two T zero modes corresponding to the 
(super)Killing vector fields of OSp(2, 1), the supersymmetric extension of SL2(C ). 
The c zero modes can be used to fix the location of any three vertices on the 
world-sheet [25] and cancel the background charge, their correlations building 
the jacobian for fixing SL2(C ). That is, we remove the integral of V ( z )  over the 
world-sheet and replace it by c V ( z )  for three of the vertices. Similarly the remaining 
fermionic generators of OSp(2, 1) can remove the theta integrals of two V 0 super- 
fields and replace them by picture changed V_ ~'s, having the form e -~ times the 
lower component of a superfield. The q, insertions cancel the superconformal ghost 
background charge, and their correlations generate the jacobian for fixing the 
remaining fermionic symmetries of OSp(2,1). The invariance of correlation func- 
tions under the picture-changing operation [25] guarantees that answers will not 
depend on which two vertices are changed. We show in sect. 5 how picture-changing 
can simplify calculations in the fermionic string. 

The superfields that twist strings are Neveu-Schwarz fields; they create asymp- 
totic bosonic states in spacetime that sit at the fixed points of the twist. In the 
fermionic string theory there are also fields that create asymptotic spacetime 
fermion states. In the untwisted sector of the string conformal field theory, these are 
simply the Z 2 spin fields we discussed above. In the twisted sector, there should be 
analogues of the spin fields. They can be found by the application of the spacetime 
supersymmetry charge Q to the boson states [25]. The supersymmetry charges which 
are left unbroken by the twisting are the ones invariant (i.e. having nonsingular 
operator product) with respect to the twist. Since all the twists we consider leave an 
unbroken U(1) (the complex structure), the components of the ten-dimensional Q 
that remain are the spin fields in the SO(9, 1) current algebra of the Lk's built out of 
this U(1) (see below). It is possible to choose Z N twists which leave no components 
of the spacetime supersymmetry charge Q unbroken. There are again a variety of 
pictures in which to represent the fields which create twisted spacetime fermions; 
the most canonical one is V_1/2: 

V_ 1/2 = se-*/2S + l-I°~ ) , 
i 

= /¢' _ ~ )  
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The field S ,  is a spin field in the twisted sector of the fermion system (5 '~ is a spin 
field of the uncompactified directions), and we call the entire combination in (2.21) 
a spin-twist field. We will use them below in the calculation of Yukawa couplings 
for orbifold compactifications. As in the ordinary flat-space string, we project the 
set of states onto the subset with even 2d spinor parity ( _ ) r  [19]. The fermion 
number is defined so that the SL2(C ) invariant vacuum has zero fermion number. 
The states of even parity are the only states which have local operator products with 
the spacetime supersymmetry charge Q. 

Our main objective in this paper is to give a complete description of the 
conformal field theory of strings in orbifold backgrounds. These are special limits of 
more general string compactifications on Ricci-flat K~ihler manifolds (Calabi-Yau 
manifolds) [3] and their generalizations [11,27]. The typical Calabi-Yau manifold is 
not a rigid object; its shape depends on several parameters or moduli. For some 
topologies, particular comers of the space of moduli correspond to manifolds where 
all the curvature has been squeezed down to a discrete set of points. At these points 
the manifold looks locally like the quotient of a flat space by the action of a discrete 
group which has a fixed point at the singularity. For our methods to apply, the 
manifold must have this structure not just locally, but globally as well. The twist 
fields describe asymptotic states of string which "sit" at the fixed points f .  They, 
together with the conformal fields for untwisted string states which are invariant 
under the action of the group, form the local algebra of fields we want. Locality is 
guaranteed by BRST invariance, single-valuedness with respect to the covering 
group of the orbifold, and the fermion parity projection. In the case of the heterotic 
string, for a given spacetime orbifold there are generically a number of gauge field 
expectation values satisfying these requirements. The simplest solution is to embed 
the spin connection in the gauge group. This results in a nonchiral conformal field 
theory describing the compactified dimensions. More recently [11,27] other, chiral 
solutions have been found where the gauge field is different from the spin connec- 
tion, a nd / o r  other gravitational fields (such as the antisymmetric tensor) are 
excited. For each of these different solutions the set of mutually local conformal 
fields can be described. We might also remark that the "level-matching" constraint 
for modular invariance described in [28] implies locality; fields should have 
integer-power operator products when loop amplitudes are factorized on correlation 
functions on the sphere. 

We conclude this section with a discussion of the additional global symmetries of 
the orbifold conformal field theory. Because the above twist construction for N > 2 
requires that spacetime have a complex structure, there is a conserved U(1) current 
J = - i E ~  OH, whose charge J0 generates rotations of the phase of the complex 
coordinates. Conformal fields may be classified by their charge as well as their 
conformal weight; the superstress tensor, for instance, divides into T~: = - ] OX. 
and Tff = - ¼ 0X.~b. The fields T, T~ and J form a global N = 2 superconformal 



L Dixon et al. / Orbifolds 2 9  

algebra [29] 

T ( z ) T ( w )  ( z -  w ) 4  + ( z -  w)2 + z -  w 
+ • . . , 

3 T¢ (w) awTd- 
+ - -  r(z)r (w) (z_w)2 z - w  + • . . , 

~c ' ^  ~ J ( w )  a ~ T ( w )  
- -  + - -  + - - +  . . . ,  

T ; ( Z ) T F ( W )  ( z -  w) 3 ( z -  w )  2 z -  w 

+ r¢(w) 
J(z)T¢(w) + . . . ,  

Z - - W  

I ^ ~c 
J ( z ) J ( w )  ( z  - w) 2 

The first line is the conformal algebra; the second says that T~  are dimension- 3 
conformal fields; the third is the supersymmetry algebra; the fourth says that Tv + 
has charge + 1; and the last is the current algebra of the U(1) current. The central 
charge d equals 2n for a 2n-dimensional orbifold. This N = 2 algebra is to be 
distinguished from the local N - - 1  algebra generated by T and T v = T v + T{ 
because there are no ghosts for the extra global conformal symmetries. 

One of the interesting features of this extended superconformal algebra is that the 
current J is basically decoupled from the rest of the conformal fields [30,31]. By 
this we mean that fields in the different charge sectors of the orbifold conformal 
field theory are all of the form 

%0=o = 

where the decoupled scalar field /1 is the integral of the U(1) current, 

l =if dzJ(z)= EH,, 
i 

and ~ commutes with the current J. In particular, we find the form of the 
spacetime supersymmetry charge and holomorphic e tensor to be 

Q = e-~/25a+e + i~/2, 

e = e iFt . 

Here 5,'+_ are spin fields for the (four) uncompactified dimensions. Vertices 
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containing s, the field that twists world-sheet spinors, must have ~,(k i /N)= 1 in 
order to have local operator product relations with Q and thereby spacetime 
supersymmetric partners. This is part of the projection ( - ) F =  (_)F,+S0 = 1, where 

F4 is the fermion number of the uncompactified dimensions plus ~ charge. 

3. Global monodromy and the orbifold space group 

The string coordinate fields X(z, 2) must satisfy the local monodromy conditions 
(2.4) in the presence of twist operators. These give rise to operator products (2.5), 
which determine the asymptotic behavior of the Green function g(z, w) when z or 
w approaches the location z, of a twist operator. However, this information is not 
generally sufficient to uniquely determine g(z, w), because of the presence of a 
number n d of holomorphic fields 8X~n)(z; z,) which are solutions to the equations 
of motion having the correct local monodromy around each of the z i. In other 
words, we can add to g(z, w; z~) the n2d terms 

(3.1) 

(which are nonsingular as z approaches w) without affecting the local monodromy. 
In order to determine the constants A,,,  we also need to impose global monodromy 
requirements; i.e. we need to specify how X(z, ~) changes when it is transported 
around closed loops cg, in the complex z-plane which encircle two or more of the 
vertex locations z i. A vertex can be thought of as a node or puncture on the 
world-sheet. Thus loops which surround sets of twists are homotopically nontrivial. 
The changes in X are best understood viewing the string as a map from the 2d 
world-sheet into spacetime. The twist fields provide local boundary conditions for 
the map near the z,, which are just the local monodromy conditions (2.5) discussed 
previously. However, we will see that they also contain the global information 
needed to completely determine the Green functions and to properly normalize the 
classical solutions Xcl. To get at this global information we will need to know 
something about the background geometry which is responsible for the existence of 
the twist fields, namely the geometry of orbifolds [13]. Therefore we digress here to 
discuss some relevant features of orbifolds. 

For  our purposes it is most useful to think of a d-dimensional orbifold 12 as being 
constructed by identifying points of d-dimensional euclidean space ~ d  under a 
space group S of rotations 0 and translations o: 

12 = 

A typical element of S takes X ~ O X + v  and will be denoted by (0, v). The 
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multiplication law for elements of S is then 

31 

(3.2) 

and the inverse of an element is 

(O,v)-l= (e -1, -e-Iv). 

One can also construct the orbifold 12 by starting with a d-dimensional torus T d 
and identifying points of T d under a group P of rotations and translations: 

~2 = T d / p .  

In the cases we will consider in this paper, P will consist of rotations alone. Then 
may be identified with the point group P. which is the discrete group of rotations 
obtained from the space group S simply by ignoring the translations v. The 
subgroup of S formed by the pure translations (1, v) is referred to as the lattice A of 
S. Identification of points of euclidean space under the subgroup A alone defines 
the torus Td; points of T d can then be identified under P to form the orbifold. 
should be a subgroup of the isometry group of the torus, which means in particular 
that P will consist of rotations which are automorphisms of the lattice A. 

The first reason for introducing the space and point groups of the orbifold is to 
note the correspondence of elements of these groups with the various twist fields. 
This correspondence can be understood from the point of view of the Hilbert space 
for the string propagting on the orbifold, since vertex operators are associated with 
each state in the Hilbert space. The Hilbert space can be decomposed into various 
sectors; in each sector the string field X obeys different boundary conditions. For 
example, there are winding sectors where the closed string boundary conditions are 

x(o+ (3.3) 

for any lattice vector v, because we have identified points differing by v as being the 
same. These sectors are present for the case of a background which is either a torus 
or an orbifold. In the orbifold case there are also twisted sectors because we have 
identified points under rotations as well as translations. One might think that there 
is a separate sector of the Hilbert space for each element of the space group. This is 
not true, because the space group is nonabelian. The string field in the "sector 
twisted by g "  obeys 

X(o  + 2~r) = g X ( o ) ,  (3.4) 

where g is an element of S. But it also obeys 

hX(o + 2~r) = ( h g h - 1 ) h X ( o ) ,  (3.5) 
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where h is any other element of S. So the sectors twisted by hgh-~ are in fact all the 
same sector; i.e. there is one sector of the Hilbert space for each conjugacy class of 
the space group S, not for each element [13]. 

This result can be illustrated for the one-dimensional orbifold formed by identi- 
fying the real line ~?t under the space group S with elements (1, n) (translation by n 
units) and ( - 1, n) (inversion of the line followed by translation), where n runs over 
the integers [13]. Equivalently this " Z z "  orbifold may be formed by identifying 
points of the circle under an inversion X --, - X as described in sect. 2 and in fig. 1. 
The point group is P = Z 2. The translation elements of S are conjugate in pairs, 
(1, no) - (1, - n o ) ;  the inverting elements belong to one of two classes, { ( -  1, even)} 
or ( ( - 1 ,  odd)}. Note that the sets of even and odd translations associated with the 
last two conjugacy classes define cosets of the lattice A = {(1, n)). The translation 
elements describe winding sectors, not twisted sectors, and have soliton operators 
rather than twist operators associated with them. The two remaining conjugacy 
classes imply that there are really two twisted sectors, or rather two subsectors of a 
single twisted sector. From the point of view in which the circle is identified under 
the transformation X---, - X to form the orbifold, the two subsectors are due to the 
fact that this transformation has two fixed points on the circle, at X =  0 and 

X =  ½(2rrR). Each fixed point provides a possible location for the ground state of 
the string, when the string satisfies antiperiodic boundary conditions on the circle. 
Excited states in the twisted sector of the Hilbert space correspond to fluctuations 
of the string about each of these fixed points. So there are actually two Z 2 twist 
fields for this orbifold; each creates the twisted sector ground state located at one of 
the two fixed points, and each is associated with an entire conjugacy class of space 
group elements, {( - 1, even)} or {( - 1, odd)}. 

A second simple example of an orbifold is the tetrahedron. It can be constructed 
by starting with the torus defined by the hexagonal lattice shown in fig. 2a and 
identifying points under a rotation by ~r about the origin (X--* - X ) .  The origin is 
taken to be at the center of the unit cell (point D in the figure); the four fixed points 
of this rotation on the torus (A,B,C,D)  are indicated by solid dots. After this Z z 
identification of points, we can pick one of the two equilateral triangles which make 
up a unit cell (fundamental region) for the two-torus - say the one with corners 
A, A', A" in the figure - and use it as the fundamental region for the orbifoid. Each 
edge of this triangle is divided into two segments by the fixed point at its midpoint, 
and the two segments are identified with each other under the ~r rotation (plus 
translation by a lattice vector). So we can fold up the three corners of the triangle 
along the dashed lines, and glue each edge to itself to create the tetrahedron 
depicted in fig. 2b. We see that there is a deficit angle of ~r at each vertex due to a 
curvature delta function located there. Like the tetrahedron, orbifolds in general are 
flat everywhere except at fixed points or fixed surfaces where they become singular. 
(Usually the singularity is more complicated than a curvature delta function, 
however.) As in the previous one-dimensional example, there is one Z 2 twist field 
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V ',./ A 

c,", A,A:A" 
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A'/'~ ~' A"~ D 

(a) (b) 

Fig. 2. The tetrahedron as a two-dimensional Z 2 orbifold. (a) The parallelogram with vertices 
A , A ' , A ' , A "  is the unit cell for the hexagonal lattice. Points are identified under a rotation by ~r about 
the center of the unit cell; the fixed points are indicated by solid dots. (b) The triangle with corners 
A,A',A" in (a) can be folded up along the dashed lines to create the tetrahedron with vertices A, B,C, D. 

