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Two-dimensional conformal field theory is formulated as analytic geometry on the universal 
moduli space of Riemann surfaces. 

1. Introduction 

Some years ago, Polyakov [1] proposed constructing all conformally invariant 
quan tum field theories by using the constraint of conformal invariance to make 
concrete the fundamental principles of quantum field theory. This is the conformal 
boots t rap program. Conformal field theories describe the universality classes of 

critical phenomena,  or equivalently the short distance limits of quantum field 
theories, so the conformal bootstrap program is an attempt to find all possible 
critical phenomena,  and all possible quantum field theories, and to describe ex- 
plicitly their short-distance behavior. 

The subject of two-dimensional conformal field theory originated simultaneously 
in the theory of critical phenomena [21] and in string theory [3]. In recent years 
there has been progress in the two-dimensional conformal bootstrap program, based 
on investigation of the two-dimensional conformal anomaly and the Virasoro 
algebra [4-17]. There has also been progress in the two-dimensional super-confor- 
mal boots t rap program, leading to the discovery of supersymmetric critical phenom- 
ena [8,18-22]. 

Two-dimensional  conformal field theory also has several applications in mathe- 
matics. Modifications of the Ricci-flat Calabi-Yau spaces [23], and certain generali- 
zations [24] are thought to provide examples of two-dimensional superconformal 
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field theories [25,26]. Superconformal field theory describes the Calabi-Yau spaces 
in much the sense that supersymmetric quantum mechanics on a general manifold, 
the spectrum of the Dirac operator, probes riemannian geometry. But superconfor- 
mal field theory should be a more powerful mathematical tool, since much more 
data about the geometry is encoded in a much richer mathematical structure. It 
might even be supposed that the Calabi-Yau space can be recovered from the 
superconformal field theory in the classical limit. In this sense, the present work is a 
step towards constructing the Calabi-Yau spaces by the conformal bootstrap. Other 
applications of two-dimensional conformal field theory have been found in the 
representation theory of affine algebras [27] and sporadic groups [28]. For example, 
the vertex operator construction of the monstrous moonshine module [28] is a 
two-dimensional conformal field theory in which the monster acts as symmetry 

group. 
In this paper we formulate two-dimensional conformal field theory as analytic 

geometry on the universal moduli space of Riemann surfaces. The two-dimensional 
conformal bootstrap is thus translated into pure mathematics, as an analytic, and 
even eventually algebraic, bootstrap program. In a second paper [29] we apply these 
ideas to quantum string theory. 

We take as fundamental problem the construction of the partition function of the 
two-dimensional conformal field theory on all compact Riemann surfaces without 
boundary. The space of Riemann surfaces is called the moduli space. The moduli 
are the parameters which describe the deformations of the conformal structure of 
the surface. They probe the local conformal properties of the field theory. The 
correlation functions of the surface stress-energy tensor are calculated by differenti- 
ating the partition function with respect to the moduli. In the limit of large genus 
any local conformal transformation on the surface is approximated by a variation of 

the moduli. 
The correlation functions of all the local quantum fields are recovered from the 

partition function when tubes or channels in the surface are constricted down to 
nodes. The crossing symmetry of correlation functions follows from modular 
invariance of the partition function. In particular, when enough nodes are formed to 
make correlation functions on the two sphere, modular invariance implies SL 2 
invariance, so that the reconstructed two-dimensional quantum field theory is 
conformally invariant. Real analyticity of the correlation functions, which is two- 
dimensional locality of the quantum field theory, follows from real analyticity of the 
partition function on moduli space. 

The partition function must satisfy a fundamental factorization condition to 
permit a consistent reconstruction of correlation functions from the redundant data 
provided by the partition function. The factorization condition is just that the 
partition function of a surface with nodes is the product of the partition functions 
of the disconnected surfaces which remain when the node is removed. 
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We are thus motivated to define the universal moduli space of Riemann surfaces. 
The universal moduli space contains all compact, not necessarily connected, Rie- 
mann surfaces with nodes. It is made into a connected analytic space by allowing 
analytic deformations in which nodes form and are removed. 

Our approach is to make an abstract mathematical formulation of conformal field 
theory in terms of analytic geometry on moduli space. We introduce a holomorphic 
vector bundle on moduli space and a projectively flat hermitian connection. The 
parti t ion function is, essentially, the norm squared, in the hermitian metric, of a 
holomorphic section of the vector bundle. This definition ensures modular invari- 
ance of the partition function. The projective flatness combines with the analyticity 
of the section to produce the required analyticity of the partition function. We call 
this abstract version of a conformal field theory a gauge system. 

This process of mathematical abstraction has several goals. We are motivated 
partly by the need for an abstract description of the quantum states of string; these 
concerns are described in [29]. In conformal field theory proper, we see the analytic 
bootstrap program as providing a mathematical language in which it might be 
possible to explicitly classify all possible two-dimensional conformal field theories, 
i.e., all possible two-dimensional critical phenomena, and in which it might be 
possible to effectively calculate their properties. 

Aspects of the general philosophy underlying this work were previously discussed 
in the context of string theory [30]. The immediate precursor of the present work 
was the discovery by Cardy [15] that modular invariance is a powerful constraint on 
the genus 1 partition function of conformal field theories in the c < 1 discrete series 
[8]. Modular invariance was already known as a crucial constraint in string theory 
[31-33]. While engaged in the present work, we were encouraged by the paper of 
Belavin and Knizhnik [34] on the partition of strings in flat spacetime, which also 
focuses on the complex analytic structure of moduli space, and by other recent 
studies of determinants of elliptic operators on surfaces and their factorization 
properties, on the moduli spaces of Riemann surfaces [34]. A number of ideas 
closely connected to aspects of this work have also been discussed by Martinec [35]. 

The organization of the paper is as follows. In sect. 2 we summarize some basic 
facts about the moduli space of Riemann surfaces. Sect. 3 describes the partition 
function of a conformal field theory in terms of a certain projective holomorphic 
line bundle on moduli space. In sect. 4 we describe the factorization condition which 
must be satisfied by the partition function. Sect. 5 discusses the partition function in 
genus 1, in particular the Ising model partition function, which gives an explicit 
model for the general construction. Sect. 6 describes the fundamental objects of the 
gauge system. In sect. 7 we formulate the factorization condition in the gauge 
system, which ensures that every gauge system is equivalent to a conformal field 
theory. In sect. 8 we define the universal moduli space of Riemann surfaces, and 
interpret the factorization condition as the condition that the gauge system be 
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defined on the universal moduli space. Sect. 9 contains concluding remarks and 
some discussion of directions for future investigation. 

2. Moduli space 

We start by reviewing some basic facts about moduli space [36, 37]. The moduli 
space Jgg is the space of conformal equivalence classes of compact, connected, 
smooth Riemann surfaces without boundary, of genus g. The genus, or number of 
handles, classifies the surface topologically. ~t'g is an analytic V-manifold or 
orbifold. This means that ~ g  is a smooth analytic manifold except for nongeneric 
branch points, called orbifold points, where ~ ' g  looks locally like a complex vector 
space modulo a finite group action. M o is the moduli space of 2-spheres, which is 
just a single point, since there is a unique complex structure on the sphere, sgl ,  the 
moduli space of tori, is a branched covering of the complex plane. For g > 1, the 
complex dimension of ~t'g is 3 g -  3. 

The universal analytic covering space of ~t'g is the Teichmfiller space ~ .  Jg is a 
topologically trivial complex analytic manifold, sgg is the quotient of ~ by the 
action of a discrete group Fg called the mapping class group, or modular group: 

In genus 1, the Teichmi~ller space Yl is the upper half plane, Im T > 0. The torus 
parametrized by T is the quotient of the complex plane by the lattice generated by 1 
and ~-. A complex coordinate on the torus T is the coordinate w on the complex 
plane, modulo the equivalence relation w - w + mT + n, m, n ~ 7/. The modular 
group E 1 consists of the ordinary modular transformations T ~ (aT + b)/(cT + d), 
f o r a ,  b,c,  d E Z ,  a d - b c = l .  

The moduli space sgg can be regarded as the space of riemannian metrics on a 
surface with g handles, modulo equivalence under diffeomorphisms, or reparametri- 
zations, of the surface, and also under local conformal rescalings, or Weyl transfor- 
mations. The Teichmi~ller space Yg can be regarded as the space of metrics on a 
surface of genus g with constant curvature and unit volume, modulo diffeomor- 
phisms of the surface which can be deformed to the identity. The mapping class 
group Fg is the group of all diffeomorphisms of the surface, modulo the connected 
component  of the identity. The subgroup of Fg which leaves a point t ~ Jg fixed, 
the little group at t, is the isometry group of the constant curvature metric 
corresponding to t. The little group is the automorphism group of the Riemann 
surface in ~t'g represented by t. The surfaces with nontrivial automorphism groups 
are the branch points or orbifold points of ~ g .  

A Riemann surface m in Jgg corresponds to a conformal class of metrics which 
can be expressed locally in the form ds 2= e/ ldzl  2, where z is a local complex 
coordinate on m, f (£ ,  z) is an arbitrary, locally defined function. Any other 
Riemann surface in ./gg can be expressed as a conformal class of the form 
d s  2 = efLdz +/zd£[ 2 where lu(£, z ) (dS /dz )  is a globally defined tensor field on the 
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surface m. Tensor fields of the form # ( L  z ) (d~ /dz )  are called Beltrami differen- 
tials. The infinitesimal analytic variations of m, forming the holomorphic tangent 

1 , 0  space T~n~g , are the Beltrami differentials ~ modulo the subspace of Beltrami 
differentials of the form/~ = 0o for some vector field 0(5, z)(dz)  1 globally defined 
on the surface. The Beltrami differentials/~ = 0 v represent infinitesimal reparame- 
trizations, and not true variations of the conformal structure. The dual space, the 
holomorphic cotangent space T*~t'~ '°, is the space of holomorphic quadratic 
differentials u(z)(dz)  2 on the surface m. The pairing between a 1-form v(z)(dz)  2 
and a tangent vector represented by Beltrami differential/~(5, z ) (dS /d z )  is 

i = ~- f d(Re d(Im z) z). f dzdev(z) (S,z) 1 (i) 

This normalization of the pairing will eliminate factors of ~r later on. The condition 
that the pairing be well defined on the equivalence classes /~ - /~ + 0v of Beltrami 
differentials gives, after integration by parts, the condition of analyticity on v(z). 