(and one conjugacy class of space group elements) associated with each of the fixed 
points of the Z 2 transformation, which here are just the four vertices of the 
tetrahedron. 

We will be describing below various classical solutions which contribute to the 
twist correlation functions; we can use the tetrahedron example to illustrate the 
solutions as maps from the world-sheet S 2 onto the tetrahedron. For example, if we 
calculate a four-point function where the four twist fields create states located at the 
four different fixed points A, B, C, and D, then one classical solution (in fact 
the one with minimum action) is a one-to-one map from the world-sheet sphere to 
the tetrahedron. Since the tetrahedron is topologically equivalent to the two-sphere, 
this classical solution is the topologically stable solution guaranteed by the second 
homotopy group ~r2(S 2) = Z. In fig. 2a this solution appears as a string stretching 
along the left edge of the unit cell for the torus (line segment ABA') which 
propagates to the right until it reaches the parallel line segment CDC'). On the 
tetrahedron in fig. 2b the string starts wrapped around the edge AB and ends up 
wrapped around the edge CD. The fact that the classical solution is so simple on the 
unfolded version of the tetrahedron (fig. 2a) is essentially why orbifold scattering 
amplitudes are exactly calculable. Other classical solutions for the same set of twist 
fields (i.e. the same set of fixed points {A,B,C,D}) will cover the tetrahedron a 
number of times, either by "bouncing" off the edges AB and CD several times, or 
by starting off wrapped around the edge AB several times. On the unfolded version 
of the tetrahedron, the string either propagates further to the right or starts 
stretched a longer distance parallel to the left edge of the toms. Hence these 
solutions will have greater action (world-sheet area) and smaller contribution to the 
amplitude. For a different collection of twist fields, the set of solutions will be 
different. For example, if all the fixed points of the twist fields are taken to be the 
same point, then the zero-action solution, in which the string just sits at that fixed 
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point, dominates the amplitude. In the calculation of the next section we will sum 

over the entire set of solutions to obtain the exact amplitude. 

The description of the one-dimensional Z 2 orbifold in terms of its space group 

and point group generalizes easily to " Z N "  orbifolds, which give rise to the Z N twist 
fields considered in this paper. The point group P for a Z N orbifold is generated by 
a single rotation 0 of order N in SO(2n): P = P- - -Z  u. (We take the orbifold to be 
even-dimensional, d = 2n.) The space group S for this orbifold consists of elements 

of the form (O j, v), where j = 0,1,2 . . . . .  N - 1, 8 j denotes the j t h  power of 8, and v 
runs over the 2n-dimensional lattice A. The translation elements of S belong to 
conjugacy classes of the form {(1,/g Jr0) }, with v 0 fixed and j running from 0 to 
N - 1 .  These classes describe winding sectors; one sums over the images of the 
winding vector under /9 to get a Z u invariant state. There are also for each 

j = 1,2 . . . . .  N - 1 several conjugacy classes in S, having the form {(O-', v)}, where v 

runs over some coset of the lattice A. These classes are in the N - 1 twisted sectors. 
To determine what the cosets are, start with some element (0 r, v0) and conjugate it 
with the elements (/gk, u): 

(o (o = ( o  J, 0 %  + - 

Thus the cosets have the form 

(Okv0+(1-OJ)u, keZ, ueA) 

for some fixed v 0. 
We will concentrate below on the singly-twisted and singly-antitwisted sectors, 

j = _+1. ( j  = - 1  is of course equivalent to j =  N -  1.) For these two sectors the 
elements of a given coset all have the same fixed point on the torus: If two points f t  
and f2 in .~d are fixed points of two such elements, say 

f l  = Of 1 + Ok~vo + (1 - O ) u  1, 

f2 = 8f2 + Ok~Vo + (1 - 8 )u  2 , (3.6) 

then (1 - O ) ( f l  - ] 2 )  = ( Ok~ - Ok2)Vo + (1 -- O X u  I - u2) ,  and similarly for 0 i. Pro- 
vided that none of the eigenvalues of 0 is equal to 1, we see that fx and f2 differ by 
lattice vectors and hence are the same fixed point on the torus. (If some of the 
eigenvalues of 0 are equal to 1, then its fixed point set has nonzero dimension; that 
is, 0 has fixed tori rather than fixed points, and the elements of a given coset for 0 
have the same fixed torus.) So there is a one-to-one correspondence between the 
conjugacy classes ((0, v)} and the fixed points f (or fixed tori in some cases) of the 
rotation 0 acting on the torus T2". That is, the "sector twisted by 0 "  (or by 0-1)  has 
a subsector for each fixed point of 0. The coset of A obtained by setting v 0 = 0 
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A 

Fig. 3. A two-dimensional Zs orbifold. (a) The three fixed points for the ]~ rotation on the hexagonal 
lattice A. (b) The same lattice A. The three cosets of A are denoted by the same symbols uscd for the 

corresponding fixed points in (a). 

(corresponding to the fixed point at the origin) is actually a sublattice of A, which 
can be denoted by (1 - O)A =- {(1 - O)u, u • A }. The other cosets are not lattices 

but lattices "shif ted" by some vector %. From (3.6) we see that v 0 is just (1 - O)f,  

modulo  (1 - O)A (similarly for 0 -  l), and so we can denote the cosets of A by 

( 1 - 0 J ) ( f + A ) ,  / a f i x e d p o i n t o f O  j ,  j =  + 1 .  

The case of a two-dimensional Z 3 orbifold is illustrated in fig. 3. This case requires 
the two-dimensional lattice to be hexagonal in order for 0, the rotation by ~Tr, to be 
an automorphism. This rotation has three fixed points on the torus, which are 

shown in fig. 3a. The three cosets of lattice vectors corresponding to each of the 

three fixed points are shown in fig. 3b. 
The conjugacy classes for the higher-twist sectors ( j ~  + 1) are not usually in 

one-to-one correspondence with the fixed points of OL The reason is that some of 
the fixed points may not be fixed by 0; physical states are then 0-invariant linear 
combinat ions of states located at different fixed points of 0 j. So there are actually a 
large number  of twist fields associated with a Z N orbifold. Each may be labelled by 
two indices: o = oj,,. The first index j = 1,2 . . . .  , N - 1 denotes one of the N - 1 
twisted sectors of the Hilbert space - the sector twisted by 0 j. The second index 
e = 1, 2 . . . . .  n f ( j )  labels a conjugacy class within that sector; for j = + 1 it indicates 
the fixed point f (or fixed toms) of 0 at which the twist field creates a twisted state. 
We will also denote the j = + 1 single twist and antitwist fields by o ~_; they create 
states which are the antiparticles of each other. 

Now that we have established the correspondence between twist fields and 
conjugacy classes of the space group of the orbifold, we can describe the proper 
global monodromy conditions on the field X. The class of space group elements 
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associated with a given twist field o:.,(O) determines how X(z ,  i )  is rotated and 
translated when it is carried around that operator in the z-plane: 

X(e2~iz, e -  2~'Z) = O:X( z, i )  + v,  (3.7) 

where o belongs to a coset of A which depends on the index e. Eq. (3.7) is just the 
boundary condition (3.4) for the cylinder (~, o) which describes propagation of a 
string in the sector twisted by 0J (with g = (0J, v)), after mapping the cylinder to 
the complex z-plane with the exponential map z = e "4'°. Let us now split the field 
X into a classical piece X d and a quantum fluctuation Xqo as described in sect. 2, 
and ask how each piece separately changes when X circles the twist field. The 
classical field should have exactly the same behavior as the full field: 

Xd(e2~iz ,e - : ' i£)  = OJXcl( z, ,~) + v,  (3.8) 

which implies that the boundary conditions for Xq~ simply ignore the shift by o: 

Xq,(e2~'z ,e-  2~i~) = OJXq~( Z, ~) . (3.9) 

The local monodromy condition (2.4) given in sect. 2 also ignored the shifts by v, so 
it strictly applies only to Xqu. 

When X is transported around a collection of twist fields, it simply changes by a 
product of space group elements, one for each of the twist fields. But each twist field 
is associated with an infinite number of space group elements in the same conjugacy 
class, so there are an infinite number of such products. This implies that there are 
an infinite number of allowed global monodromy conditions on X, or equivalently 
on the classical field Act, since Xcl has the same boundary conditions as X. On the 
other hand, the quantum fluctuation Xqu ignores the translations o in the space 
group, so its boundary conditions are actually specified by the point group P alone. 
It obeys a unique set of global monodromy conditions, because there is only one 
element of the point group (O ~) associated with the twist field oj,, (at least for the 
abelian point groups we are considering here). 

In fact, all the global information needed to determine both the quantum Green 
functions and the proper set of classical solutions can be obtained from the 
monodromy conditions for transporting Xqu or X d around collections of fields 
which have net twist zero. These are the combinations of twists for which the 
product of the point group elements is the identity rotation. Around such paths the 
full field X therefore is not rotated (acquires no multiplicative phase) but may be 
translated by some amount. Now, due to the local monodromy conditions on X, 
correlation functions for 3 z X in the presence of twist fields located at z i on the 
world-sheet have branch cuts in z which terminate at the z,. We will abuse 
terminology and refer to the world-sheet as the "cut z-plane". This does not mean 
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that there are cuts in the world-sheet, but only in the fields a ,X  and 8zX living on 
the world-sheet. (The cuts signify that the world-sheet, which is a continuous map 
onto the orbifold, need not be continuous on the spacetime torus which covers the 
orbifold.) We need to keep track of the phase of the multivahied field X, or 
equivalently which sheet of the cut z-plane we are on. The paths we are interested 
in, around which X acquires no phase, are just the "closed loops" on this sheeted 
surface, which return to the same point in the z-plane and on the same sheet. 

Around the closed loops, which we denote by cg, X changes by a pure translation 
(1, o), with v running over some coset of the lattice A. This is also the change in X d, 
and Xq~ is required to be strictly periodic around these loops, because it ignores the 
translations v. That is, 

O=A~eXq.=$dzaXq.+$dz~Xq., 
, .,~, .,~¢ (3.10) 

for all closed loops ~,. These global monodromy conditions, in addition to the local 
conditions (3.9), suffice to determine the Green functions for the quantum fluctua- 
tions, and hence to find the quantum contribution to the amplitude. We will 
explicitly carry out such a calculation involving four twist fields in sect. 4. Here we 
just note that (3.10) makes no reference to the classical solution about which Xq, is 
a fluctuation, or to which fixed points f the various twist fields correspond to, so 
the quantum Green functions will be independent of all such information. Also, 
(3.10) involves the antiholomorphic field ~X and so it will generically introduce 
antiholomorphic i,  dependence into the Green function via the constants (in z and 
W) Arnn(zi, ii) in (3.1). Similarly the change in X d around a closed loop ~ is 

A~eXc, = ~edz ~Xc, + ~ d~X~,--v, (3.11) 

where v runs over a coset of A which depends on exactly which twist fields are 
encircled by c¢. 

For example, suppose ~¢ encircles two operators, a twist o +.,, associated with the 
space group elements 

{(o,(1-o)(:. +u,)), }, 
and an antitwist o_..2 associated with the space group elements 

Then the products of these elements have the form 

( 1 . ( 1 - O ) ( f , - f ,  +u)), u ~ A .  
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and hence we would require in (3.11) that 

o ~ ( 1 - 0 ) ( L - f , 2 + A  ) .  (3.12) 

Note that there will be a properly normalized classical solution associated with each 
element v in (3.11), and we must impose (3.11) for each independent closed loop c¢ 
in the z-plane. These conditions will be used in sect. 4 to determine explicitly the 
properly normalized classical solutions for the case of two Z N twists and two Z,¢ 
antitwists. 

Taking the closed loop ~' to encircle all the vertex operators provides us with a 
"space group selection rule" for correlation functions: The set of products of space 
group elements for all the fields in a correlation function must include the identity 
element of the space group, (1, 0); otherwise the correlation function vanishes. This 
is because the loop surrounding all the fields is homotopically trivial (it can be 
pulled off to infinity), so it can be viewed also as enclosing no vertex operators. If 
we ignore the translations present in the space group elements (i.e. consider them as 
elements of the point group) we obtain a coarser "point  group selection rule", that 
all nonvanishing correlation functions must have net twist zero. This selection rule is 
just the orbifold analog of the fact that fermionic string amplitudes involving an 
odd number of spacetime fermions vanish. We can apply these selection rules to the 
one-dimensional Z 2 orbifold discussed above. The point group selection rule tells us 
that correlation functions must have an even number of Z z twist fields; the space 
group selection rule tells us in addition that the numbers of twist fields associated 
with each of the two fixed points must be even, unless soliton operators are also 
present. 