We will also need some basic facts about Riemann surfaces with nodes [37]. A 
node in some tube or channel of a smooth surface is formed by pinching a 
circumferential circle around the tube down to a point. When we add to the moduli 
space Jgg the surfaces with nodes, we get ~ 'g ,  the moduli space of stable Riemann 
surfaces of genus g. Jk'g is a compact orbifold. 

On a surface with node(s), a neighborhood of each node can be described by two 
coordinate disks { z i: I zil < 1 }, i = 1,2. The two disks are attached together at their 
origins zl, z 2 = 0 to form the node. The opening of the node is parametrized by a 
single complex coordinate q on moduli space. Remove the sub-disks Dzil < iqll/2 
and attach the resulting pair of annuli at their inner boundaries Izil = i q l l / 2  by 
identifying z 2 with q/z  1. This coordinate neighborhood on the surface is mapped to 
a single annulus Iql 1/2 < Izl < Iql 1/2 by 

Z = 

ql/2/z  2 if Iql 1/2 < Izl ~ 1 

q-1/2Z 1 i f  1 _< Izl < Iql 1/2 (2) 

As q ~ 0, closing the node, z goes to a coordinate on the 2-sphere punctured at the 
origin and at oo. A further transformation w =  (27r i ) - l lnz  pictures the opened 
node as a long cylinder or tube. Writing q = e 2~i', the length of the tube is Im ~-, and 
the twist in the tube is Re,-. The closed node corresponds to a tube of infinite 
length. ~ ' g  is compactified to ~ ' g  by adding the points q = 0 to the neighborhood 
Iql > 0 in ~ 'g .  

The surfaces with nodes form a subvariety ~ g = J / c ' g - J g g  in ~ ' g  called the 
compactification divisor. The compactification divisor ~g decomposes into a union 

1 _i, of irreducible components ~g,k, k = 0,1 . . . . .  ~gj which are distinguished by the 
topological effect of removing a node. ~g,0 consists of the surfaces which become, 
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on removal of some node, a connected surface of genus g -  1 with two punctures. 
Such a node lies within a handle in the surface. ~g, k, k > 0, consists of the surfaces 
which become, on removal of some node, two disconnected surfaces, one of genus k 
and one of genus g - k, each with one puncture. Such a node lies in a tube which is 
the only channel connecting the two components. 

The generic surface m ~ g  has exactly one node, and lies in only one of the 
irreducible components ~g, k. The surfaces with multiple nodes lie in the intersec- 
tions of the ~g, ~. All of the intersections are transversal. That is, the closing of each 
node is described by an independent coordinate q. The multiple intersections are 
fiber bundles over moduli spaces of Riemann surfaces with multiple disconnected 
components. 

Each irreducible component of ~g is a fiber bundle whose fibers are the locations 
(x 1, x2) of the punctures: 

m 

l 1 
--~ , /gg  

(3) 

For a point m ~  ~g,o we write m ~ =  (m (g 1), xl ' x2 ) where m (g-l) is a surface in 
J i g - 1  and (Xl, x2) is an unordered pair of points in m ~g-1). We write a point 
r n ~ g ,  k, k > 0 ,  as rn~=(m~k),m ~g k )x , x2 )  where m~ k) is a surface in 
_ _  _ _  2 , 1 

M k, m~ ~-k) is in Mg_ k and x, is a point in m i. When g = 2k, we need to divide by 
the equivalence (m~ k), m~ k), xl, x2) - (m~ k), m~ k), x2, xl). The base of the fiber 
bundle ~g, k, k > 0, can be regarded as the moduli space of Riemann surfaces with 
two disconnected components, of genus k and g -  k. 

The generic surface in ~s,k, k ~ 1 has no automorphisms and so is a smooth 
point of Jgg. The divisor ~g,~ is slightly special, since every surface in ~ , 1  has a 
node which pinches off a torus, and every torus has the automorphism (w + m~- + n) 

- (w + m ~" + n). Thus ~g,~ consists entirely of orbifold points. As a result, the 
coordinate transversal to ~g,a is q2 in place of q. 

For  surfaces with nodes, the automorphism group is not the same as the little 
group. The automorphism group is always finite. Generically it is the trivial group, 
or, for ~g,1, the group Z 2- But the little group is always infinite, since it contains the 
Dehn twists q ~ e2"~'q, n ~ 7 around each node. 

3. The partition function 

The partition function of a two-dimensional quantum field theory on a compact 
surface is a function Z[g] of the surface metric g. Z[g] is invariant under the group 
of diffeomorphisms of the surface acting on metrics. When the quantum field theory 
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is conformally invariant, the partition function transforms covariantly under local 
rescalings of the surface metric [4]: 

Z[e/g]  = Z[g l  e'sL(/'g' , (4) 

where SL( f ,  g) is the Liouville action of the function f in the metric g. The 
Liouville action is defined by integrating the trace anomaly for infinitesimal local 
rescalings: 

8---f8 f=0 1 & ( f ,  g) = . - -z-CgR, (5) 
t 4 ~ q 7  - -  

where v/gR is the scalar curvature density of the metric g. The real number c is 
both the coefficient of the surface trace anomaly and the central charge of the 
Virasoro algebra [5]. By eq. (4), the partition function depends in an essential way 
only on the conformal class of the surface; its dependence on the local scale of the 
metric is prescribed. To be more precise, the partition function can be regarded as a 
section Z ( ~ ,  m) of a real line bundle over J lg .  Z ( ~ ,  m) becomes a function of m 
only after a specific metric is chosen on the surface m. 

The partition function depends implicitly on a choice of renormalization scheme. 
We assume henceforth that some choice of renormalization scheme has been made. 
In sect. 6 below, we consider how the dependence on the renormalization scheme is 
described in the language of analytic geometry. 

We now give a description of the partition function in terms of the complex 
analytic geometry of moduli space. The strategy is to interpret the expectation value 
of the locally analytic stress-energy tensor T(z) of the conformal field theory [5] as a 
hermitian connection in a holomorphic line bundle over moduli space. The partition 
function is then obtained by integrating the stress-energy tensor with respect to the 
moduli [5]. In a coordinate neighborhood of a surface m, with local complex 
coordinate z, the expectation value of the analytic stress-energy tensor is a locally 
defined quadratic differential T(~ ,  m, z)(dz) 2. It is calculated by varying the 
partition function with respect to the surface geometry: 

i f d z d z T ( m , m , z ) l ~ ( Z , Z ) =  - Z-](8~,Z).  (6) 

~ ,Z is the variation of Z under the infinitesimal variation of the surface metric 
I dzl 2 ~ [dz +/~ d£]2 for/~ a Beltrami differential compactly supported near z. The 
variation is taken around any metric in the conformal class of m which is precisely 
equal to I dzi 2 in the neighborhood of z. By the diffeomorphism invariance of Z[g], 
8,Z  = 6,+gvZ, so T(z) is locally analytic in z. By the locality of the trace anomaly, 
eq. (5), T(z)(dz)  2 is independent of the choice of metric away from z, and thus is 
well defined on moduli space. 
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T ( ~ ,  m, z)(dz)  2 is not a globally defined quadratic differential on the surface m. 
Under  a change of coordinate z = z(w), the stress-energy tensor transforms anoma- 
lously [6]: 

r ( w ) ( d w )  2 = T ( z ) ( d z )  2 + ~cS( z  : w)(dw) 2, 

S(z" w) = z ,,,/z, - (7) 

where S(z"  w) is the schwarzian derivative. 
Define a c-connection [38] A(~ ,  m) on ~ ' g  to be a collection of quadratic 

differentials A ( ~ ,  m, z)(dz) 2 defined on coordinate neighborhoods in the surface 
m, which transform under changes of coordinate exactly like T(z) in eq. (7). We will 
show that the c-connections define a holomorphic projective line bundle E C on ~ 'g ,  
such that the c-connections on ,/gg are exactly the connections in E~. The 
interpretation of c-connections as connections in a line bundle is consistent with the 
fact that the difference of two c-connections is a globally defined quadratic 
differential on the surface, and thus a 1-form on moduli space. 

A projective line bundle E,, like an ordinary line bundle, is defined by holomor- 
phic transition functions g,~(m) on intersections U, n U/~ of neighborhoods in a 
covering of ./gg. A local holomorphic section e(m) of E c is defined by holomorphic 
functions f , (rn)  which satisfy f ,  = g,l~fl~ on intersections U, A U/~. Equivalently, the 
transition functions can be regarded as the ratios g, ldm)  = e,(m)-~et~(rn), where e,  
and e~ are local sections of E,  over U, and U/~ respectively. 

The transition functions of a projective line bundle satisfy weaker compatibility 
conditions than those of an ordinary line bundle. On each triple intersection, 
U, c~ U~ c~ Uy, the compatibility condition is 

g,v( rn ) = g,B( m ) gl~v( m )o,~v (8) 

for some nonzero constants o~¢y. Clearly, if the constant o,~ v 4= 1 then there can be 
no local sections over the triple intersection. The natural extension of the notion of 
section is that of projective section, which is only defined up to multiplication by a 
nonzero complex constant. 

The constants a~/~v determine a cohomology class [o] ~ H2(~/g,  C *), where C * is 
the multiplicative group of nonzero complex numbers. The cohomology class [o] is 
the obstruction to representing the projective line bundle as an ordinary holomor- 
phic line bundle. If we define f~/~ -- (1/2~ri)ln g-B, choosing an arbitrary branch of 
the logarithm, then ~ v = f ~ v - f , ~ - f ~ v  is a 2-cocycle in ~/'g with complex 
coefficients representing the Chern class %(Ec) = [¢0] E H Z(~/g, C). The obstruction 

class is [o] = e 2"iE~'l, so E C can be represented as a line bundle if and only if 
c l ( E c )  E Hz(,//[g,Z). As a projective holomorphic line bundle on Jgg, E c is char- 
acterized by its Chern class. 
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In order to construct a projective line bundle E C from the c-connections, we only 
need to describe the curvature map which takes a locally defined c-connection 
A ( ~ , m )  on ..¢t'g to its curvature 2-form FA(~, m) on ~ 'g .  The properties which the 
curvature map must have are: (i) it should depend only on the first derivative of A 
with respect to m, and (ii) it should satisfy F A +, = F A + dr,  for any locally defined 
1-form ~(~ ,  m). 

Before describing the curvature map, we explain how it is used to construct E~. 
Choose, on each neighborhood U~ on J/gg, a holomorphic c-connection A~(m) 
satisfying F A = 0 .  Associate with A~(m), by definition, a nowhere zero local 
holomorphic section eo(m) of E~ over U~, such that A~(m) = -e~(m)  1 Oe~(m). 
The transition functions of E~ are defined by g,# = e~ tea: 

1 
O f ~ -  2¢ri(A,~-Aa),  g,~B=e 2"~iL~ , (9) 

making an arbitrary choice of integration constant for each f,a. Clearly the g~a 
given by eq. (9) satisfy the compatibility conditions (8), and so define a projective 
line bundle E c. 

The curvature F A of a c-connection A is calculated by differentiating A with 
respect to ~ and m, and then antisymmetrizing. The (1,1)-component of the 
curvature tensor, F)  '1= aA/O~,  is a well-defined (1,1)-form on Jk'g because 
O S ( z : w ) / a ~  = 0. The calculation of FA 2'°, and by analogy F °'2, is more com- 
plicated. We start by using the techniques of ref. [5] to represent OA/am as a 
globally defined meromorphic kernel on the surface. Let/~ be a Beltrami differential 
representing the infinitesimal variation m r = m + 8m. Let z~, = z + 8z(L z) be a 
corresponding variation of a complex coordinate z on the surface, i.e. ( a / 0 £ ) 6 z  = 
/~(~, z). For simplicity we discuss the curvature of a c-connection A(m, z)(dz)  2 
which is analytic in m. Write the c-connection A, defined near m, in the form 
A(mt,, z~)(dz~,) 2, and the variation of A as 

OA OA 
A(rn , z~) = A(m,  z) + 8m-~m (m, z) + 8Z-~z (m, z).  (10) 

Define the operator K from Beltrami differentials /~ to quadratic differentials 
K,(£ ,  z ) (dz)  2 by 

OA OA 0 0 3 
K # ( £ , z ) = 6 m ~ m ( m , z ) + S Z ~ z  ( m , z ) +  2 A ( m , Z ) ~ z S z +  lcoz-----~6z. (11) 

It is a straightforward calculation, using the transformation law (7), to show that K/~ 
is a globally defined quadratic differential on the surface m. The key step is to find 
that OS(z: w)/Om = f ( z )  - f ( w )  for a local function f ( z )  on the surface. It is also 
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straightforward to calculate 

O( Ktx) = ( OA)t~ + 2A 01~ + ~c 031~. (12) 

The fact that 0(K/~) is local in /~ implies that K can be represented by a globally 
defined meromorphic kernel K(z, w)(dz)Z(dw) 2 on the surface, with singularities 

only on the diagonal z = w. This kernel is not well defined as a bilinear form on the 
tangent space T , , i ¢  1'° because of its poles. The singularities are determined by 

eq. (12): 

K(Z,W)--  12C(Z--W)-4 +(Z- -W ) 2 ( A ( z ) + A ( w ) ) .  (13) 

Because of the z o w symmetry in the singular part of K(z, w), the curvature form 

defined by 

F f ' ° ( m , z , w ) ( d z ) 2 ( d w ) 2 = K ( z , w ) ( d z ) Z ( d w ) 2 - ( z o w )  (14) 

is a well-defined 2-form on moduli space at m. It is straightforward to show that 

F A +~ = F x + d~,, for any locally defined 1-form ~(~,  m). Thus A ~ FA is a curva- 
ture map, and E c is a well-defined projective line bundle. 

Now return to conformal field theory. The expectation value of the stress-energy 
tensor, T ( ~ ,  m, z)(dz)  2, is a c-connection and thus a connection in E C. We stress 

that T ( ~ ,  m)  is smooth on all of J~g, including the compactification divisor. To see 
that T ( ~ ,  m) is regular at ~g, use the coordinate q for the closing of a node and the 
coordinate z given in eq. (2) for a neighborhood of the almost closed node. Recall 
that z goes to a coordinate on the punctured plane in the limit q --* 0. A quantum 
field on the z-neighborhood, in particular the stress-energy tensor T(z), goes to its 

value at the node, because at q = 0 the whole punctured plane becomes identified 
with the node. On the other hand, as we will see in detail in the next section, the 

expectation value of a field in the z-neighborhood goes to its ground state expecta- 
tion on the plane. The ground state expectation value of the stress-energy is zero by 
SL2(C ) invariance on the two sphere. Therefore l imq_ oT(z) = 0. This is exactly the 
condition for regularity of a c-connection at the compactification divisor. 

The physical connection T ( ~ ,  m) is neither holomorphic in m, nor flat. It  is 
hermitian, i.e. its curvature form F T is a (1, 1)-form on ~ '~ .  The curvature form F T 
is the connected two-point correlation function of the stress-energy tensor. We 
temporari ly abuse notation by writing T(z) for the quantum field rather than its 
expectation value. The two-point function (T(z)T(w)) is symmetric in z and w, so 
all the curvature of T is given by the (1,1)-form on dffg 

FT(fi.,w ) = - - (T(Z)T(w)~ + ~ ' (Z)5~T(w)5 .  (15) 

The existence of a hermitian connection in E,  implies that the transition func- 

tions f,~t~(m) defined in eq. (9) can be modified so that the cocycle ~%/~v becomes 
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real, and the cocycle %ar takes values in U(1). E C is then a projective unitary line 
bundle over ~¢. The Chern class is real, Cl(Ec) ~ H2(~cg,  R); and the obstruction 
class is unitary, eE~riq(ED~ HE(~g,U(1)) .  The Chern class can be calculated 
directly from the definition of E~, but we will instead develop the requisite 
information in the context of conformal field theory, in the next two sections. 
The result will be Cl(Ec)= ½Cl(tH), where ( IH)  is the Hodge line bundle on 
~ g  [40, 37]. The Hodge line bundle is just the determinant line bundle of the 
operator on functions. More explicitly, it is the determinant bundle of the rank-g 
vector bundle over moduli space whose fiber at m is the g-dimensional vector space 
of holomorphic 1-forms on the surface m. It makes sense to take arbitrary powers of 
projective line bundles, so we can write E~ = (%H) c/2. On page 51 of ref. [40] it is 
shown that 2Cl(~kH) is a generator of H2(icg,  Z). Therefore E c can be represented 
as a line bundle if and only if ¼c ~ Z. 

The Chern class Cl(Ec) is related by Poincar6 duality to a divisor class in 
H6g 8(,///g, R). By the result of ref. [37] on Cx(?~H), 

1 
= ~ g , 0  "q- 2~g,1 q- ~g,2 q- " " ' + ~ g .  lg/21 , (16) 

where [~0,,~,] is Poincar6 dual to the cohomology class of the Weil-Petersson K~ihler 
form. The coefficient ½ for Ng.1 is due to the generic 7/2 automorphism group of 
surfaces in ~g,1, compensating for the fact that q2 is the traversal coordinate for 
Ng,1. Eq. (16) holds for genus g > 1. For genus 1, there is only one independent 
cohomology class, and Cl(Ec) = ~ c ~ t ,  o, where ~1,0 is the single point q = 0 in ~ ' l -  

The partition function of the conformal field theory is recovered by integrating 
the stress-energy tensor [5]. That is, define Z ( ~ ,  m) to be the hermitian section of 
E,. ® E,. compatible with the connection T: 

T= - Z - I O Z ,  T= -Z- I~z .  (17) 

Equivalently, Z ( ~ ,  m) can be regarded as a hermitian metric in E c with connec- 
tion - T .  Eq. (17) determines Z ( ~ ,  m) up to a multiplicative constant on each 
moduli space ~ g .  In the next section these constants are determined by the 
factorization condition. We stress that the regularity of T implies that the partition 
function Z ( ~ ,  m) is a regular section of Ec® E~ on all of Jgg, including the 
compactification divisor. 