Most of the above considerations apply to more general orbifolds than Z N 
orbifolds; however, the Zu case is particularly simple because the spacetime 
coordinates can always be chosen to diagonalize the order-N rotation 0: 

0 =  exp i-1.2i , (3.13) 

where the k~'s are integers between 0 and N. So 0 independently rotates n 
two-planes in spacetime. Choosing complex coordinates X ~= X z ,  t + iX2i and 
X '  = X2~-1 - iX2, for each of the two-planes, 0 simply acts on the X ~ by multiplica- 
tion by the phase e 2,~k,/u. The twist operator o+ associated with 0 will therefore 
satisfy a separate local monodromy condition (2.4) with each of the n fields X ~. We 
can think of o+ as the product of n separate twist operators o~ '), each of which 
rotates a single complex coordinate (field) X' (and similarly for o_ ), and then write 
the correlation functions for the o+ ' s  as the product of n correlation functions, 
each of which involves only o~ ) twist operators for some i. In other words, we have 
effectively factorized the problem into n two-dimensional problems. In fact this 
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factorization typically fails, because the global monodromy conditions for the 
classical solutions, like eq. (3.11), involve lattice vectors v with nonzero components 
along more than one complex direction X ~. (If the lattice A is a direct sum of n 
orthogonal two-dimensional lattices, A = A 2 @ A' 2 @ - . . ,  and if the rotation 0 
takes each two-dimensional lattice into itself, then the sum over classical solutions 
will factor into n separate sums, however.) On the other hand, the quantum piece of 
the calculation can always be factored into two-dimensional pieces, because the 
global monodromy requirements (3.10) for the quantum fluctuations Xqu do not 
couple the different X"s.  This allows us to use Green functions g(z, w) involving 
only a single complex field aX, rather than n of them. 

In contrast, orbifolds can also be constructed using finite nonabelian point 
groups P. These orbifolds will give rise to "nonabelian" twist fields; i.e. the local 
monodromy conditions for different twist operators will not in general be simulta- 
neously diagonalizable. (Since the action of any given twist field can always be 
diagonalized, the twist looks abelian locally. It is only the global behavior which is 
nonabelian.) Therefore Green functions in the presence of these twists will neces- 
sarily be matrix-valued, 

( - } ozX'awYJO,(z )o2(z2)... } 
w ;  z , )  = ( o l ( z a ) o 2 ( z 2 ) . . . }  ' 

(3.14) 

and will satisfy noncommuting monodromy conditions. The construction of these 
Green functions remains an open problem. 

We conclude this section with a discussion of orbifold geometry for the heterotic 
string. As described in sect. 2, spacetime bosons for the twisted sector correspond to 
dimension-½ twist superfields, whereas spacetime fermions are created by dimen- 
sion-1 spin-twist fields. Recall that the fields aX ~ and ~' acquire the same phase 
around a twist superfield, so that the superpartner of the stress tensor is single-val- 
ued. From the point of view of orbifold geometry, this requirement results from the 
identical transformations of aX ~ and ~' under the space group elements associated 
with the twist. For the E 8 ® E 8 heterotic string, each space group element may also 
be accompanied by an E 8 ® E 8 gauge transformation, subject to constraints arising 
from modular invariance [13]. One can represent the E 8 ® E 8 current algebra by two 
sets of 16 left-handed (antianalytic) fermions k(zT), each transforming as the 16 of 
O(16) c E 8. Choosing appropriate complex combinations of the fields ),' and ki, one 
can diagonalize any given gauge transformation. For example, a Z N space group 
element will be accompanied by some Z N gauge transformation. Around a twist 
field g for this combined spatial rotation and gauge transformation, the fields ),' will 
have the monodromy 

)¢(e-Z"i~) = e2'~'T',/uYV(~) (3.15) 



40 L Dixon et aL / Orbifoldz" 

for some integers ~:,. Like the ~k, s system, the h, ~ system can be bosonized; then g 
becomes a fractional exponential, 

e (e )  = I - Ie  
i 

That  is, g implements a translation or "shift" on the root lattice of E s ® E s by a 
vector ~ = (kilN, k2/N . . . .  ), such that N8 is a lattice vector [13]. In general, several 
twist fields ~ will have the same dimension, since several "shifted" vectors l + ~ may 
have the same length. Here l is an E s ® E s lattice vector, and so its components will 
be either all integers or all half-integers, with an even sum (corresponding to the 
Neveu-Schwarz and Ramond sectors for the ~i, respectively). Thus there is an 
additional degeneracy of the Hilbert space, which occurs because the physical states 
form multiplets under the gauge group left unbroken by the twist. 

There are typically a number of consistent possible gauge transformations which 
can accompany the elements of a given orbifold space group S. One possibility is to 
embed the spin connection in the gauge connection; i.e. we take/<, = k,, i = 1 . . . . .  n; 
~:, = 0, i >  n in (3.15). Then the left- and right-handed fermions transform in the 
same way under the twist, and the nonlinear model for this orbifold is nonchiral. In 
particular, the modes which appear in the (type II) superstring also appear as states 
of the heterotic string in this background, in the (0) picture. We will use this 
correspondence in sect. 4 to show that superpotentials vanish for these modes. The 
directions in the parameter space of the nonlinear model along which the orbifold 
singularities are resolved to form a smooth Calabi-Yau manifold belong to this 
category. 

An important consideration for fermionic strings on orbifolds is whether space- 
time supersymmetry is preserved. This depends on whether the point group P for 
the 2n-dimensional orbifold is a subgroup of SU(n) [3,13]. For the case of a Z N 
orbifold, P is generated by the rotation 8 of (3.13), which is in SU(n) if Y'.Tf ~k, = N. 
This condition was needed in sect. 2 to construct the dimension-½ twist superfields 
oq" which create massless spacetime bosons. If spacetime supersymmetry is broken, 
then the lowest-lying bosonic modes of the fermionic string in the twisted sectors 
are typically tachyonic rather than massless [32]. The construction of vertex oper- 
ators for the massless bosons will be slightly different in this case. 

4. Bosonic correlation functions 

4.1. Z 2 TWISTS 

We are now ready to apply the technique outlined in sect. 2 to calculate the 
correlation function of four twists. In this section, we concentrate on the correla- 
tions of the o 's ;  in the next, we combine these with the rest of the twist superfields 
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to compute fermionic string twist field correlations and operator product coeffi- 

cients. 
First we will calculate the four Z 2 twist correlation. To do so we take a slight 

detour from the main line of development. We will use the stress tensor method to 
calculate the amplitude, but on a covering space of the z-plane where X is 
single-valued. The procedure illustrates some beautiful classical mathematics which 
underlies the twist fields. For Z 2 twists, the coordinate field X may be taken to be 
real, and there are two fixed points fo = 0, f~ = ½ • 2~rR of the twist operation on the 
spacetime circle (for convenience we consider a one-dimensional spacetime). There 
is a selection rule on what combination of twists can appear. Each twist field 
corresponds to a conjugacy class of the orbifold space group; the correlation 
function must be neutral overall, which means the product of all the conjugacy 
classes of the twists must be the conjugacy class of the identity. As discussed above, 
Z z twisting has two conjugacy classes, ( ( -1 , even )}  and ( ( - 1 , o d d ) } .  Neutrality 
forces us to have an even number of each type of twist. The correlations thus have a 
symmetry under any of the transformations o 0 --* - o 0, a~ --* - o~, o 0 ~ 01, which 
generate the dihedral group D 4 (the symmetries of the square). This is the symmetry 
group of the Ashkin-Teller model [21]. By SL2(C ) invariance we can fix the location 
of any three of the twists to 0, 1, and oo, and by the dihedral group symmetry, the 
most general possible configuration of twists is 

Z,o,~(x)= lim Iz~]'/4(Oo(Zoo)o,,(1)O~o+~,(x)a~o(O)). 

Here e0,1 ~ (f0,  f l  ) label the fixed point. The index + on o is superfluous here as 
the twist field is self-conjugate for Z 2 twists. The prefactor cancels the scaling 
dimension of o to give a sensible z~ ~ ~ limit (more properly, this factor will 
come from whatever multiplies Z to make a scale-invariant string scattering 
amplitude). The classical solution 8Xcl is a function holomorphic in the z-plane 
except for square root branch singularities at each of the four twists o,(z~), 
i = 1  . . . .  ,4 

const 

OXd(z) = [ ( z - z o o ) ( z -  1)(z-x)(z)] 1/2" (4.1) 

The differential d t =  dz aXcl defines a classical elliptic function, the Weierstrass 
function 9( t ) ,  

~ ( t )  - e  I e 3 - e  1 
z(t)= , x ~  - - ,  e l + e 2 + e 3 = 0 .  (4.2) 

e 2 - e I e 2  - -  e I 

Note  that, as a holomorphic differential form on the surface, 3Xc~ is regular at 
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z = ~ .  This function maps the torus with coordinate t two-to-one onto the sphere 
with coordinate z, branched over four points. These four points in z are the images 
of the four half-points of the torus: z(~) = 0, z (~ ' )  = 1, z(½(1 + ~-)) = x, z(0) = ~ .  
On the torus the field X is single-valued. The modulus ~" of the torus is defined 
implicitly in terms of the cross-ratio x of the twist locations on the sphere: 

1' . . . .  u = e 2"i~ (4.3) x / 0,(~) j . -1 i u ,,-'/2) ' 

where ~ , ( r )  are the Jacobi theta functions. One computes correlation functions in 
an operator formalism by summing over intermediate states propagating between 
interactions (operators). Crossing symmetry of correlation functions on the sphere is 
a consequence of the theory's indifference to whether this sum is carried out in the s 
channel or the t channel. On the toms, this symmetry manifests itself as modular 
invariance of the partition function, given by the relation between x and ~. The 
relation of x to classical elliptic functions implies 

1 x 
x(~ '+  1) = - ,  x ( -  1/1-) = - -  (4.4) 

x x - 1  

Invariance under these is crossing symmetry among the various channels s, t, and u. 
The path integral on the torus is over functions satisfying X ( t ) = - X ( - t )  

because X is antiperiodic on the z-plane; t ~ - t  is the sheet interchange. To 
evaluate the quantum contribution to the partition function we use the Green 
function g,( t ,  t') on the torus. We write 

g , ( t ,  t ') = g( t ,  t ')  + g( t ,  - t ' ) ,  

g(,, , , ) =  - ~  (0Xqu(,) 0Xqu(,,)). (4.5) 

Although Xqu is parity-odd on the toms, OXqu is parity-even, hence the relative plus 
sign in the first line. We will also need 

h(/-, l ' )  = - ½( 0Xqu(f  ) a X q u ( t ' ) ) .  (4.6) 

By definition, the integral of the quantum Green function must have vanishing 
periods about any closed loop in the cut z-plane: A~eXqu = 0 (cf. eq. (3.10)). Applied 
to eqs. (4.5), (4.6) on the torus covering, this implies 

fo 1 fo 1 0 = d t g ( t ,  t ') + d i h ( i ,  t ' ) ,  

io 0 = d t g ( t ,  t ')  + d ih ( ( ,  t ' ) .  (4.7) 
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We build g as follows: first, look for a quant i ty  that  contains the double  pole of  g 

and  is otherwise a holomorphic  one- form in each of t and t ' .  In fact, the Weierstrass 

funct ion ~ t  - t ' )  has these propert ies  ( A t  - t ' )  - ( t  - t ' ) - 2  in order  that  the origin 
of  the t -plane is mapped  to a branch cut at oo in the z-plane). The integral of  this 
funct ion is not  single-valued; so the second step is to add a holomorphic  one- form 
in t t imes a ho lomorphic  one-form in t ' ,  which doesn ' t  dis turb the short-dis tance 

behavior ,  and  substi tute into eq. (4.7). The  holomorphic  forms on the torus are just  
the constants ;  thus we have 

g ( t , t ' )  = ~ ( t -  t ' )  + a  1 , 

h ( i , t ' ) = a z .  

Subst i tu t ing into eq. (4.7) produces 

'[J; J0' ] a:  - 4i Im r ~ - ~ " (4.8) 

N o w  note  that  f~s0--- - ~ ' ( t )  is quasiperiodic,  with ~'(t + to,) = ~'(t) + 2r  b, i = 1,2 
(here to ,= (1, r )  are the periods of  the toms),  and integrating ~'(t) a round the 

pe r ime te r  o f  the t oms  in the t-plane shows that  ~/a z - r/2 = iTr. This relates the two 
integrals  in (4.8), so that  

fo q7 g ( t , t ' ) = ~ a ( t - t ' ) - ½  ~a 2 1 m z '  

~7 
h ( [ ,  t ' )  = 2 I m r  (4.9) 

The  stress tensor  on the torus is then T ( t )  = [g , ( t ,  t ' )  - ½(t - t ' ) -~ ] , ,= , ;  however  

we wan t  the stress tensor on the sphere. We obtain  it through the conformal  
m a p p i n g  (4.2), r emember ing  to take into account  the conformal  anomaly  [4] 

z, 2 77j  ] '  (4.1o) 

where  c = 1. Eq. (4.1) for z ( t )  relates the derivatives of  the Weierstrass function to 
itself, so one  can simplify the expression for the schwarzian derivative (the second 
t e rm on the r.h.s.). Using the "dupl ica t ion formula"  for p, ~ 2 t ) = - 2 ~ t ) +  
(ga"/2~a')  2, one  finds 

)2) 
12 ~a' 2 ~, ~a ---7 = - ~2~a(2t)" 
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From (4.5) and (4.9), and the fact that l i m , _ o [ ~ t  ) - t -2] = 0, the r.h.s, in (4.10) is 
simply 

(T(t))  = ~8o(2t) - I - ~r(Im ~') -1 , 

where 

l= fo  dt~(t)=(2~ri) 2 ~ - 2  - - -  . 
,,=1 1 - u "  

Combining these results gives 

,9 

( T ( z ) ) =  ~ [ , O ( 2 t ) - l - r r ( I m ~ ' ) - t ] ,  (4.11) 

which, using the expression (4.2) for the Weierstrass function, reduces to 

, 1 ,) 
( T ( z ) ) =  16 ( z - x )  2 +--z-x +--x-I 

+ [ - 2 ( e 2 - e l ) x - 2 e ' - I - ~ ( l m r ) - l ] ]  
" 4 ~  2 ----e-~(x --- i )  + finite. 