The partition function, as a section of E c ® E c, is converted back into a function 
Z[g] of surface metrics, by associating to each surface metric g a hermitian metric 
h g in E,. Then Z[g] = hgZ(~,  m), where m is the conformal class of the metric g. 
The metric h g is simplest to construct for the constant curvature metrics gcc- In a 
coordinate neighborhood on the surface, the constant curvature metric is of 
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the form d s 2 = e f l d z [  2 with O 2 0 f = 0 .  Define a ( -c ) -connec t ion  by ACC(z)= 

t i c (  a2f  - ! (  2 Ozf)2) • ACC(z) is locally analytic in z because the curvature is con- 
stant. Integrating A c~ gives a hermitian metric h gco in E c. The gradient of Z [ g j  as 
a function on Teichmfiller space is the 1-form AC~+ T, so the constant curvature 
partition function is Z[gc~] = hgccZ(~t, m) .  The general metric g can be written in 
the form g--  efgc~ for some function f and a unique constant curvature metric g~o. 
If we associate with g the hermitian metric in E c 

h g = e x p ( c S L ( f ,  gc~))h g~ , (18) 

then, by eq. (4), the partition function, as a function of the metric, is given by 

Z [ g ]  = h g Z ( ~ , m ) .  (19) 

The projective line bundle E~ thus encodes all of the information about surface 
metric geometry which is needed to formulate conformal field theory. 

As an aside, we remark that in the language of sheaf theory [39] the projective line 
bundles are described by HI(@*/C*) ,  where @* is the sheaf of local-nowhere 
zero-holomorphic functions on ~t'g. The Chern class and obstruction class are given 
by long exact sequences associated with the exact diagram of sheaves: 

0---->7/---> 

I 

0 0 

I l 
exp 

C ---' C* 

exp 
0 --" (9* 

e)/C ~ (9"/C * 

l 1 
0 0 

~ 0  

(20) 

(9 is the sheaf of local holomorphic functions on Jc'g and ?7, C, and C* are the 
constant sheaves. The long exact sequences associated with this diagram give an 
explicit description of the possible projective line bundles, A simple exercise in 
diagram chasing shows that when a projective line bundle can be represented as an 
ordinary line bundle, the representation is unique only up to tensoring by line 
bundles with vanishing first Chern class. 
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4. Factorization on the compactification divisor 

At each point m S in the compactification divisor ~g, and for each node in the 
surface m S, the partition function has an expansion of the form 

Z ( ~ ,  m)  = Y~qh*[th*Z~(~ ~, m s ) ,  (21) 
~v 

where q is a transversal coordinate parametrizing the closing of the node, and 
m = (m~, q). This expansion in q is derived by parametrizing a neighborhood of the 
node as the annulus Iq]l/2< Izl < Iq1-1/2, as in eq. (2). The choice of this 
particular coordinate system singles out a class of c-connections A having A ( z )  = O, 
which provides a local basis for E C in which to carry out the expansion. Equiv- 
alently, we can calculate in the conformal field theory on the annular neighborhood, 
using the local metric ds 2= Idzl 2. 

The conformal field theory on the part of the surface outside the annular 
neighborhood provides particular external states on the boundary circles Izl = I ql 1/2 
and Izl = Iq[ -a/2. The partition function is the expectation value of qL,,~Zo 
between these states, where L o and L0 are the Virasoro operators generating 
dilation in the complex plane. If the node separates the surface into two compo- 
nents, then the states on the two boundary circles are independent. If the node lies 
in a handle, then the states are coupled, forming a density matrix. In general, 

Z ( ~ ,  m) = tr qL°~Z°p(~s, m s ) ,  (22) 

where the density matrix P (~s ,  ms)  is independent of q, since the surface outside 
the annular neighborhood is held fixed while q varies. 

The expansion (21) is produced by inserting a complete set of states ]cp)(¢P[ in the 
channel containing the node, where the Jcp) are the eigenstates of L 0 and L0 with 
eigenvalues h~, h~: 

Z ( ~ ,  m)  = Z q h ~ t ~ , ( e p l p ( ~ s ,  ms)19~ ) . 
¢p 

(23) 

In a strict conformal field theory, the weights h~, h~ are nonnegative. The partition 
function is single-valued, so h ~ - h ~  must be an integer. The leading term 
Zo(~ S, ms)  is the contribution of the unique SL2(C ) invariant ground state [0), 
with h0= ho = 0. Since all other contributions vanish when q=  0, the partition 
function on the compactification divisor, Z ( ~ s ,  ms), is the ground state contribu- 
tion Z0(~s ,  ms). 

The intermediate states lop)(¢gl correspond to the complete set of scaling fields in 
the conformal field theory. The sum (21) can be rewritten as a sum over the highest 
weight states ]@)(~] of the Virasoro algebra, corresponding to the primary confor- 
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mal fields 0(5, z): 

Z ( ~ ,  m) = ~ . Z ¢ ( ~ ,  m~, ~/, q) ,  (24) 

where Z ,  is the contribution to the partition function from the entire Virasoro 
representation generated by the highest weight state 1¢), corresponding to the field 

and all its descendents. As q ~ 0, the leading behavior of Z ,  is qh,g/%. Each Z¢ is 
individually a section of F.~ ® E c, which cannot be further decomposed into sections 
of F_.~ ® E¢. This is the principle by which primary fields are extracted from the 
partition function. 

Only states which are charge neutral, for all internal symmetries of the theory, 
contribute to expansions of the partition function in a coordinate q for a node 
which separates the surface into two components, because there must be charge 
neutrality on either side of the node. All states contribute to the expansion for a 
node in a handle, since charge flowing through the node can be neutralized through 
another channel in the surface. 

The coefficients in the expansion eq. (21) are given by correlation functions of 
local fields on the surface(s) left when the node is removed. For ~g,0, the moduli are 
rn~= (m (g-x), x~, x2), where m (g 1) ranges over the surfaces of genus g - 1  and 
(xx, x2) is an unordered pair of distinct punctures on the surface m (g-  1). Inserting 
the projection Icp)(q~] at the node is equivalent to inserting the field q0 at the 
punctures o n  m (g - l ) ,  giving the unnormalized two-point function of cp on the 
surface m (g- 1): 

Z,~(~e , m~) = Z ( ~  (g-I), rn(Z-'))(flv(.~,, x,)ep(.~2, X2))m, , ,,. (25) 

The field associated with the vacuum state 10) is the identity operator, whose 
correlations are independent of the location of the punctures, so the leading term in 
the q-expansion, which is the partition function on the compactification divisor, is 
exactly the partition function for genus g -  1: 

z(m , = z(m(  ", ") .  (26) 

For ~g.k, k >  0, the moduli are m ~ = ( m ~ k ) , x l ,  m~ ~ k) ,x2 ) where m~ k) is a 
genus k surface, with puncture at x~, and m(f -k) is a genus g - k  surface, with 
puncture at x 2. The expansion coefficient Z ,  is the product of unnormalized one 
point functions: 

= x , ) ) m , , ,  

X Z ( ~ ( e g - k ) , m ( f - l " ) ( q ) ( Y 2 , x 2 ) ) , , , ~  ,,. (27) 
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The leading term is the ground state contribution 

Z(m~,rn~)= Z(~k),m~k))Z(~(Zg-k),m(2 g *)), (28) 

The product of the genus k and genus g - k partition functions. 
Near a surface with multiple nodes, the partition function has a joint expansion in 

the coordinates q~ parametrizing the opening of the nodes labelled by i. The 
coefficients of the joint q-expansion are products of correlation functions of the 
local fields of the conformal field theory. Writing m = (m~, ql, q2 . . . .  ), 

Z ( ~ , m ) =  ~ (I~flqp~,Zl~)Z(~,,(~,m~). (29) 

Z~ %/(N~, m~)  is a product of unnormalized correlation functions of the fields % at 
the punctures on the components of the surface m~ obtained by removing the 
nodes. Exactly which correlation functions depends on the configuration of nodes. 
Write rn~ = (m', xa, Yl, x2, Y2 . . . .  ), where m' is the smooth surface, possibly discon- 
nected, obtained from m~ by removing the nodes, and (x~, y~) is the pair of 
punctures on m' left by the ith node. Then 

i m s 9 

(30) 

where the partition function Z ( ~ ' ,  m') of a disconnected surface is the product of 
the partition functions of its connected components. 

For surfaces with multiple nodes, factorization on the ground state expresses the 
partition function of a surface m~ on multiple intersections of the ~g,k as the 
product of the partition functions of the component surfaces into which m~ 
decomposes. These are not additional factorization conditions on the partition 
function, but follow from successive applications of single node ground state 
factorization, since the transversal coordinates qi are independent. 

The factorization identities (26), (28) allow us to determine the nature of the 
holomorphic line bundle E c. First, they imply that E~ is trivial over the fiber 
(x 1, x2) parametrizing the punctures. That is, local sections of E,. over ~g are 
actually functions of the locations of the punctures. By results of Wolpert [37] on the 
two-cohomology of ~ 'g,  this implies that cl(E,. ) is a multiple of Cl(?~H), (XH) being 
the Hodge line bundle. The argument is based on the explicit generators of 
H2(./~g,__~ ) (sect. 2 of ref. [37]), the intersection matrix between H2(,///fq, Q ) and 
H6g 8(,//Cog, Q) (subsect. 5.1), and the proof of lemma 5.4, in which cl(X~) is 
calculated. Ground state factorization of the partition function implies that E~. over 
~g is determined_ by E c on lower genus moduli spaces. That is, E, restricted_ to ~g,0 
is E~ on ~t'g 1; and, for k > 0, E c restricted to ~g,k is E,. × E~. on ~ 'k  ×JZg k. By 
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the results of Wolpert, these are exactly the defining properties of (XH). The 
factorization of E,, reduces the calculation of the constant of proportionality 
between ct(Ec) and cl(Xn) to the genus 1 case. This calculation is carried out in the 
next section. 

The fact that the partition function along the compactification divisor must 
factorize on the ground state removes the ambiguity in the construction of the 
partition function Z ( ~ ,  m) from the stress-energy tensor T by integrating the 
equation T = - Z - 1  OZ. The constant of integration on ~/~g is given by the value of 
Z(N,  m) on N~, which is determined by Z(N, m) on lower genus surfaces through 
the factorization identities (26), (28). The overall normalization is fixed by setting 
Z = 1 on the 2-sphere. This makes sense because E, is just a number at the single 
point which constitutes M 0. 

The basic premise of the present work is that the correlation functions of the 
conformal field theory can be reconstructed from the partition function, via the 
q-expansions at the compactification divisor. We will not prove this reconstruction 
theorem, but we sketch the basic strategy of a proof. Suppose m~ is a surface with 
nodes, which is split by the nodes into components, one of which is m. Write the 
rest of the components as m'. Write xi for the punctures on m and y, for the 
punctures on m'. Let q~ be transversal coordinates for the nodes separating m from 
m'. We want to use the qi expansion at rn~ to determine correlation functions on 
m. Let Z?,h(N ~, rn~) be the coefficient of [Iiqih'gl~ ~ in the q~ expansion of the 
partition function. Expand the normalized coefficient Zh, h / Z  in real analytic 
functions in the form 

Z T , , h / Z ( N ~ ,  m ~ )  ---- ~_,Fk(N,  m,  xi ,  x i ) G k ( m ' ,  m' ,  ~ ,  y , ) .  (31) 
k 

The functions F~ are to be interpreted as correlation functions of scaling fields 
%(xi)  of weight hi, hr  The sum over k accounts for possible multiplicities of fields 
of the same weights. 

A number of consistency conditions must be satisfied by the F k in order to justify 
the correlation function interpretation. First, the same weights and multiplicities 
should appear in each joint q expansion, so that the F k can be interpreted as 
correlation functions of one set of fields. Second, the same functions Fk(~,  m, Yi, x~) 
should appear, independent of the rest of the surface, (m', y~). The key to satisfying 
both conditions is factorization on the ground state. Two topologically distinct 
surfaces m~, m~ can be obtained from a single surface rn~ by forming and removing 
nodes. If the partition function satisfies the fundamental factorization conditions 
(26), (28), then, because of the independence of the transversal coordinates q for 
each node, the F k obtained using rn~ are identical to those obtained with rn~ and 
m~. A similar argument relates the weights and multiplicities associated with 
q-expansions at different subcomponents of the compactification divisor. 
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Once the correlation functions are reconstructed, their crossing symmetry follows 
from modular invariance of the partition function, that is, from the fact that the 
parti t ion function is single-valued on moduli space. In particular, SL 2 invariance of 
correlation functions on the two-sphere follows from modular invariance, so that the 
field theory reconstructed from the correlation functions is conformally invariant. 

We thus arrive at the necessary and sufficient conditions on the partition function 
which permit reconstruction of a conformal field theory. They are the real analytic- 
ity of the normalized expansion coefficients ZLh/Z(~ ~, m~), along with the 
factorization identities (26), (28). The equations of factorization on excited states, 
eqs. (29), (30), do not give additional constraints on the partition function, since 
they do not close on the partition function itself. Factorization on excited states is 
automatic in the reconstructed conformal field theory. 

The primary field decomposition, eq. (24), is recovered from the partition 
function by a maximal decomposition of Z ( ~ ,  m) near the compactification divisor 
into a sum of sections of E~. ® E c. The normalized contributions Z+/Z are functions 
of Jt 'g locally defined near ~g. The leading coefficient in the q-expansion of Z+/Z, 
the coefficient of qh,~h+, can be shown to be a conformal tensor of weight h+, h+ in 

the puncture parameters (x 1, x2), using only the structure of E~. Thus the correla- 
tions of the primary fields obtained from the q-expansions of the partition function 
are independent of the surface geometry, and transform as conformal tensors on the 
surface. 

The correlation functions of the stress-energy tensor are obtained by differentiat- 
ing the partition function with respect to the moduli. In order to confirm the 
canonical operator products of the stress-energy tensor, it is useful to represent 
variations of the moduli as Beltrami differentials supported near an almost closed 
node. Use the standard coordinate z, ]q]1/2 < iz ] < Iq[ -1/2, on an annular neigh- 

borhood of an almost closed node, as describe in eq. (2). As usual, write m = (m~, q). 
Each of the 3 g - 3  tangent vectors O/Om k to ~#g at m can be represented as a 
distributional Beltrami differential/~k supported on the boundary circles I z [ = [q[ 1/2 

, --0 1 or [z[ = Iq[-1/2 of the z-annulus. Recall that a 1-form ~, in T ~ g '  is a quadratic 
differential ~ , ( g ) ( d z )  2 o n  the surface. In terms of the distributional Beltrami 
differentials/~k, 

1 2 
E dm*vk=  Y] dmk(v,/~k) = Y'~ dmk~~i~l'(z)(dz) /zk(z) (dz)  1. (32) 
k k k 

Here the distributional Beltrami differentials/~k are written as holomorphic vector 
fields / l k ( z ) ( d z )  -1  o n  the annulus. In particular, O/Oq corresponds to the confor- 
real vector field q-Xz(dz)-l, O/3x 1 to -q-1/2(dz) i and O/Ox 2 to q 1/2z2(dz)-l, 
where (xl,  x2) are the punctures. The remaining 3 g - 6  tangent vectors at m are 
represented by a complementary subspace of the holomorphic vector fields on the 
annulus. In the limit g ~ ~ the infinitesimal moduli become dense in the space of 
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holomorphic vector fields on the annulus. Thus variations of the moduli can 
approximate  arbitrary local conformal transformations in the neighborhood of a 

scaling field, at a puncture. The same argument for surfaces with multiple nodes 
shows that local conformal transformations around any number of punctures can be 

represented by variations of the moduli, in the limit g ~ ~c. The stress-energy 
tensor T ( z ) ( d z )  2 near the scaling fields is reconstructed by using the/~k(z)(dz)  x 

to represent the variations of the moduli. The canonical operator products of the 
stress-energy tensor with the scaling fields [5] follow from the representation of the 
variations of xp  q, and x 2 by the conformal vector fields 1, z, and z 2. 

5. Genus 1 

The genus 1 partition function is usually written as a function Z~(~, ~-) on the 
Teichmiiller space o~ 1, invariant under the modular group F1. Writing q = e 2"~', 

Z~(~,  ~-) = Y'~ {lh"qh'x,,,,(q )h~bxh,,(q),  
a ,h  

(33) 

where the analytic function x h ( q ) =  tr(q ~''+L°) is the character of the irreducible 
Virasoro representation of weight h; e o = - ~ c  is the universal ground state energy 
[41]; and hdb is the integer multiplicity of the weights (ha, hh) in the Hilbert space 
of the conformal field theory. The universal ground state energy t 0 = -  ~ c  is 
derived from eq. (7). The schwarzian derivative of the mapping z = e 2~iw from the 

coordinate w ~ w + m T  + n on the torus to the coordinate z ~ qz is S(z  : w)(dw) 2 = 
_ ½ z - - Z ( d z  _ ) 2 .  The stress-energy tensor on the toms is then given by T ( w ) ( d w )  2 
= ( T ( z )  + eo)(dz) 2 where 

0 
T ( z ) = z  2 ( L o ) = z - 2 q ~ q l n t r ( q L ° @ "  ).  (34) 

Cardy [15] investigated the modular invariance of expression (33) for c < 1 in 
the unitary discrete series [8]. Using formulas for the characters xh(q)  allowed 
by unitary, which were calculated by Rocha-Caridi [42] from results of 
Feigin-Fuchs [43], Cardy found that the requirement of modular invariance on eq. 
(33) puts strong constraints on the integer multiplicities h~b. 

The function Z~(~, ~-) on ~ '1  is related to the abstract partition function 
Z ( N ,  m) by Z = ZBle___#l 2, where e B is a nowhere zero section of E c over ~/a, which 
does not extend to ~'1.  The section e~ is defined, as in sect. 3, in terms of a flat 
c-connection A¢ on -///1: A¢ = -e t )  -a 0eB. AB is given by A ¢ ( w ) =  0 in the coordi- 
nate system w - w + m~- + n on the torus. A~ is invariant under the modular group 
F1, so it does define a flat c-connection on Me' 1. But A~ does not extend to J¢/1 
since, in the limit q---, 0 or r ~ ira, w does not become a coordinate for the 
two-sphere. 
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A section of E,  in a neighborhood of q = 0 is constructed from another c-connec- 
tion A~, given by As(z ) = 0 in the coordinate system z = e 2~'w. A,  is regular near 
q = 0 because z goes to a good coordinate on the two-sphere at q = 0. The section e~ 
defined by A n = - e 2  ~ 0e~ is a local section of E~ near q =  0. Applying eq. (7) to 
A~, we get the overlap 1-form A B - A  ~ = ~ c ( d z / z )  2. The quadratic differential 

- -  ( d z / z )  2 on the torus corresponds to the 1-form dq/q  on Jk'~. Therefore A~ - A s 
= eodq/q,  and the transition function for E~ is e~ = q c/24e ft. 

We now can write the abstract partition function Z ( ~ ,  m) near q = 0  by 

changing basis in Ec: 

Z(N,m)=Z, , le~ , l  2 , (35) 

where Z~(cT, q) = ~[c/24qC/24Z B is regular at q = 0, in accord with the general result 

that Z (N,  m) is regular at the compactification divisor. 
It is now an easy exercise to complete the identification E,. = (XH) c/2 by calculat- 

ing Cl(Ec) on -/if1, given the transition f u n c t i o n  qC/24. But it is more interesting to 
make the calculation in conformal field theory. ~'~ is one-dimensional, so it 
suffices to calculate the integral 

i 

connection A in E,  over ~1-  In particular, for any smooth 
connection T: 

1 f 901nZ¢= ~4 c. cl - 2vri ql > 

(36) 

for the physical 

(37) 

C 1 = 112 , SO C l ( E , .  ) 

Z~( q, T) = ]xo( q )12+ lxl/16( q) l z + lX1/2( q ) ]2. 