The coefficient of the 1/(z - x) term is then 8 x In Z(x). Unfortunately, this answer 
is expressed in terms of the modulus of the torus ~', which is only implicitly a 
function of the cross-ratio x, eq. (4.3). It is a minor miracle that (4.11) can be 
integrated; the crucial observations are that 

1 1 

4(e 2 -  e l ) x ( x -  1) 4"/r 2x19'~ 

and that 

1 d~" 

41ri d x '  

l=(2~ri) d-----ln[ua/12I-I(1dr [ ,~ - u")2] . 

(4.12) 

Therefore, the residue of the subleading singularity in (T) ,  

O ~ l n Z q u = -  - + - -  - - -  I +  - - ,  
x x -  1 4~ri dx 
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integrates to 

oo 

Zqu(X ) = const .  ( Imr ) - I /2 l x (1  - x ) u [  -1/lz 1-I l1 - u" l -2  
n = l  

(4.13) 

This is but half of the full partition function (luckily the more difficult half to 
evaluate). The rest comes from the sum over classical solutions, the different 

possible winding sectors in intermediate states. Note that these don' t  contribute as 
R, the radius of the orbifold, goes to infinity. In that limit the above is the complete 

answer for el = 0 (modulo an overall normalization to be determined shortly). For 
e 1 = 1 the winding number is odd and the classical action damps the amplitude to 

zero for large R. 

The classical solutions to 0OX = 0 on the torus are 

X¢l = at + a-~. (4.14) 

These will depend on which fixed point in spacetime each of the twists corresponds 
to; this contrasts with the quantum fluctuations, which by definition care only 

about  the type of twist (i.e. the element of the point group) at each vertex and not 
how the coordinate varies from twist to twist. The Weierstrass function maps the 

half-points of the torus to the branch points on the sphere where the twists are; the 
field X must satisfy the condition X = - X  at these points, so 

1 
X ~ l ( t = ~ ) = e  o ( m o d 2 ) ,  

q/ 'R 

1 
~ - X ~ , ( t = ½ z ) = e  1 ( m o d 2 ) .  

We have fixed Xcl(0 ) = 0, and the preceding equation implies (1/~rR)Xd(l(1 + T)) 
= e o + e 1 (mod 2). The requirement on the constants a is that the solutions (4.14) 
describe strings which shift by m 0 = 2n 0 + e 0 when taken around the fixed points at 

z = x and z = 1, and by m 1 = 2n 1 + e 1 around the fixed points z = 0, x; this implies 

~riR 
a = im----~(ml + m0~: ) . 

The classical action for these solutions is 

1 
Sol = ~ - / ' d 2 z j  lal 2 

qrR 2 
- 4 i m r l m 0 r  + m112; 
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an additional factor of ½ compensates for the fact that the torus parameter space 
double covers the sphere. The classical contribution to the amplitude is therefore 

=R 2 ] 
Zc, = Z z -  

n o , n 1 E Z  

The classical action is conformally invariant, so there is no anomalous term in the 
transformation back to the sphere. We can turn this sum over two winding numbers 
into a sum over winding numbers n and momenta m for a particular channel by 
performing a Poisson resummation in n~; 

[ I m r  )~/2 

m ~ Z  
n ~ 2 Z 4 - t  o 

(4.15) 

Our final result for the normalized four Z2 correlation function is then (4.13) times 
(4.15), 

= 2 - 2 / 3 1 x ( 1  - x)ul-'/ 2 I1 - ukl 2 
k z l  

× ~_, ( - ) " l u C m / R  +"R/2)2/4 fi ¢ ' ' /R-" R/2)2/4 . (4.16) 
m E Z  

n ~ 2 Z + t  o 

Crossing symmetry of this correlation function results from its being composed of 
an invariant combination of modular functions on the torus. This expression for the 
twist amplitude contains, as discussed in sect. 2, all the operator product coefficients 
for the fields onto which two twists can be factorized. For Z 2 twists, all such fields 
live in the untwisted sector. The coefficients are revealed when we take the limit 
x ---, 0 or 1, since the amplitude factorizes on the product of three-point functions, 
eq. (2.13). To take the x ~ 0 limit we must perform a modular transformation (4.4) 
on the partition function (4.16). We find 

lim Z ( x )  = Ix1-1/4 
x ~ O  m ~ Z  

n ~ 2 Z + t  I 

! 
h + . . .  ) ,  

+__ ~ n R  . 

(4.17) 

The h = h =  0 term in (4.17) gives the correct normalization for (4.16), since 
1(oo)12= 1. The operator product coefficients are all powers of 16; we will find 
similar behavior for Z N twists below. Note that when e~ = 1 the two twists that are 
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being factorized sit at different fixed points in spacetime. This means that the two 

asymptot ic  states are being stretched to different locations on the orbifold; corre- 
spondingly the operator product coefficient is damped exponentially in the radius of 
the orbifold, reflecting the large classical action required to pass between fixed 

points. 

4.2. Z N TWISTS 

We now present a calculation of a correlation function involving four Z u twists, 
generalizing the four Z 2 twist calculation just presented. Mapping the correlation 
function onto a smooth Riemann covering surface of higher genus (genus N -  1 as 

it will turn out) becomes quite cumbersome for all but the simplest calculations. 
Moreover it is actually unnecessary; we will now show that one can solve the 

problem directly in the cut z-plane. In the case N = 2 we will recover precisely 
the answer obtained above. To simplify the calculation, let us first assume that the 

lattice A for the orbifold is the direct sum of n orthogonal two-dimensional lattices, 
each of which is preserved by the ZN twist. This reduces the problem to that for a 
two-dimensional orbifold (as noted in the previous section), which we will solve in 
this section. It is then easy to generalize the solution to that for an arbitrary lattice 

A. There are actually very few two-dimensional Z:~. orbifolds, because the order-N 
rotation used to construct the orbifold must be an automorphism of some two- 
dimensional lattice; hence it must have order N = 2, 3, 4, or 6. The N = 3 and N = 6 
cases require the hexagonal lattice; the N = 4 case requires the square lattice. 

Choose complex coordinates X = X 1 + i X  2 and X =  X 1 - i X  2 for the two-plane. 
Then take 0 to rotate this two-plane by an angle 2 ~ r k / N  for some k ~ 1 . . . . .  N - 1, 

so the field X obeys the local monodromy conditions (2.4) with respect to the twist 
operators  o± associated with 0 and 0-1. The correlation function to be calculated 
contains two twists and two antitwists: 

Z ( Z i ,  Zi) ~ Ot-(Zl' Z1)O+(Z2 ' ZS2)O-(Z3, ff3)O+(Z4, Z4))" (4.18) 

Note  that Z has net twist zero since 0-100-10 = 1, so it satisfies the point group 
selection rules mentioned in sect. 3. Each twist operator should also be labelled by 
an index e denoting the fixed point of 0 at which it creates a twisted state: o ±. ~ (z,). 
The space group will provide restrictions on which combinations of the e+ can yield 
nonvanishing correlators, as in the Z 2 case. However, we will split the calculation 
into a quantum piece and a classical piece, as described in sect. 2, and calculate first 
the quantum piece of the amplitude, which is independent of this index; so we can 
omit  the index for now. For N = 2 there is no distinction between o+ and o ,  and 
Z(z , )  will give back the four Z 2 correlator calculated previously. For N > 2 we can 
extract two types of three-point correlation functions from the four-point function. 
As z 2 ---, z I or 2 2 ~ z 3 the correlation function factorizes on the exponentials e ~p x 
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(with quantized momentum p'  on the spacetime torus) and on other untwisted 
fields. Factorization on the identity operator ( p = 0), and the fact that 

(o.~o I ) = ( o + o _ ) = l  

gives the correct normalization for the two-point function for the states I a= ), will 
fix the overall normalization of the four-point function. Letting z 2 --, z 4 factorizes 
the four-point function on states coming from the sector twisted by 8 -2 . In 
particular this limit yields the three-point function (o +o+ o _ ), where o___ creates 
the ground state in the sector twisted by O-2. This three-point function will provide 
the exact string-tree-level Yukawa couplings for chiral generations coming from the 
twisted sectors, when we consider the heterotic string on a Z N orbifold in sect. 5. 
These couplings will include contributions which are damped exponentially in the 
radii of the orbifold. 

As described in sect. 2, the first step in constructing the quantum piece of the 
correlator (4.18) is to find the Green function in the presence of the four twists, 

( - ~ a, xa~Yo_(z,)o+(z=)o(z~)o+(z,))  
g(z, w ;  z,) = (o_(z,)o+(z~)o_(z~)o+(z,)) (4.19) 

The Green function obeys the following asymptotic conditions, as discussed in 
sect. 2: 

I g ( z ,  w; zi) ( z  - w) 2 + finite as z ~ w 

"~ - k / N  
( Z  - -  Z 1 , 3 !  as z ~ Z1, 3 

- ( z  - z 2 , 4 )  - " - * / u ~  as z ---,  Z2, 4 

-- (W-- Zl.3)-(1-k/~) as w ~ z l ,  3 

- k / N  
- ( w - z 2 . 4 1  a s  W"~Z2, 4 . (4.20) 

The holomorphic fields for the cut z-plane in this case are: 

a x O > ( z )  ~- , ~ , ( : )  -= [ ( z  - z , ) ( :  - ~ ) ]  - * / ~  [ ( z  - z : ) ( z  - z , ) l  - < , - , / N )  

o £ < ' ( z )  = , ~ _ ~ ( z )  = [ (~  - z , ) ( z  - z ~ ) ] - - " - ~ / ' ~ [ ( z  - z ~ ) ( z  - z , ) ]  - ~ / ~  (4.21) 
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By inspection, 

k (~-~)(z-z~)(w~z~)(w-z,) 
g(~,w)=,~,(z),~N~(w) ~ (z-w7 

( k ) ( z - z 2 ) ( z - z 4 ) ( w - z l ) ( w - z 3 )  +A) (4.22) 

+ a - ~ ( z -  w) ~ 

is the unique function of z and w with the desired properties (4.20). The factor 
~k(Z)~u_k(W) gives the correct behavior for g as z, w ~ z v The first two terms in 
brackets give the required double pole without residue as z ~ w. The remainder 
A = A(z,, ~,) is a constant (in z and w) which is left undetermined by (4.20) because 
it multiplies the nonsingular product of two holomorphic differentials, one in z and 
one in w. Also, A contains the only dependence of the Green function on the 
antiholomorphic coordinates ~,. A will be determined by the global monodromy 
condition (3.10) discussed in sect. 3: the requirement that the quantum field X be 
strictly periodic around all closed loops cg~ in the cut z-plane. 

Before determining A, however, we will extract the differential equation or Z(z,) 
from g(z, w; z,) by first taking w ~ z, then z --, z 2. The operator product 

-½ o z x o . Y -  ( z -  w)- '+  r(~) + ... 

tells us that 

( T ( z ) o _ o + o  o+)  

o_o+o_o+) 
= lim [g (z ,  w ) - ( z - w )  -2] 

W - ' * Z  

1 1 , ) 2  
= - - - 1 -  _ _ + m  

2 N z - z ~  z - z  3 z - z  2 z - z  4 

A 
+ ( 4 . 2 3 )  

(~ - z , ) ( z  - z~)( . -  - z 3 ) ( z  - z , )  

Then the operator product 

T(z)o+(z2) h°°+(z2) + + . . .  
(~ -~ )~  z - ~  

applied to (4.23) confirms that the scaling dimension of o+ (and also of o )  is 
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ho = ~(k/N)(1 -k /N)  and gives rise to the differential equation 

1 1 )  
0z2 l n Z q u ( Z , , z i )  = - ~ 1 - - -  + - -  - -  

Z 2 - -  Z 1 Z 2 - -  Z 3 Z 2 - -  Z 4 

A(z,, e,) 
+ (z 2 _ za)(z2 _ z3)(z2 _ z4 ) . (4.24) 

We can use SL2(C ) invariance to fix the locations of three of the four vertex 

operators: z I = 0, z 2 = x, z 3 = 1, z 4 ~ oo. Then (4.24) becomes 

0~, I n  m q u ( X  , . ~ )  = - -  ~ 1 - -  ( 4 . 2 5 )  
x 1 - x  x ( 1 - x ) '  

where 

Zqu(X, Y)-- lira Izool2(k/m~l-*/N)(o_(z~o)o+(1)o (x, ~)o~(0)), 

A(x,~)-  lim -z~olA(O,x,l,zoo). 
g oe --'~ O0 

Now we use the global monodromy conditions (3.10) to determine A. Inserting 
(3.10) into the appropriate correlation function implies 

0 = ~ ,  d z g ( z ,  w) + ~ dih(i, w). (4.26) 

The auxiliary correlation function 

h(~,w;z,)- 
o_o+o_o+) 

= B ( z , ,  ~,),%_,(e),~N_,(w) (4.27) 

is determined (up to the constant factor B) in the same way as g was, using local 
monodromy.  Eq. (4.26) should be satisfied for every closed loop on the z-plane, 
which has two Nth root branch cuts (fig. 4a). To determine the number of 
independent closed loops, we could map the complex plane with Nth root branch 
cuts to a smooth N-fold covering surface M, and compute its genus as follows: 
Triangulate the cut plane such that four of the vertices of the triangulation are 
located at the four branch points. Let the triangulation have V vertices, E edges, 
and F faces, where V - E  + F = 2 is the Euler character of the genus-zero sphere. 