The characters xh(q) are: 

Xo(q) + X1/2(q)=q~" ~ (1 + q" 1/2), 
H =  1 

X1/,6(q) = q~o+1/I6 f i  (1 + q" ) .  (39) 
n = l  

(3a) 

The Hodge line bundle on '/~¢1 has CI(~kH)= l~O@l,0, and 
= ~CCI()~H) and E c = (?~H) c/2. 

We now translate the character expansion (33) into geometric language, to 
prepare the way for generalization to higher genus, in the next section. We will do 
this in the context of a concrete example, using methods which apply to the general 
case. The simplest example is the Ising model, which has c = ~, e 0 -  4~- The 
unitary weights at c = ~-_ are h -- 0, 1~, ~-1 The genus-1 partition function is 
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In the following, we write h 0 = 0 ,  h a = ~ ,  h2= ½ and X~= Xh°, a =  0,1,2. 
The three c = ½ characters form a three-dimensional unitary representation of the 

modular  group /'1, so Z#(~, .r) is indeed invariant under F v F 1 is generated by 

T~- = • + 1 and S¢ = -1 /~- .  The characters satisfy X~(T'r) = T#Xh(~ -) where T -o T# 
is the unitary representation of F 1 defined by 

1 
(.1 a a _  T~ = exp(2~ri(e 0 + ha))~b, S b - -~ 

1 v~- 1 

1 - v ~  1 

(40) 

The three characters x~(q) can be thought of as the single function x° (q)  analyti- 
cally continued over all of Teichmialler space. 

Such a unitary representation of the modular group ira in a vector space o~ 1 is 

equivalent to a holomorphic, flat, hermitian vector bundle W 1 over ~t' 1. To be 
concrete, let (~a} be a basis for 9f'l, with inner product h~b = ( ~ ,  ~b)" Define the 

representation matrices Y# by Y(b = 7#(~. The matrices 7# are unitary with respect 
to the inner product hab. The flat vector bundle W 1 is ~ ×J# l  divided by F a 
acting on both spaces simultaneously, Wa = Y~ x r~ ~ t .  Equivalently, a local holo- 
morphic  section w of W a is a local holomorphic function from Teichmiiller space 
to the representation vector space o~ a, T ~ w(~-), satisfying w ( y ' r ) =  yw(T) for all 

y ~ F x. Over the smooth points in Mg~, the fibers of W a are isomorphic to ~1 .  But 
over an orbifold point the fibers degenerate to the subspace in ~ a  of invariant 
vectors of the little group at the orbifold point. A vector bundle over an orbifold or 
V-manifold which degenerates in this manner at the orbifold points is called a 
V-bundle [44]. 

The flat holomorphic connection D in Wl is defined by describing a basis of 
locally flat holomorphic sections w~(rn) near any smooth point rn 0 ~-//¢'v Pick a 

representative % of m 0, and let T(m) be any local analytic lifting map from ./#~ to 
J-1 such that ~'(m0) = T 0. The local lifting map ~(m) is uniquely determined by %. 
The locally flat holomorphic sections w~ are the vector valued functions Wa(Y ' r (m) )  

= 7~a. The hermitian metric h in W 1 is defined by h ( ~ ,  wb) = h~b, where hab is 
the inner product  in o~1. Clearly the hermitian metric is compatible with the flat 
connection. 

The representation J'f'a can be recovered from the flat hermitian bundle W 1, 
because parallel transport in W~ using the flat connection determines a representa- 
tion of F a in the fibers of W a over smooth points in J{~. This representation is given 
explicitly, in terms of a local basis of covariant constant sections, by 7w b = 7#w~. 
The hermitian metric is invariant under parallel transport, so this representation is 
unitary. At a branch point, only the normalizer of the little group acts on the fiber. 
The normalizer of the little group is the subgroup of modular transformations T 
which satisfy the condition that yyoT -a is in the little group whenever To is. The 
normalizer preserves the subspace of vectors invariant under the little group. 
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The characters xa('c) define a single holomorphic section X of W 1 o v e r  J//1 by 

the function X: "r ~ X"(~')~, from ~ to OF 1. The vector valued function X(~') is a 

section of W 1 because 

(41) 

Note  that the section X is not covariant constant, i.e. not invariant under the action 
of F~ by parallel transport, YX 4: X- Using the metric h~b in Wa and the holomor- 
phic section x ( m ) ,  we can write the partition function Z~ = h(~,  X) on ~'1.  But 
this is not yet what we want. We are looking for a geometric formulation of the 
abstract partit ion function Z ( ~ ,  m), defined over all of sh'~. 

Let us first examine the extension of W~ to ./Ca. The little group at q = 0 is the 
group of twists T ' ,  n ~ Z. Thus W 1 degenerates at q = 0. For the Ising model, the 
fiber of W 1 at q = 0 contains only the zero vector, since none of the eigenvalues of 
the matrix T~ are equal to 1. On the other hand, q = 0 is a smooth point in ~ ' t ,  so 
W 1 o v e r  "/~1 cannot be a V-bundle in the ordinary sense. We must modify the 
definition of V-bundle over ~ '1,  and over d4g in general, to require that the fibers 
on the compactification divisor degenerate to the subspace of twist invariant 
vectors. The strict definition of a V-bundle over an orbifold is based on modelling a 
neighborhood of each orbifold point as a neighborhood of the origin in a complex 
vector space, modulo the action of the finite little group. For our purposes, a 
neighborhood of a point q = e 2~g,= 0 on the compactification divisor should be 

modelled on the half-space Im $ > 1 /e  in a complex vector space, modulo the action 
~- ~ r + n of the twists. 

The flat hermitian metric h ~b clearly extends to the flat bundle Wt over ~ .  But 

W~ o v e r  o/~ 1 is not the appropriate setting for the analytic section x ( m ) ,  since x ( m )  
diverges as  q-C/24 near q = 0. The solution is to define a holomorphic section ~p(rn) 

of V 1 = E c ® W 1 by 

~p = x e  B . (42) 

This section of V 1 extends to ./[C a because, near q = 0, xe~ = xqC/24ea and x q  c/24 is 

regular at q = 0. 
The geometric expression for the abstract genus-1 partition function, over all of 

M/a, is given in terms of the flat hermitian bundle W 1 over J41, and the holomorphic 
section q, of the holomorphic bundle V 1 = E,. ® W1 over ~(1: 

Z ( ~ ,  m)  = h ( ~ ,  ~b) = ~a(m)h~b~pb(m (43) 

which is manifestly a section of Ec ® Ec. Note that V a is actually a vector bundle in 
the extended sense described above, even though E C is a projective line bundle. This 
is possible because the Chern class of Ec in genus 1 can be concentrated at the 
compactif icat ion divisor. The multi-valued transition function qC/24 of E c can be 
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reinterpreted to give a single-valued transition function for V1, by modifying the 
twist operator of W v The eigenvalues of the twist T, acting in the fiber of V~ at 
q = O, are then e 2"~ho. In particular, for the Ising model in genus 1, the fiber of V~ at 
q = 0 is one dimensional. If Va were not a vector bundle over ~'1, but only a 
projective vector bundle, there could be no holomorphic section +(m). 

6. The gauge system 

We now begin to assemble the abstract geometric formulation of two-dimensional 
conformal field theory on all l~emann surfaces. We call this mathematical structure 
the gauge system of the conformal field theory. If we were to extrapolate from the 
geometric formulation of the genus-1 partition function, we would define a gauge 
system as a hermitian metric h in a fiat vector bundle W~ over ~ 'g ,  alongwith a 
holomorphic section ~, sometimes written ~<g), of Vg = E L ® Wg over ~'_g. The 

partition function would be the section Z ( ~ ,  m ) = h ( ~ ( m  ) ,~ (m))  of Ec® E C. 
This definition turns out to be slightly naive, but, before correcting it, we discuss 
some further motivation for the gauge system construction. 

First, given a conformal field theory, there is in principle a vector bundle Vg for 
each genus g, and a holomorphic section ~(m) of Vs, constructed purely from 
invariants of the Virasoro algebra. There is also a fiat metric h~t, in V~ over ~/~, 
constructed from the operator product coefficients of the conformal field theory, 
such that the partition function on ~/~ is Z = h(~,  ~). This construction uses a 
particular choice of surface metric g, so the partition function is an actual function 
on moduli space. The abstract partition function, and the metric hah is recovered by 
writing h = h gh, where h g is the metric associated with the surface geometry g, 
eq. (18). The section ~ is built from generalized characters Xa(t) of the Virasoro 
algebra. In genus 1, the character Xh(~-) is analogous to the open string partition 
function, modified by inserting a projection on the irreducible Virasoro representa- 
tion of weight h. Because of the projection, the character can be calculated from the 
Virasoro algebra alone. The reference to the open string alludes to the fact that only 
the L ,  participate, without the second Virasoro algebra L,.  The generalized 
characters are analogous to the open string partition function for genus g, modified 
by projecting on irreducible Virasoro representations inserted in a maximal collec- 
tion of channels, and setting the operator product coefficients of the primary fields, 
the vertex coefficients, identically equal to 1. The generalized characters can again 
be calculated from the Virasoro algebra alone, using an abstract version of the dual 
model sewing construction for the open string [45]. The sewing construction uses 
surface geometries which are flat except for a finite set of points with delta function 
curvature. The generalized characters can also be regarded as generalizations of the 
conformal blocks, which are projected n-point functions of primary fields on the 
two sphere [1,6,46]. The genus g partition function is calculated by summing in 
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each channel over highest weight states for both Virasoro algebras of the conformal 
field theory, the L n and the Ln, giving a hermitian product h(~,  ~b) of generalized 
traces. The matrix elements 7~b are products of the operator product coefficients of 
the field theory, and are independent of the moduli. The generalized traces which 
participate in a given conformal field theory must form a representation of the 
mapping class groups Fg, unitary in the metric hah, in order for the partition 
function to be single-valued on moduli space. The vector bundle Vg over ~ ' g  is 
formed from this representation, as in the genus-1 example, and extended to ~ g  by 
a generalization of eq. (42). The matrix elements 7~ ~b form a flat hermitian metric in 
Vg. 