L. Dixon et al. / Orbifolds 

{ Z3 

(a) (b) 
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Fig. 4. Two sets of closed loops in the complex plane, for the case of four Z N twists located at z i. 
Different sheets are denoted by solid vs. dashed lines, and branch cuts by wavy lines. (a) The loops (gl 
and (g2, which form a basis for the closed loops. (b) The loops ~t and Ca 2 , which do not generally form a 
basis, but which correspond to the closed loops for the three-twist functions on which the four-point 

function factorizes. 

Now lift the triangulation to the N-fold covering surface. The edges, faces and all 
vertices but the four at the branch points are replicated N times, so the Euler 
character of the coveting surface is 4 + N ( ( V  - 4) - E + F )  = 2 - 2(N - 1) = 2 - 2g, 
and so M has genus g = N - 1. We might therefore expect to find 2g = 2(N - 1) 
independent loops (gi in the z-plane, corresponding to the 2g generators of 
homology Ha(M; Z) for the coveting surface M. We indeed find these loops, but we 
also find that they can all be generated from a basis consisting of only two loops (d a 
and (g2, which are shown in fig. 4a, plus the loops obtained from (gl and g'2 by 
shifting them "vertically" to different sheets of the cut plane. We will call such a 
loop, shifted by 1 sheets, etktcl(2), where a -  e 2~ri/N, because the functions g(z ,  w)  
and h(£,  w)  just pick up the overall phase a kl when shifted by 1 sheets in the 
z-plane. This property also shows that if the condition (4.26) is satisfied for (dr and 
(g2, then it is satisfied for all the aktclt2) and hence for all the closed loops. So we 
have two equations for the two unknowns A and B. (Note that the higher-genus 
covering surface has 3g - 3 --- 3N - 6 moduli describing it; whereas the configura- 
tion in the plane is described by one complex parameter, x. This shows that we 
must be dealing with a very special higher-genus surface, and also indicates why it is 
more economical to carry out the calculation directly in the z-plane.) 

If we divide the global monodromy conditions (4.26) by (o N_ k(w), let w --+ oo and 
use SL2(C ) invariance to fix the z, as above, we find that they become 

A~%dz~ok + B ~,dz7¢TN_k= - 1 -  ~ d z ( z - x ) o a k ,  i = 1 , 2 .  (4.28) 

All the contour integrals in (4.28) can be expressed in terms of the hypergeometric 
function 

F ( x )  =- F - 1; x = " \- jf d y y - k / N ( 1  - - y )  -('-k/Jv)(1 -- x y ) -  k/X 
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and its derivative: 

~% dz ~o k = 21ria-k/2F(x) ,  ¢%dz ~k = 2~riF(1 - x ) ,  

¢ % d ~ N _  k = 2rria-k/2f f (2) ,  ¢%dz ~u -  I, = - 2~riff(1 - 2 ) ,  

( - 1 - ~ dz  ( z -  x)a~ k = 2¢ria-k/2x(1 -- X) d F ( x )  
dx 

- 1 - ~ dz ( z -  x)~o k = 2~'ix(1 - x) dF(1 - x) 
dx 

(4.29) 

Solving eqs. (4.28) for A, we find that 

A(x ,  2) = x(1 - x ) O ~  In l ( x , £ ) ,  (4.30) 

where the expression 

l(x, 2) = F ( x )  F(1 - 2)  + F(1 - x ) f i ( 2 )  (4.31) 

also turns out to be the action for the holomorphic fields (4.21). This form for 
A(x ,  2) allows us to integrate the differential equation (4.25) for the quantum piece 
of the four-point function: 

Zq,(X,  ~) = constlx(l  - x)1-2(k/N)t l -g/mi(x,  2 ) -1 .  

We have used the x ~ £ symmetry of Z(x ,  2) to fix the Z-dependence of the 
integration constant. 

The next step is to construct properly normalized classical solutions Xcl(z, ~) and 
.,~d(z, 2), compute their action, and sum over the appropriate set of these solutions. 
The z and £ derivatives of the classical solutions are holomorphic and antiholomor- 
phic fields for the cut plane, so we can write 

a X d ( z )  = oSXd (zT)= b~u_k(~)  ; 

= = (4.32) 

where the constants a, b, ff and b are determined by the global monodromy 
conditions (3.11) discussed in sect. 3. As in the determination of A in the quantum 
calculation, it suffices to satisfy (3.11) for just the two loops rg 1 and ~'2- This is 
because to k and ~2N_k, like g and h, pick up the phase a kt when shifted by I sheets 
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on the cut plane. So if A~c,X d = v, say, with o belonging to some coset of A, then 
A~: ,~eX d = aklv,  and one can check that akZv (which is the vector v rotated by the 
lattice automorphism 0 t) belongs to the same coset as v. (For example, the Z 3 cosets 
shown in fig. 3b clearly rotate into each other under rotations by {~rl.) Thus 
satisfying the global monodromy conditions for ¢g~ and cg 2 automatically satisfies 
them for a'/~'1 and et*lcg 2 and hence for all the closed loops, since the rest can be 
generated from these loops. 

We first construct two classical solutions Xd,~ and Xd, 2 (and their tangent space 
conjugates X~L1 and -Y~z.2) which have simple global monodromy: 

A~c Xcl. . t= Ace S c l . : =  2qr~ 0 , i = 1 , 2 .  (4.33) 

We will multiply these solutions by the appropriate coset vectors to get the properly 
normalized solution. Let a i, b i, ~,, and b~ be the coefficients for Xd., and X~I., in 
(4.32). They are determined using (4.33) and the integrals (4.29): 

a 1 = - ak8l  = - iak /2 f f (1  -- . ~ ) / I ( x ,  ~) ,  

a z = ~ z  = - - i f f ( Y ) / l ( x , Y ) ,  

b 1 = - akb l  = - i a k / Z F ( 1  -- x ) / I ( x ,  ~ ) ,  

b 2 = b= = + i F ( x ) / l ( x ,  .¥) .  (4.34) 

It is important to keep track of the phases here. The global monodromy conditions 
(3.11) for cg I and ~'2, along with (3.12) to determine the cosets for u 1 and o 2, reveal 
that the coefficients for Xcl in (4.32) are 

a = o l a  1 + t)2a 2 

where 

v 1 ~ (1 - O ) ( f ~ - f ~ z  + A ) ,  

b = t;lb I + 132b2, 

v 2 ~ ( 1 - O ) ( L 2 - f E  + A  ) .  (4.35) 

Note also that the space group selection rule for this correlation function reads 

f~2 + f~, - fez - f~ ~ A. (4.36) 

We have absorbed a factor of 2~r into the definition of A for later convenience; i.e. 
now X is identified with X + 2~rA. 
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To compute the classical action 

1 
S d = ~ f d2z ( OXd aXcl + OXcl O.~cl ) 

"c 

requires the integral 

fcd2Z [¢0kl 2= fcd2Z Iz1-2k/NIZ --X[-2(I-X'/N)Iz -- 11 -2k/u 

q.t 2 

sin( r r k /N  ) 
I ( x , £ ) .  

(The integral over the z-plane can be evaluated by splitting it up into holomorphic 
and antiholomorphic contour integrals using a method that Kawai, Lewellen and 
Tye [33] used to relate open and closed string tree amplitudes. In our case there are 
two terms, each the product of a holomorphic and an antiholomorphic integral of 
the kind evaluated in eq. (4.29).) After some algebra, the action for the classical 
solutions becomes 

S:,(o1, 02) = 4,2s in(~rk /N ) [v262 + "q(Vl f z f f  +61v2fl ) + ('r120161], (4.37) 

where the phase f l =  - - i t~  - k / 2  and we have defined the modulus z (x)  of a "fake 

toms" by 

iF(1 - x )  - i/if(1 - .g) 
r ( x )  =- r x + ir 2 =- F ( x )  ' ~r(Y) =-- r I - ir 2 = i f ( y )  (4.38) 

In the Z 2 case ( k / N  = ~), the hypergeometric functions can be expressed in terms of 
elliptic theta functions: 

= i 1; x ) = ~ 2 ( , ) ,  F ( x )  F ( ~ , ~  1; 

F(1 - x )  = F(~ ,  ½;1;1 - x )  = v ~ 3 2 ( - 1 / , ) .  

The modular transformation property v~3( - 1 /~ ' )=  ( - i ' r ) l /2~3( ' r )  shows that the 
variable ~" defined in (4.38) for N = 2 is indeed the modulus of the torus which we 
used previously to construct the four Z 2 twist amplitude. For N > 2, ~" just provides 
a compact notation. 

We sum e -sc't~.o:) over the cosets for v~ and o 2 given by eq. (4.35), and then 
multiply by Zq~ to give the final result: 

Z . , ( x )  = const z2(x,  X ) lF(x )12  "~E, .2 e-  s~'("" ~2) (4.39) 
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In order to extract operator product coefficients of the form Co.o_ el Xl it is useful to 
Poisson resum this expression in the variable v2, which converts a sum over a lattice 

into a sum over the dual lattice. We expect to end up with a sum over momenta  p 
for untwisted states in the intermediate s channel. These momenta lie on A*, the 
lattice dual to A. However, the sum in v 2 is not over A but over the coset 

(1 - O ) ( f , ~ - f , ~  + A).  The peculiar phase 13 and the factor s in(~rk/N)  appearing in 
(4.37) play a key role in converting the v z sum into one over A. Note that 
1 - 0 = 1 - e 2 " k / u  = - 2~8- ls in(~rk/N).  So if we let v 2 = - 2/3-Xsin(~rk/N)(f~= - 
f,~ + q) in (4.37), the action Scl(vx, q) will be summed over q • A. Poisson resumma- 
tion in q then yields 

Z~, = 
constlx(1 - x)1-2~*/N~'-k/m 

VAsin( r rk /N  )l F(  x ) [ 2 

x E e x p ( - 2 7 r i ( f , , - f , , ) ' P )  w'e~'/2)~/2~'( ' - ' /2)~/2,  (4.40) 
peA* 
v~A~ 

where w ( x )  =- exp[~r ir (x) / s in(rrk /N) l ,  the coset A c - (1 - 8)(L2 - L ,  + A), and V A 
is the volume of the unit cell for the lattice A. As x---, 0, the leading term in 

Z(x)-Ix1-2tk/mt~-k/m (for f*,=f*2) factorizes the four-point function on 
I ( o + a _ I ) 1 2 = l ,  as explained above. This fixes the normalization: c o n s t =  
~,sin( , r k / N  ). 

The expression (4.40) for the case k / N  = ½ can be compared with the previous Z 2 
result (4.16). In this case one substitutes F(x)=v~32(~-), w = e ~ i ' ;  p = 

(rol l /R,  m 2 / R ) ,  ml. 2 • Z; f~2 -f~3 -- %" ½R and v • (2Z + ex)R (due to the normal- 
ization of A = { nR, n • Z} - the previous calculation included an extra factor of 
2~r). Using these facts and the expression (4.3) for the cross-ratio x in terms of theta 
functions, it is easy to check that (4.40) reduces to the square of (4.16). The square is 
simply because the twist field o used here twists one complex coordinate and so it is 
actually the product of two uncorrelated twist fields of the type used in the previous 

calculation. 
The results (4.39) and (4.40) easily generalize to an arbitrary Z N twist 0 (given by 

(3.13)) acting on an arbitrary 2n-dimensional lattice A. For each complex coordi- 
nate we repeat the above analysis with k replaced by k i, i = 1 . . . . .  n. The only 
coupling between the n different complex dimensions is in the sum over cosets for 
01 and v 2, which are still given by the general expressions (4.35). So each term in the 
sum over cosets in (4.39) is simply replaced by the product of n such terms, with 
k--* k,,~"--* ~'(i) in each term. (Recall that ~'(x) depends on k / N . )  The gaussian 
integral needed for the Poisson resummation in q is likewise the product of n 
two-dimensional integrals, so the same replacements in (4.40) as were made in (4.39) 
also make (4.40) valid for an arbitrary lattice. 
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To extract the operator product coefficients Co.o_~,p~ and C . . . . . . .  one needs the 
behavior of  w(x) as x---, 0 and o¢, respectively. The requisite asymptotics for the 
hypergeometric function are 

F ( x ) - l ,  F ( l - x ) -  sin ~ -  ( - l n x + l n $ ) ,  x - ) O ,  

F ( x )  - r(1 - 2 k i N )  
£ 2 ( 1  - k/N) 

x - k / N - a  -k/2 F ( 2 k / N -  1) x -(l k/N) 
r2(k/N) , X---~O0, 

F(1 - 2 k / N )  £ ( 2 k / N -  1) 
F(1 - x )  - F2(1 - k / N )  x -k /N + r 2 ( k / N  ) x-(t-k/~'),  X - - *  O 0  . 