The simplest tractable nontrivial examples in higher genus are gaussian models, 
the nonlinear models whose target spaces are multidimensional tori. The generalized 
characters are theta functions. The Ising model can also be represented explicitly as 
a gauge system. The Ising partition function in genus g is written in terms of 
pfaffians or square roots of determinants of chiral Dirac operators: 

Z = 2 -  g ~]pfa f f ian  ~s ]2. (44) 
S 

The sum is over the 2 2g i + 2g-1 spin structures in genus g which generically have 
no zero modes, i.e. for which the Z 2 index vanishes. For c < 1, the rank of the vector 
bundle Vg is finite, and grows exponentially in g. For c >_ 1, the rank of Vg is 
infinite in general, because an infinite number of highest weights appear in the 
theory. In exceptional cases the metric of the infinitely many generalized characters 
is highly degenerate, so the rank of Wg is much smaller than the number of highest 
weights in the theory. In chiral theories this collapse is taken to the extreme; the 
rank of Wg is 1, for all g. 

We present the generalized character argument as motivation rather than as a 
proof that all conformal field theories are gauge systems, because the details have 
not been worked out. In particular, the modular transformation properties of the 
generalized traces are far from obvious. Even the modular transformation properties 
of conformal blocks are mysterious for c > 1 [46]. Still, it should eventually be 
possible to prove, through the generalized character construction, that every confor- 
mal field theory can be represented as a gauge system. 

Additional motivation for the gauge system construction comes from the two 
fundamental properties of conformal field theory: the correlation functions should 
be real analytic in moduli space, and should be single-valued under analytic 
continuation around the orbifold points. That is, a conformal field theory is 
completely determined by its behavior in any open neighborhood of moduli space, 
and its analytic continuation to all of moduli space is unambiguous. In more 
physical language, these are the properties of locality and crossing symmetry. The 
gauge system construction implements these basic properties by a division of labor. 
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The complex analyticity of the section 4' (m), combined with the local flatness of the 
metric h, provides real analyticity. The flatness is crucial, since it allows the metric 
to be expressed locally as a constant matrix. The flat metric is invariant under 
global parallel transport and 4'(m) is a global section of Vg, which guarantee that 
the analytic continuation of the partition function is single-valued. 

The problem with the naive gauge system construction described above is that, for 
genus g >  1, the Chern class C l ( E c )  -= 1c( [~wp/2~2]+8  ) is not entirely con- 
centrated on the compactification divisor, since [~wp/2Tr 2] restricts to a nontrivial 
cohomology class on ~'g.  In fact, [~%p/2qr 2] generates H2(jh~g, Q) [37]. If Wg were 
to be flat, then Vg = E c ® Wg would be a projective bundle on Jgg. It could not have 
a global holomorphic section 4'(m)- The division of labor between h ~b and 4' (m) 
must be more subtle. 

Wg is a projective holomorphic vector bundle, with projectively flat hermitian 
metric h~h. A projective vector bundle differs from an ordinary vector bundle in 
that the matrix valued transition functions g~(m)~ satisfy, on intersections U, n U~ 
N Uv, 

g~v(m)~ = g~(m),~gBv(m)~%~ v . (45) 

where %By ~ U(1). A projectively flat hermitian connection D is a hermitian 
connection for which the matrix valued curvature (1,1)-form is a multiple ~ of the 
identity, where 7/ is an ordinary (1,1)-form on ~t': 

D = O + A ,  Dhab=Ohab-ha, A]=O , 

(46) 

The vanishing of the (2, 0) component of the curvature, which is equivalent to local 
hermiticity of the connection, takes the form 

[ 3 , A I + [ A , A ] = O .  (47) 

The projective flatness of D can be regarded as a geometric formulation of the 
operator product relations of the stress-energy tensor [5, 30]. The cohomology class 
of the curvature form must be [4] = -~c[~0wp/2~r2], so that Vg= Ec® Wg is a 
vector bundle, and can have a global holomorphic section 4'(m). As in the genus-1 
case, the contribution ~c6 in cl(Ec) gets absorbed into the action of the twist 
operator in the fibers of Vg over the compactification divisor. The eigenvalues of the 
twist operator are modified from their values e 0 + h a in the fibers of Wg over ~s  to 
their values h a in the fibers of Vg over ~g. The section 4'(m) can then lie in the 
nontrivial twist invariant subspace h a = 0. 

Parallel transport by the projectively flat connection D does not give a unitary 
representation of the mapping class group Fg in the fibers of Wg, because the phase 
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of the parallel transport operator ~rp depends on the path p. Choose a base point m, 
and choose, in each homotopy class 3' ~ Fg of closed paths at m, a representative 
path p(y) .  Parallel transport along p(~,) gives a projective unitary representation of 
Fg, y(m)  = ~rp(~, in the fiber of Wg at m: 

y l ( m ) y z ( m )  = y z ( m ) y l ( m ) o ( y l ,  Yz)(m). (48) 

The operators y(m) are unitary because the covariant constant hermitian metric h is 
globally invariant under parallel transport. Conversely, a projectively flat hermitian 
vector bundle can be reconstructed from a projective unitary representation 9fig of 
Fg, by essentially the same technique used to make a flat hermitian bundle from a 
unitary representation of Fg. 

Away from orbifold points and the compactification divisor, we can choose a 
local basis for Wg of holomorphic sections %(m)  which are covariant constant up to 
a common phase, 

Dw~(m) = O f ( ~ ,  m)wa(m ) , (49) 

where f is a locally defined function satisfying JOf= 71. The components of the 
metric, h~. h = h(w~, wb), are not constant, since O(h~b ) = (Of)h~b. But we can write, 
locally, 

f 0  h~b= e hab, (50) 

with h°b constant. Now define Vg = E c ® Wg. Let +(m) be a holomorphic section of 
Vg. In components, + ( m ) =  +a(m)% where ~ba(m) is a local section of E C. A 
conformal field theory in the strict sense requires ~ (m) nowhere zero. The partition 
function of the gauge system is 

Z = h (~ ,  ~b) = ~b~(m )hab~bb(m), (51) 

which is manifestly a section of E ® E over ./fig. Locally, the partition function has 
the form 

Z ( ~ ,  m) = e f ~ba(rn )hOb•b(m), (52) 

so it is real analytic up to the factor e ( Note that the gauge system introduces an 
arbitrary element into the construction of the partition function, namely the 
particular choice of (1,1)-form ~ representing the cohomology class [~] = 

~4c[~Owp/2~r2]. We interpret ~ as the abstract version of the renormalization 
scheme. We will see below that the correlation functions of the primary fields are 
independent of ~/. But the choice of ~/ affects the definition of the stress-energy 
tensor and thus of the descendent fields. Different choices of ~/ gives different, but 
equivalent, presentations of the underlying conformal field theory. Given a choice of 
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surface geometry g, with its associated hermitian metric h g in E~ over ~ 'g ,  we can 
fix ~/ so that the metric 77=hgh in V~ is flat over Jgg, but singular on the 
compactification divisor. The flatness, as opposed to projective flatness, of h over 
~ g  allows the partition function to be written as a manifestly single-valued and real 
analytic function on moduli space, which is singular on the compactification divisor, 
diverging as q~oFT~". The real analyticity of correlation functions is then also 
manifest. This is the situation we envision in the construction of the gauge system 
from the conformal field theory using generalized characters. 

As an aside, we mention that one possible way to make Wg and +(m) at the same 
time is to follow the pattern in the genus-1 Ising model. Start with one or more 
sections ~ ( t )  of E~. over Teichmtiller space. Fg acts on the sections ~i to generate a 
vector bundle Vg over ~ g ,  in which the ~i(t) can be interpreted as a single section 
+(m).  Wg is then defined as the projectively flat vector bundle E e® Vg. Then a 
projectively flat metric hab must be found in Wg. It is not at all obvious under what 
conditions the ~ ( t )  yield a projectively flat vector bundle Wg which is hermitian. 

Now let us examine the behavior of the abstract partition function of the gauge 
system near the compactification divisor. Let rn e be a point in ~g. Let t be a point 
on the boundary of ~ in the equivalence class of me. Let ~,t,~.~ f, be the Dehn 
twist q ~ e2"~q around a node in t. Off the compactification divisor, near me,  Wg 
decomposes into subbundles Wg(h) whose fibers are the eigenspaces .~g(h) on 
which ~,t,, has eigenvalue e -2~h. Regard h as a real number, so aUg(h) depends only 
on h modulo integers. Clearly hab is block diagonal with respect to this decomposi- 
tion. Vg decomposes into the local sub-bundles Vg(h)--E~, ® Wg(h). +(rn) can be 
decomposed near m~ in the form 

+(me,q)  = ~ + k ( m e , q ) ,  (53) 
k 

where @k(me, q) - q~k is a local section of Vg(hk), such that ~ cannot be further 
decomposed into a sum of local sections of Vg(hk). By convention, h0=  0. The 
partition function now has the expansion 

Z(me,  me,q ,q)  = Y'.Zi.k(me, rne,g-t,q), 
J, k 

Zj, k( ~ ,  me, ~, q) = ~;(m e, q)hab@~(me, q), (54) 

where Zj, k -  E/h,q h~. Each index ( j ,  k) labels a primary conformal field Oj.k of 
conformal weights h = he, h = h k. Zj. k is the contribution of +j.k and its descen- 
dents in the channel passing through the node. If we choose a local frame such that 

f o 0 h ah = e h ah with h ab constant, as in eq. (50), then the normalized contribution of 

t~,,,k" 

Z,,k/Z=(+,~ m( e,q)habqJk(me, q))/(q b ~(rne,q)h~b b(me, q) ) (55) 

is real analytic. This shows the real analyticity of the correlation functions of the 
primary fields reconstructed from the partition function of a gauge system. 
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7. The factorizafion algebra 

We must now ensure that the partition function of the gauge system, eq. (51), 
factorizes on the compactification divisor. This is a necessary condition for the 
gauge system to be a conformal field theory, and we have argued in sect. 4 that this 
should also be a sufficient condition. 