(4.41) 

Here l n S ( k / N )  - 2if( l )  - ~ ( k / N )  - ~(1 - k /N) ;  the specific values of 8 needed 
for the four two-dimensional orbifolds are 8(½) = 24, 6(~) = 33, 8(~) = 26, 6(~) = 
2433. Using the definition of • (4.38), one finds that w ( x ) -  x /8  as x ~ 0, and 

T --, ~o~ = sin(irk~N) + ilcos(crk/N)[ as x - )  o¢. So for example the operator prod- 
ucts 

Ca .... (e', x+e-,p x)=3-P~/= (4.42) 

are obtained (modulo phases) from the limit 

lim Z ( x )  = lxl-2(k/NXl-k/~,') 
z ' -*O p E A *  

o E A  c 

exp,--21ri(f~2--f,3)'P,xh~?(l( ) + . . .  ), 

8h*~ 

1 2 {(p+_ 

which generalizes equation (4.17) for the Z 2 case. By e ' p x +  e - i p ' X  in (4.42) we 
mean the operator whose two-point function has been normalized to 1 • I z - w I - 2P'~ 
Again the operator product coefficients are damped exponentially in the radii of the 
orbifold when the two twists being factorized sit at different fixed points in 
spacetime (f,, @f,2)" However, these coefficients do not give rise to Yukawa 
couplings for p, v 4: 0, because massless fermionic string states always have zero 
momentum and winding number in the compactified directions. 

In the Z 2 case the x - )  oo limit of Z(x)  provides no new information, due to 
crossing symmetry. (The factorization is on untwisted states in all three channels, s, 
t, and u.) For N > 2, however, we obtain three-twist operator product coefficients. 
In the limit x ~ oo (for N > 2), ~2(x) approaches a positive constant, [cos(~rk/N)[, 
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so the "unresummed" expression (4.39) for Z ( x )  can be factorized on the twisted 
states. The classical contributions to the three-twist functions can also be calculated 
directly, by the same techniques as used above for the four-point function. The 
disadvantage is that the overall normalization is left undetermined; this additional 
information is provided by factorization of the four-point function. We sketch very 
briefly the direct three-twist calculation, in order to see what to expect from the 
four-twist factorization. One finds that there is always exactly one holomorphic field 
3 X  (~) or  one antiholomorphic field 0X CI) (whereas both existed for the four-point 
function), and correspondingly there is only one independent closed loop (say c~) 
with which to normalize the field. The classical solutions have the form Xcl(Z ) and 
Xct(z~ ), or vice-versa, and may be thought of as holoraorphic  ins tan tons  [14]. Because 
there is only one normalization condition, the sum over classical solutions is over a 
single lattice, as opposed to the double lattice sum in (4.39) for the four-twist case. 

We would therefore like to show that the double lattice sum for Z ( x )  factors into 
two single sums as x ~ oo. First we make a change of basis for the lattices: The 
closed loops ~'1 and r¢ 2, used to normalize the four-twist classical solutions, differ 
from the loops ~1 and ~2 which normalize the solutions for the two three-twist 
functions on which we want to factorize (see fig. 4). Of course we can generate ¢1 
and ~2 from cd I and ~'2, and in fact fig. 4 shows that 

~1 = cgl - cg2, c~2 = akffl + c~2 (4.43) 

for the two-dimensional orbifold examples. This suggests that we rewrite the sum in 
(4.39) in terms of the lattice vectors 61 and 62 which give the change in X¢l around 
the loops c~ 1 and ~2, rather than around ~1 and c~ 2. By the linearity of the contour 
integrals defining the o's, they satisfy 

61 = v 1 - v 2 . 62 = akv l  + v 2 . (4.44) 

In terms of 61 and 62 the classical action for x --* ~ simplifies to 

7/" 

S~1~°)(6,, 62) = 4 1 s i n ( 2 ~ r k / N ) l  (62  + 6 ~ ) ,  (4.45) 

so the 61 and 62 sums appear to decouple in this limit. However, whereas the cosets 
for v 1 and v 2 were summed over independently in (4.39), the sums over 61 and 62 
are constrained in general. This is because the loops ~1 and ~2 do not in general 
form a basis from which all the closed loops can be generated (whereas ~t and c¢ 2 
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do). In particular, inverting (4.43) to get 

l + a  -k 

~1 = 2(1 + cos(2rrk/N)) (~l + ~2), 

l + a  - k  

c~2 = 2(1 + cos(Z~rk/N)) (--akcdt + e2) 

(4.46) 

shows that ~ and fiE cannot be generated from ~ and ~2 (plus their sheet-shifted 
copies otkl~ 1 and a~'t~2), except for the Z 3 case, because only then is 
[2(1 + cos(2~rk/N))] -1 an integer. 

The physical reason why the 6~ sums are constrained is that several states in the 
doubly-twisted sector (states located at different fixed points of 0 2 ) can contribute 
to the factorized ampfitude. In fact, the constrained double sum over ~ and 62 can 
be split into a number of double sums, one for each contributing fixed point of 0 2. 
Each of these double sums then factors into two single sums and allows us to extract 
the operator product coefficients which involve each of the intermediate states. For 
instance, we find in the two-dimensional examples of Zj  (Z4,Z6) that 1 (2, 3) fixed 
points of 0 2 should contribute in the intermediate channel. Because some of the 
doubly-twisted physical states are linear combinations of states located at different 
fixed points (see sect. 3), this is equivalent to the correlation (o , ,  ~o,. ~ _  -. ~) being 
nonzero for 1 (1 or 2, 2) value(s) of e 3, given e 1 and e 2. These results are obtained 
using the space group selection rule described in the previous section, which here 
can be written as 

L , + L 2 - O + O ) L ,  e A ,  

where f~ and Of, 3 are the fixed points of 02 corresponding to a given doubly-twisted 
physical state. Correspondingly, the double lattice sum for the four-point function 
can be shown to split into 1 (2, 3) sums which then factorize. These sums turn out to 
be over cosets of A with respect to the rotation 02 rather than 0. The correctly 
normalized three-twist function is 

Co . o = (o+, .p+,~p__ , . , )  
~'#1 +' t2 - - ' e3  

~/ ~rk l F2(~ + ~ll - 2k/NI) [ ~rU ] 
= V~ tan--~- ~(~ - - ~ - ~ / - ~  ~ e x p  - 4[sin(2~rk/N)] ' 

k 
O ~ ( 1 - 0 2 ) ( f ~ - L , + A ) ,  ~ -¢ ~. (4.47) 

(For k/N = ~ the "twist field" o _  is merely the identity operator, and (4.47) is 
replaced by (o~0~2I) = 8~,2, using (4.17).) If the fixed point f~3 of 0 z is not fixed by 
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0, then (4.47) should contain a second sum with f,~ replaced by Of,. This operator 
product  coefficient is one of our chief results. The classical contribution does agree 
with the results of the direct calculation which we sketched above. 

Finally, we note that the Green functions g and h for the propagation of OX in 
the presence of twists may be used to evaluate any correlation function of non-twist 
vertices, in the presence of twists. To see this let us integrate g, h to obtain the 
Green function for X itself: 

= w )  + f ifw h( , w) 

Because the (quantum) Green functions g and h are defined to have vanishing 
global monodromy (cf. eq. (3.10)), G is well-defined (otherwise it would depend on 
a choice of integration contour around the twists). The choice of base points z0, w 0 
will drop out of vertex correlation functions. The quantum contribution to a 
correlation of d~[ X]'s is then given by the set of free field contractions just as in the 
absence of twist fields, but now using G for the contractions instead of - l n l z  - w] 2. 
Note that G appears undifferentiated only in contractions with exponentials of X. 
Terms involving, say, z 0 will thus always appear in the form E,p ,G(z , ,  wj). Inserting 
the expression for G above, the base point dependence vanishes by momentum 
conservation. Thus the calculation of the quantum contribution to a correlation 
function such as 

( o,( z ,)  ... oM( zM ) e - "  xq°'"e'k xq°(") = < o,( z,) ... oM( zM ) >e k2 'z'w' 

reduces to the calculation of pure twist correlations. As discussed in sect. 2, the full 
correlation function is a sum of contributions for each classical solution Xcl. The 
fact that (X> = Xcl is nonzero must then be taken into account when performing 
the free-field contractions. Correlation functions involving excited twist fields such 
as ~'÷, ~'~ can be obtained from aX correlations by moving the aX ' s  near the twist 
fields o i and using the operator product relations (2.5). The pure twist correlation 
function is very much like the partition function for higher genus surfaces in that X 
correlations are excitations above the ground state of the twists, and the ground 
state correlation function appears as a factor in any other correlation function. In 
fact, we saw above that calculation of the four Z 2 twist correlation is quite similar to 
the calculation of a partition function on the torus. 
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5. Twists for fermionic strings 

In the last section, we succeeded in calculating the four bosonic twist field 
correlation function, and extracted operator product coefficients for products of 
twist fields. The extension of this calculation to the ferrnionic string is straightfor- 
ward because the parts of the twist that act on world-sheet spinors are trivial in the 
bosonized representation; their main role is to ensure that, when combined with the 
o correlation (4.40), the full correlation function has no fractional powers of x out 
front. The result needed is 

= z =  x (1 - x )  ° 2 ° ' .  (5 .1 )  (e.,- H(zoo)e-r n(1)e-2.-(x)e-,- n(O) ) . 2 . - ,  

In particular we will want the correlation of four s + fields 

( s_ ( z ~ ) s  + (1)s_ ( x )s+ (O) ) = z~(k /U):x -'k /'v)2(1 - x ) - 'k /u)2  X cocycles. 

The values taken by the a 's  depends on both the type of string theory - type II or 
heterotic - and on which picture we choose. The picture used for the calculation is 
irrelevant in the end; the same answer for scattering amplitudes will hold for all of 
them. However the actual calculation may be simpler to perform in one picture than 
in another. This is certainly true in our case, as use of only the vertices V 0, eq. (3.6), 
requires evaluation of the correlation functions of excited twist fields ~. Excited 
twist correlation functions can be worked out from Green functions like g(z,  w), 
but there will be many terms to evaluate in the product of four twists. We can get by 
with the ground state twist correlations already calculated in sect. 4 if we simply 
change pictures. 

Consider first the superstring. The superfield vertex is 

V o,o,(Z, = (5 3)  

taking ~."~ from eq. (2.18). The superstring has both a local analytic and antiana- 
lyric supersymmetry, so we can picture-change both the left- and right-movers. Each 
picture-change takes the highest component of a superfield to the lowest compo- 
nent. Whereas the theta integrals in the superfield picture pick out the higher 
components of the superfield (2.16), after both picture-changes the vertex becomes 

V(_ t , - l )  = e -* -*s÷s  +o +eikT"( z, £) ,  

which is a considerable simplification. The superfield picture is more complicated 
because it is reached from this one by application of T F and ir v, each of which is a 
sum of terms for each complex dimension. We are not free to picture-change all of 
the vertices in a correlation function, but only two, in order to soak up the ghost 
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background charge. Thus for the four-point function we are left with 

61 

( z<, _,(z~, e~)z,~.o,(O z& ~. _,)(x, n Z&o,(O)). 

We have converted the two vertices containing ~_ as this is the most convenient 
choice in what follows. Let us write this as 

( v(-_,.- 1)(z~, e~)(e*T~e~GV(+_,._ ~,(1))v(: ~._.,)(x, ~)(e~T~e~GV(t ~ _,)(0))) 

(5.4) 

in terms of the ( - 1 , -  1) picture vertices and the picture-changing operator. The 
fermionic stress tensor is T~(z )=  - ¼(tgX,~+ 0 X f f ) -  ~-0X. if', and similarly for 

G(n. 
Recall that when we evaluated the operator product of T F with j-o, only the OX~ 

term was singular and not the tgX~b term. Since both operator products in (5.4) 
involve ,~o and not 3 "  ° the contribution of the higher component j-+l of the twist 
superfield vanishes by H and /1 (~ and ~) charge conservation. This leaves only 
the part of T F involving - ½0X. g', which does not affect the twist field part of the 
vertex. Thus the theta integral of the superfield vertices yields the ik .  q,e 'k ~r3-° 
terms as the only nonvanishing contribution to the correlation function. It is 
important for what follows that this introduces explicit powers of momentum. The 
nonvanishing part of the vertex correlation function is thus 

z,'?'(x) -= iv,.., v,> 

= ( < e - * ( z ~ ) e - ' ( 1 ) > ( c ( z ~ ) c ( 1 ) c ( O ) )  × c.c.) 

× <eik,'gC(z~c)ei*,~r(1)ei*:'~(x,E)e'*,Sr(O)) 

×((k3-v(1)k,.  ~(0)> × c.c.)( J-°(z~)<°(1)~°(x, ~)y?(o)). (5.5) 

The ghost parts of the correlation are trivial, providing a factor 1z¢¢ 12. The X ' s  give 

(e,k,-~... e,k, ~ )  = [xhk2(1 -- x)<'  k~[ 2 

and the q"s  produce a factor of (k 1 • k3) 2. The twist correlation functions (4.40) and 
(5.2) cancel the factor of Izool% In (4.40) we make the replacements discussed in 
sect. 4 which convert the two-dimensional result to one for a six-dimensional 
orbifold. The full correlation function (5.5) is then integrated over the complex 
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plane to give the scattering amplitude for four massless twisted bosons: 

fd2xZ'O,=¼u2fd2xlxl-2-'ll-xl-2-'P,,(x,~) 
3 

E FIl ,,(x)l -= 
pEA* i~ l  
yEA c 

X e x p ( -  2~ri( f~2 - f , ,) 'P,o)w(x )(Plo+OOJ2)2/2W( .~)1PI,I- vlo/2)2/2 

(5.6) 

Here s = - ( k l + k 2 )  2, t = - ( k 2 + k 3 )  2, and u = - ( k l + k 3 ) 2 ;  i runs over the 
three complex dimensions of the orbifold; and w(x) is defined following eq. (4.40). 

Clearly one cannot evaluate the integral in (5.6) explicitly; however, one may 
deduce its basic structure as a function of the momenta, using asymptotics for 
P~j(x,£). For x -~ o~ the behavior depends on the form of the twist 8; that is, on the 
fractions k i N .  Since F..kJN = 1, at most one of the k i N  can be greater than ~, say 
kl/N. So there are two possibilities, kl/N < ½ or kl /N > ~; the amplitude (5.6) 
behaves differently in the two cases. (If some k / N =  12, then the complex field X ~ is 
not twisted by 8 2, and (4.41) is not valid; these cases can be treated separately.) 
Using the asymptotics (4.41) for F~o(x ) and also EkyN = 1 one has 

P~ ( x , 2 ) -  1, x ~ O , 1 ;  

- I x l  2 x - - ' ~  ~ - <  " 

- [xl 2-2(2kJ'~-'~ , x ~ ~ ~ -  > } . (5.7) 

Note that as x-- ,  0, the amplitude factorizes on the untwisted sector. Here the 
integral in (5.6) behaves like 

1 
f d 2 x  ix I-2-.~_ _ 

3' 

at low momentum. Thus there is a u 2 / s  pole in the S-matrix. Similarly, in the 
crossed channel x ~ 1 there will be a u2/t pole. These poles indicate the exchange 
of massless particles (gravitons, dilatons, etc.) in the untwisted sector. However, in 
the u channel where one factorizes on the doubly-twisted sector, the 1/u pole (for 
k~/N < ~) in the integral is cancelled by the explicit factor of u 2. For kl/N > ~ this 
pole is shifted from u = 0 to u = 2(2kl/N - 1), so the amplitude is proportional to 
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U 2 rather than u at low momentum. This softer behavior will be important when we 
study amplitudes involving (0, 2) modes of the heterotic string. After subtracting out 
the massless poles arising from lower order exchange, the superstring amplitude 
vanishes at zero momentum; there are therefore no four-twist contact terms in the 
low energy effective action. 

This last result is of some importance, for it says that the effective action for 
superstrings compactified on orbifolds contains no potential terms for the massless 
twisted states. From a field theoretic viewpoint, giving an expectation value to these 
massless modes would correspond to smoothing out the orbifold singularities 
(known as "blowing up" the fixed points of the orbifold). A flat potential means 
that this can be done while preserving the equations of motion, in accord with 
previous arguments [11,14]. Note, however, that we have calculated the exact (string 
tree-level) potential in the orbifold limit - no approximations have been made. In 
terms of a nonlinear (sigma) model description, blowing up the fixed points would 
correspond to the addition to the action of the twist field at zero momentum, with a 
small coefficient. The absence of a potential for the blowing up mode means that 
the twist operator is truly marginal, and the perturbed nonlinear model still would 
have vanishing beta function. Although we have only calculated explicitly the four 
scalar field contribution to the effective action, in any higher point calculation the 
picture-changing procedure used in (5.4) applies. If there are n twist superfields and 
n antitwist superfields, we leave two of the antitwist superfields in the ( - 1 , -  1) 
picture and again find a factor of (momentum) 4 from the '/' correlations which 
multiplies the unintegrated amplitude. The integration produces 1 / k ~ . k j  poles from 
the regions of integration where two or more vertices collide~ here we may apply the 
operator product expansions for the twist fields o+ and s +. Subtracting out these 
poles again leaves an amplitude that vanishes as (momentum) 2. Thus the superstring 
effective potential for equal numbers of twist fields and antitwist fields will be fiat 
to all orders in the number of twist fields. 

We now turn to the derivation of four twisted string scattering amplitudes in the 
heterotic string. We will be able to relate four-point amplitudes for the various 
twisted heterotic states to the basic four-twist superstring amplitude (5.6) by making 
simple modifications. In the superstring, states must be highest weight under the 
fermionic generators in T v and TF as well as the Virasoro generators; the additional 
restrictions mean fewer physical vertices. The left-handed parts of the heterotic 
string are not restricted in this way; they need only be conformal fields, rather than 
superconformal fields, so there are more massless states than for the superstring. 
Moreover, there are several options for the expectation value of the E 8 ® E~ gauge 
field. (We focus on this case rather than Spin(32)/Zz. ) First consider the case 
~t~) = CA); the spin connection is embedded in a canonical SU(3) subgroup of one 
E 8. In this case, the orbifold has the (2, 2) supersymmetry of the superstring. Note, 
however, that the conditions which define physical vertices are different because this 
extra supersymmetry is global and does not contribute to the BRST charge (and 
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therefore to the physical state conditions) as it does in the superstring. The 
singly-twisted sector of the Hilbert space (in the ( - 1 )  picture for the right-handed 
modes) contains the following massless states: 

(3, grav) 5 i ~i ,~o,, . . .  -k,/N -(1/2-k,/,~') ~ / ,  i = 1  3 ( n o s u m o n  i) ,  

(10) ),~_ ,/21~+°), a = 7 . . .  16, 

(1) - -2 -3 t g ? ) ,  hi-(l/2- k,/N) ~-(I/2 -k2/N)~-(I/2-k~/N) 

(16) s~J~_°), a = l . . . 1 6 .  (5.8) 

The first set of these is a multiplet of gravitational scalars; in fact, the trace 
Y'-~'- k,/N ~i- (1/2- k,/~)l ~ ° )  is the (2, 2) supersymmetric "blowing-up mode" of the 
superstring; i.e. among the physical heterotic states are those which are allowed in 
the type II theory. The remaining states are a 27 of E 6, decomposed under the 
manifest SO(10) of the fermionic formulation of the gauge algebra. In addition each 
of the above states should carry an index denoting the fixed point of O at which it 
resides, and each is accompanied by a four-dimensional superpartner. It is a simple 
exercise to write down the conformal fields that create these states. 

Other possible embeddings of the spin connection depend on the details of the 
model. These embeddings result in (0, 2) supersymmetric conformal field theories, as 
opposed to the (2, 2) solutions considered above. In general, they will not contain 
matter fields which correspond to anything in a type II superstring background. For 
instance, in the Z orbifold described in [13] (a Z 3 twist acting on three orthogonal 
two-dimensional spacetime lattices), it is possible to embed the spin connection in 
both Es's simultaneously: (w) = (A)I = (A)2. In other words, we choose [%1/N = 
[¢~.2/N = k i n  = 13, i =  1,2,3, and 0 otherwise. This choice breaks the gauge group 
to (E 6 ® SU(3)) 2. The massless states in the twisted sector are singlets under both 
E6's but transform as 3's under both SU(3)'s: 

X' 1/6.1X _ 

Correspondingly, the lowest dimension twist field must twist both sets of gauge 
fermions: 

e(k)/,ffi(r(J) ) 3 
• ¢~f(i, j )  = e *(z) /'t+')l. I--I ~,~, ,][-+.2 I-Ie~'J2(Z) 17 s~+m)(z)at+m'( "-, £), 

k "~ i I ~ j  m = 1 

(5.9) 
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where 
~ . ~ 

~(i)  = ei l t ,  o ,2J3 ~'(i) -' + (1 .2 )  , * - ( 1 , 2 )  -~  e-2~11"~'2~/3 • 

These fields have dimension h,/7= 1, and are ( - l )  picture vertices. The lower 
dimension field where only unexcited twists appear for the gauge field fermions 
does not satisfy the separate projections ( - - )F I= ( - - )F2=( - - )F=I  (besides, it 
doesn't have the right dimension). 

Let us first consider the (2, 2) supersymmetric backgrounds. The vertex for the 
blowing-up mode described above was given in eq. (3.6) and is in fact the same 
vertex (5.3) that appears in the type II theory, apart from the term 

3 

r-I Jo~°ik~,'I~'eik~( z, ~), (5.1o) 
i ~ l  

which appears in the type II vertex but not in the heterotic vertex. Superstring 
amplitudes, like the above four-point calculation, will therefore give us directly the 
corresponding scattering amplitudes for the heterotic blowing-up modes in the 
low-momentum limit, because (5.10) vanishes as k,  ~ 0. The heterotic vertex is of 
course written in the (0) "picture" on the bosonic (left-moving) side because there is 
no local superconformal invariance and hence no picture-changing. On the other 
hand, for the superstring we were able to use the picture-changing trick on both the 
left- and right-moving sides in order to simplify the calculation and to extract four 
explicit powers of momentum; this led us to conclude that the superstring amplitude 
contains no contact terms. The term (5.10) implies that the heterotic amplitude is 
not exactly the same as the corresponding superstring amplitude. However, if one 
amplitude is subtracted from the other, then the difference contains at least one 
factor of (momentum) 2 from the left-movers, since the term (5.10) must appear at 
least twice in the difference in order to contribute. The difference also contains 
another common factor of (momentum) 2 from using the ( - 1 )  picture on the 
right-hand side for both calculations. These two factors are enough to ensure that 
the difference cannot give rise to contact terms. Therefore our arguments about the 
flatness of the potential to all orders for the blowing-up modes of the superstring 
apply to the heterotic blowing-up modes as well. 

The picture-changing trick used for the superstring avoids the arduous task of 
evaluating excited-twist correlation functions. One can calculate amplitudes for 
either string in the superfield (0) picture for all of the vertices; it just requires more 
work to evaluate them. In so doing, global superconformal invariance (OSp(2, 1)) 
may be used to relate correlations of highest components of superfields to those 
with lower components. One finds that the highest components of the twist super- 
fields contribute total derivatives to the correlation function, which can be in- 
tegrated by parts onto the spacetime factor I x l - ' l l  - x I - t  to give the extra factors 
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of momentum. For the heterotic amplitude for four blowing-up modes one finds 
explicitly 

(5A1) 

Taking the first term in brackets gives the superstring amplitude (5.6). The second 
term in brackets gives the difference between the two. Using (5.7) it is seen to be 
linear in s, t, and u at low energy, so it also does not give rise to a contact term, as 
we argued above. 

In any case, the result is again that the (2, 2) modes which correspond to resolving 
the orbifold singularities have a flat potential. In the superstring calculation, this 
was a consequence of the fact that certain excited twist fields did not contribute to 
the correlation function; this forced the theta integrals of the superfield vertices to 
pick out the highest component ik .  'I'e ~k~ of the spacetime part of the vertex, 
bringing down explicit factors of momenta. It was these extra powers of momenta 
which led to the absence of contact terms in the effective action for the superstring 
blowing-up modes and also for the (2, 2) heterotic string blowing-up modes. For the 
(0, 2) modes (those which have no counterpart in the superstring), no such argument 
applies; the left-moving (antianalytic) contributions to the twist correlation func- 
tions are not just total derivatives in ~. Thus the potential for (0,2) fields is not 
generically flat because there aren't enough powers of spacetime momentum in the 
amplitude to prevent the appearance of a contact term in the effective action; 
fd2x  (V4...  V1) ~: 0 at zero momentum for the (0,2) modes. 

For example, the scattering amplitude for four massless 27 scalars is simple to 
work out. Take the four states to be 

~.a_' ,/2 I~O ) , Aa' 1/2 IJC~0 } , )V_2 ~/2 l J_0),  ~"21/2 I J_0),  (5.12) 

with a 1 4: a 2 (i.e. all in the 10 of SO(10)). Then the calculation is exactly the same as 
the previous superstring calculation except that the correlation 

• 4 ( 0 ) )  = - k , .  

is replaced by 

5~(e-"¢%(5~)e-i'L,(1)e'9o2(~,)eiA~,(O)) = 1, 

so the amplitude is just the superstring amplitude (5.6) divided by a factor of 
The u/s  and u / t  poles now result from gauge boson rather than graviton exchange 
(since the s and t channels are gauge non-singlet); subtracting them out leaves a 
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four-boson contact term (for k a / N  < 21), which can be completed into an E6-invariant 
2722-72 coupling. In fact this term is related by supersymmetry to Yukawa couplings 
for three 27's, which we will discuss shortly. For k l / N  > ~ the first u-channel pole 
in the integral for the four-point amplitude is massive, at u = 2 ( 2 k l / N  - 1) rather 
than at u = 0; this means that subtraction of the gauge boson exchanges leaves an 
amplitude proportional to u rather than a contact term. We will find that the 
Yukawa couplings correspondingly vanish in this case. The amplitudes involving the 
non-blowing-up modes in the multiplet of gravitational scalars in (5.8) can also be 
calculated but require excited bosonic twist fields and so are more complicated. 

The above analysis also applies to (0, 2) orbifolds (spin connection ~ background 
gauge field). Here there are no left-right symmetric "blowing-up modes" at all, and 
in general twisted vertex scattering amplitudes will generate a non-flat effective 
potential for all the matter fields coming from the twisted sector. Consider for 
example the (0, 2) orbifold obtained from the Z orbifold by embedding the spin 
connection once in each E 8. The only massless twist fields are the ,~°(i ,  j )  of 
eq. (5.9). The four-point amplitude 

(5T°(i4, J4)5~°(i3, J3),~-°(i2, Jz)Y+°(il, J l ) )  

depends on the combination of (i,,, Jm) chosen, since these determine which 
channels are gauge-singlet, etc. The choice Jl = i3 = i4 =J4 ~ il = i2 --J2 =J3 leaves 
all three channels gauge non-singlet, and this amplitude works out to be exactly the 
same as that for the four 10's in (5.12); namely the superstring amplitude (5.6) 
divided by ~u. The contact term generated here is also the same (modulo different 
group theory factors). The exact calculations here substantiate the results of the 
instanton calculations of [14], that (0,2) models based on smooth Calabi-Yau 
manifolds are generically not solutions to the classical string equations of motion. 

Finally, we discuss the calculation of Yukawa couplings in the low-energy 
effective action for strings on orbifolds. The twist field operator product coefficients 
give them directly, because Yukawa couplings are simply the three string scattering 
amplitudes at zero momentum. In the superstring and the heterotic string, Yukawa 
couplings are related to the four-boson contact terms we described above by 
four-dimensional supersymmetry; they both derive from the same 4 3 term in the 
superpotential. Looking for this term in the superpotential via Yukawa couplings is 
therefore equivalent to looking for it via contact terms and avoids the need to make 
field theory subtractions in the four-point amplitude. (Similarly, ~ terms in the 
superpotential can be seen by computing amplitudes with 2 fermions and n -  2 
bosons rather than 2 ( n -  1) bosons.) 

Again we consider the superstring first. Here we choose the picture 

1,0Y,-1/2,- , ) ,  (s.l 3) 
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where any two of the vertices are singly-twisted ( + )  and the third is doubly-anti- 
twisted ( -  - ). All the vertex locations can be fixed using SL2(C ) invariance (since 
they all have dimension h, h = 1 there is actually no z dependence whatsoever). The 
spacetime fermion vertices have the form (cf. sect. 2) 

V, + = e-¢'/2-~6#I-I exp i _1 H' k'lYl' (-1/2.-1) i + + o(')" e'k ~ ,  

V~-_?/2 _l~=e-*/2-$~l-Iex p i 1 _  H ' +  1 -  /~' o! ~_ 

whereas the spacetime bosons look like 

V. + = e '~F (e-*-$12I exp(/[  k' H i 
~-Lo~ i=1 ~ IN l] + 1' 

V(--1.0) 

• e l  k .~r; 

(5.14) 

(5.15) 

In these expressions, double twists have charges 2k /N  in the exponents instead of 
k /N;  ~ is a spin field for the four uncompactified dimensions. If one of the 
fractions k J N  is greater than ½, say kl /N,  one finds that the doubly-twisted 
vertices in (5.14) and (5.15) have the wrong conformal weight; they must be 
modified by the replacements (½ - 2k l /N  ) --, (~ - 2k l /N  ) and (1 - 2k2.3/N) -, 
-2k2.3/N.  This modification turns out to be related to the different x--, oc 
asymptotics (5.7) we found for P,(x, 5) when k l / N  > ~. Those asymptotics led to a 
vanishing contact term for four twisted 27's in the heterotic string when k i l n  > ½. 
The modified vertex operators in (5.14) and (5.15) will lead to a vanishing of the 
corresponding Yukawa couplings. It is a useful exercise to check that each of the 
fields in (5.14) and (5.15) does have conformal weight 1. We can now see that the 
three-twist superstring Yukawa couplings vanish simply by fermion (H and /-]) 
charge conservation. For k l / N  < ½ the H charges balance in (5.13), but not t h e / t  
charges. (The picture-changing operator in (5.15) can balance the charge for one of 
the/~, but not the other two.) For k l / N  > ~ even the H charge is not conserved. Of 
course all these couplings were expected to vanish, because there were no contact 
terms in the corresponding four-boson amplitudes. The Yukawa couplings for three 
blowing-up modes of the heterotic string also vanish, because the two types of 
vertex operator are identical at zero momentum. 

On the other hand, the vertex operators for (0,2) modes on (2,2) orbifolds, and 
for all modes on (0, 2) orbifolds of the heterotic string, involve different sets of /~ 
charges• Gauge-invariant combinations of these vertices will generically conserve 
charge, so for k l / N  < ~ these modes will typically have Yukawa couplings. For 
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example, the nonvanishing Yukawa couplings for three twisted 27's of E 6 states are 
essentially just the bosonic twist operator product coefficients C o no+ 2o calcu- 
lated in sect. 4 (eq. (4.47)); the various other free field correlators . . . .  .,3 appearing in 
(5.13) simply make the full correlation function SL2(C)-invariant, and the cocycles 
which we have ignored should contribute the signs needed to build the symmetric 
E6-invariant tensor  dab c. The generalization of the operator product coefficient 
(4.47) to a six-dimensional Z N orbifold is needed here: 

Co no ~o = ~ a ~ l - I  tan 

× e x p [ -  ~'g~) 41sin(2~rkJN) } ]' 

ki ~(1-o2)(L,-L~+A), -~*~, (5.16) 

plus a second sum with f,, -+ Of,, if f,, is not fixed by 0. For completeness we note 
that the Yukawa couplings between two twisted 27"s and one untwisted 27, and 
those between one twisted 27 and two untwisted 27's, always vanish by the point 
group selection rule of sect. 3: 0- 8- 1 4:1 4 :0 .1  • 1. (This was also noted in [34].) 
The couplings of three untwisted 27's are of course simple to work out using the 
appropriate untwisted vertex operators which are invariant under the combined 
spacetime and gauge twist. In particular there are no exponentially suppressed 
contributions to these couplings. We also note that for ka/N > ½ all the Yukawa 
couplings of the type (twist, twist, double antitwist) vanish, so all the corresponding 
cubic terms in the superpotential vanish. However, other three-twist couplings are 
generally nonzero, as are higher-order terms in the superpotential. 

These results can be compared with calculations of Yukawa couplings for the 
heterotic string compactified on smooth Calabi-Yau manifolds [35, 36], in which the 
treatment is perturbative in the nonlinear (sigma) model coupling. This corresponds 
to taking the large R limit in (5.16), where R is the characteristic length of the 
lattice A (the overall size of the orbifold). To make contact with the calculations in 
[35, 36], which depend on the various moduli of the Calabi-Yau manifold, we must 
also take some lengths i., to zero. These lengths are the characteristic sizes of certain 
noncompact complex manifolds which are glued in to repair the orbifold singulari- 
ties in the construction of the corresponding smooth Calabi-Yau manifold. So in the 
limit r, --, 0 one recovers the orbifold. 

Here we specialize to the case of the Z manifold [3, 36] and its limiting Z orbifold 
[13], with the standard embedding of the spin connection. The point group for the Z 
orbifold is generated by a Z 3 rotation O which acts on each of three orthogonal 
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two-dimensional lattices, so k f N  = k y N  = ~, i = 1,2, 3: This model has 36 genera- 
tions of 27"s of E6; 9 of these come from the untwisted sector and 27 from the 
twisted sector. (There are 27 fixed points for the rotation 0 acting on the six-toms.) 
The states in the antitwisted sector are the antiparticles of the states in the twisted 
sector. We first summarize the results of [36] for the Z manifold. The ith generation 
is associated with a cohomology class in H 2 for the manifold, which can be 
represented by a closed two-form F,. Near the orbifold limit, the two-forms 
associated with the 9 untwisted 27's are just the two-forms on the torus which are 
left invariant by 8, namely d Xi/x d X j, i, j =  1,2,3; the two-forms for the 27 
twisted 27's are localized near the 27 fixed points. A Yukawa coupling for three 27's 
is given by an "intersection number" - the integral over the complex manifold of 
the wedge product of the three closed two-forms which represent the three 27's: 
f F  i A Fj A F k. If the F i are nomalized to represent integer cohomology classes, then 
this number is an integer, independent of the moduli of the Z manifold. Most of 
these integers vanish. In fact all the ones involving two untwisted 27's and one 
twisted 27, or one untwisted 27 and two twisted 27's, vanish. The only nonvanishing 
integers for three twisted 27's occur when all three are the same 27. Finally, if all 
three 27"s are untwisted, labelled by ( i l , j l ) , ( iz ,  j2),(i3, j3 ), the integers vanish 
unless i 1 ~ i 2 ~ i 3 ~ i 1 and Jl 4=J2 ~J3 4:Jl. (This is easily seen by integrating the 
product of the corresponding two-forms d X im/x d .~sm [36].) 

The intersection numbers for the ~ tell us which Yukawa couplings vanish 
(perturbatively), but not the correct normalization of the nonvanishing ones, be- 
cause the above normalization of the F, which represent the chiral generations does 
not give the conventional normalization of their kinetic terms. Instead the normal- 
ization matrix depends on intersection numbers of the form f F , / x J  A J and 
fF,/x Fj/x J,  where the Kahler form J is a linear combination of the F, with 
coefficients which are the moduli of the Z manifold: J = ~ ,m,~ .  So the nonzero 
Yukawa couplings pick up dependence on the moduli of the manifold through the 
normalization matrix. In the orbifold limit the moduli for the 27 twisted F~ vanish, 
and the K~hler form becomes simply the K~ihler form for the six-torus, which is a 
linear combination of 3 of the 9 untwisted F,: J - -R2E~.1  d X'/x d.V i. Using the 
intersection numbers listed above, the entries in the normalization matrix for 
the twisted 27's are all seen to vanish in the orbifold limit. In other words, the 
nonvanishing three-twist Yukawa couplings all become infinite in this limit. The 
nonvanishing Yukawa couplings for three untwisted 27's, on the other hand, remain 
finite. 

Now let us compare these results with the orbifoid calculations. We leave the 
reader to check that the three-untwisted Yukawa couplings do vanish if and only if 
the corresponding intersection numbers vanish. We have already noted why the 
couplings with two untwisted 27's and one untwisted 27 and the couplings with one 
untwisted 27 and two twisted 27's all vanish. Finally the three-twist Yukawa 
couplings are given by (5.16). They are nonzero when all three-twist fields create 
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states at the same fixed point, f,, =f,2 = f ~  (corresponding to the nonzero intersec- 
tion numbers for the twisted F~), but they are also nonzero for other combinations 
of fixed points which satisfy the space group selection rule f,, + f,~ - 2f,~ ~ A. (For 
the Z orbifold one can check that, given any two fixed points fc, and f*2, 
the selection rule is satisfied for precisely one other fixed point f~3) The latter 
couplings are exponentially suppressed for large R, behaving like R3e -R2, because 
the origin is not included in the coset ( 1 - 0 2 ) ( f ~ - f ~  + A )  for f~2 ~f~.  (The 
world-sheet must stretch between different fixed points.) In general, the f :~ 0 terms 
in (5.16) represent corrections to the Yukawa couplings of [35,36] which are 
nonperturbative in the inverse string tension a'. The f = 0 terms, which occur only 
when all 3 fixed points are the same, correspond to the perturbative contributions 
found in [35, 36]. Actually the correspondence is rather loose, because even the large 
R limit of the orbifold cannot be reached from a large, smooth Z manifold (i.e. a 
weakly coupled nonlinear model) without passing through a strongly-coupled re- 
gime where the perturbative calculations break down. Indeed, we find finite 
three-twist Yukawa couplings for the orbifold at finite R, in contrast to the 
divergences found by taking the limit r, ~ 0 in [36]. (The couplings do diverge like 
R 3 as R -~ o¢, though.) 

6. Conclusions 

We have succeeded in giving a complete specification of orbifold conformal field 
theory. Twist fields are dealt with via the stress-energy they induce. The classical 
stress-energy is computed from classical solutions in the presence of twists; the 
quantum piece is obtained from the connected Green functions. Integration of the 
stress tensor gives the twist correlation functions. Correlations of untwisted fields in 
the presence of twists can be obtained using the appropriate Green functions and 
classical solutions. These correlations determine the operator product coefficients, 
which are simple functions of the orbifold fixed point geometry. This data can be 
used to construct the low-energy effective action which generates the S-matrix. If an 
orbifold with otherwise acceptable properties is someday discovered, one can 
calculate the couplings in the effective theory to see whether they are realistic. The 
stress tensor method used here has also been applied successfully [24] to the 
calculation of loop amplitudes in flat space backgrounds; the procedure developed 
there would in fact seem to apply straightforwardly to any theory with a stress 
tensor in the Sugawara form. Therefore we foresee no difficulties in combining the 
methods of [24] and this paper for the purpose of computing loop corrections to 
processes on orbifold backgrounds. Although computations in orbifold conformal 
field theory are rather more complicated than in flat space, we hope that we have 
conveyed a sense that one really can calculate their properties in great detail. 

We would also like to find a handle on all the other conformal field theories 
which provide solutions to the string equations of motion. A step in this direction 
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might be to look at those which have orbifolds as one boundary of their parameter 
(moduli) space of shapes. For backgrounds with (2, 2) global world-sheet supersym- 
merry, there is no obstruction to perturbing away from the orbifold limit by 
resolving its curvature singularities. However, this can only be done in (2,2) 
backgrounds, and only for those perturbations which preserve this symmetry. 
Backgrounds without this symmetry (i.e. (0, 2) orbifolds), and left-right asymmetric 
modes in the (2, 2) case, cannot be perturbed away from the orbifold limit while 
preserving the spacetime equation of motion (conformal invariance). In other words, 
the dynamics of the heterotic string seem to drive the nearby (0, 2) backgrounds to 
the orbifold limit. Study of orbifolds might provide a laboratory for dissecting the 
structure of the general conformal field theory [37]. It certainly provides a rich 
collection of solutions of the string equations. 

Similar results to those presented in this paper have been described recently in 
[38]. 

It is a pleasure to thank E. Witten and J. Harvey for illuminating discussions. 

Note added in proof 

After submitting this paper for publication we received a paper by Bershadsky 
and Radul, where the same techniques have been applied to bosonic string propa- 
gation on branched covers of the sphere. 
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