We want conditions on h~h and on ~(m)  which will imply factorization on the 
compactification divisor. The form of the generalized characters provides guidance. 
When a node is formed, a generalized character decomposes into a sum of products 
of generalized characters on the component surface(s) left by removal of the node. 
The matrix elements h~b, for the surface with node, determine the h~h for the 
component  surfaces. That is, both ~ and h~b should individually satisfy factoriza- 
tion identities on the compactification divisor. 

We now describe the abstract mathematical structure in which the factorization of 
and h~h are expressed. We consider factorization in the vector bundles Vg over 

~ g ,  but the discussion applies equally to a general vector bundle, projective vector 
bundle, or projective line bundle. We need only consider the generic case of 
factorization at a surface with a single node, because factorization at a surface with 
multiple nodes is given by iteration of single node factorization, since there are 
simultaneous transversal coordinates for all the nodes. However, factorization on 
multiple nodes must be independent of the sequences in which the single node 
factorizations are performed, so we will need to impose associativity conditions on 
the single node factorization. It is enough to consider surfaces with two nodes to 
determine the associativity conditions. 

Repeating diagram (3), ~g,0 is a fiber bundle over ~ g - 1  and ~g.k is a fiber 
bundle over ~ 'k  × ~ ' g - k ,  k > 0, where the fibers are the locations (x 1, x2) of the 
punctures: 

• -gg  1 ~ ' k X ~ ' g  k 

(56) 

A simple example of factorization is provided by the line bundle E c. E c is trivial 
along the punctures. Therefore a local section of Ec over M4'g_ 1 lifts to give a local 
section of E~ over ~g,0, which is constant along the fibers. And, for k > 0, the 
product  of a pair of local sections of E c, one over Mr' k and one over ~ ' g -k ,  lifts to 

give a local section of E~ over ~g,k, constant along the fibers. 

Given vector bundles Vg over ./gg, in the extended sense of V-bundle described in 
sect. 5, write Yfg for the local holomorphic sections of Vg. A factorization structure 
for the Vg is a collection of maps Fg and Fk,g_ k acting on local holomorphic 
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~g/~g,o  ~'- ]U'g  ~g/~g,a  

G × G - k  

g 

(5v) 

satisfying consistency conditions which will be described. Recall that a vector 
bundle Vg restricted to the compactification divisor degenerates to the twist in- 
variant sub-bundle of V~ nearby. 

For k = 0 the map Fg takes a local section of Vg_ 1 over an open set U in ddg_~ 
to a local section of Vg over the lift of U in ~g,0. For k >  O, Fk, g k is a bilinear map 
from local sections,_ one of V k over an open set U 1 in ~ 'k ,  the other of Vg k over an 
open set U 2 in dt'g k to a local section of Vg over the lift of U~ x U 2 in ~g.k- The 
Fg, Fk,g_ k thus define what it means for sections of Vg over ~g.0 or ~k,g k, in the 
images of Fg or Fk, g k, to be constant in the fibers. For this to be possible, those 
subbundles of Vg/G must be trivial in the puncture variables. 

Schematically, in component form, the factorization maps have the form 

a a b (FgTI¢g ,)) = (Fg)ar l , g -1 ) ,  

.g k)bc~J(k)~J{g - k ) '  (ss) 

where ~{g) is a local section of Vg over the appropriate neighborhood, and we use 
indices a, b, c for all the vector bundles Vu, even though their fibers are not the 
same. In more detail, 

(Fg~j ,g_l) )a(m,g 1) ,Xl ,  X 2 ) = F g ( m { g  ,))a b (,~,(g-1)] b' l(g 1 ) \ " '  ] , 

k,, x2) 

~ m  ~k), - ' (59) = Fk,g k~ 1 m~2 g k));c~l 'k)(m~k')~l,g k)(m~zg-k)) " 

We omit indicating the dependence of Fg and Fk, g k on the puncture variables, 
assuming a frame in which they are constant in (xt, x2). If 2k  = g, Fk, k must be 
consistent with exchange symmetry: 

a 

(60) 

It is convenient to define Fk,g k for k >  g - k  so that Fk~,k ~ is invariant under 
exchange symmetry: 

G~ [ rn(k'), " " (61) , 
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The consistency conditions come from factorizing on two nodes in different 
orders. There are several cases. In the first case, one node separates the surface into 

k 2+ 1, and the other node lies in a handle in the genus k z + 1 genus k 1 and 
component:  

m(k~ +k2+ 1) 

/ 
(m~k,) ,  m~k2+l)) 

\ 
\ 

m(4k~ +k2) 

/ 
The consistency condition is 

Fk [m(k~+k2)]aF (rn(~) m(kz)]c 1 +k2+1~, 4 ]c kDk2\ 1 ~ 2 ]bib 2 

= FkDk2+ l(m~kl), m~k2+l)) ;tcFkz+l(m(kZ))b2. 

(62) 

In the second case, one node separates the surface into genus k I and k 2 + k3, and 
the other node separates the surface into genus k t + k 2 and k3: 

m(kl+k2+k3) 

/ \ 

\ / 
(m~ka),m(k2),m(3k3)). 

The consistency condition is: 

F& kz(m~ kl), m (k2)]c F I ra?  l+k2), 
, 2 ] b l b  2 k t + k 2 , k 3 ~  m(3k3)) :b3 

=Fkl,k2+k3(m~k,),. (k2+k3)~ a F [m (k2) rn (k3)]c (65) ITI5 ] b l c l ~ k 2 , k 3 ~  2 , 3 ] b 2 b  3 " 

The remaining configurations of two nodes give analogous consistency conditions. 

(64) 

(63) 
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The definition of the gauge system is now completed by imposing factorization 
conditions_ on the sections +<g> of Vv over ~/'g and on the metric h (~ in Wg over 
J /g .  For ~, 

Schematically, in components, 

a a b ~b<g)/~,o = (Fg)b+(g_,>, 

~bt~)/~.~ = Fk,g k( ~(k), +(g- k)). (66) 

~a  a b c . (g)/~,~=(Fk,g k)b,.+(k)+(g k, (67) 

For the metric, and arbitrary sections ~ of the Wg, 

h(g)(Fg~(g_ 1,, Fg~(g 1))/~,o = h(g 1)(~-(g 1), T](g_ 1) ) ,  

h(g)(Fk,g-k(~(k), ~l(g k)), F(k,g k)(~(k), ~(g k)))/~,.~ 

(k) - -  (g-k)  -- 

where we have left implicit the factorization maps for E,. 
components, 

( g ) -  a(F]t'_h(g 1) 

~b \ k,g kJ~tc2~,Fk,g _ ~ldt" c2d2 

(68) 

Schematically, in 

It follows from factorization of the metric that the metric connection D is 
compatible with the factorization structure F. This means that the connection D on 
the compactification divisor ~g agrees via F with the connection D on the 
component surface(s), or equivalently that F is covariant constant. 

From the factorization conditions (66), (68) on q, and h it follows immediately 
that 

h(g) (  ~(g) ,  ~(g))/.@g = h(g-1)(1J~,(g 1), ~ ( g - 1 ) ) ,  

h(g'(~/,g,,O/(g))/~=hlk)(~(k),f,k>)h'g-k)(~(g k),~(g k)), (70) 

which are exactly the required factorization identities (26), (28) for the partition 
function of the gauge system. 

(69) 
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A local holomorphic function f defined on a neighborhood U of ~ near the 
compactification divisor ~ and also on ~r(U n 9 )  must satisfy f / ~ = f  o ~r. In other 
words, f / e  must be constant in the puncture variables and must be consistent, via 
removal of nodes, with its value at lower genus. It is easy to verify, by induction on 
n in the diagrams (75) or (76), that the only globally holomorphic functions on 
are the constants. In this sense, ~ is a connected, compact analytic space. 

The diagrams (75) or (76) give a natural factorization structure for analytic 
functions on ~ .  The factorization condition described in sect. 7, for the special case 
of holomorphic functions, expresses exactly the requirement of analyticity on ~ .  

A holomorphic vector bundle V over ~ consists of ordinary vector bundles over 
the components of ~ ,  patched together over the compactification divisor by maps 
~r* analogous to those in diagrams (76). In terms of the local analytic sections 
~ ' ( :~ )  of V over ~ ,  Y/'(~) over ~ ,  ¢ / ' (~)  over ~ ,  V is defined by the commuting 
diagrams 

(77) 

A local holomorphic section *l of V must satisfy 7//~= 7r'T/. This is exactly a 
I 

factorization structure in bundles Vg over o/t'g as described in sect. 7. Connections 
and hermitian metrics in V must respect the maps ~r*. 

One possible approach to studying the universal moduli space is to describe its 
universal analytic covering space and covering group, the universal modular group. 
The covering space cannot be the universal Teichmihller space described in the 
mathematics literature, because that universal Teichmi~ller space is the same as its 
universal modular group; the quotient, the moduli space, is a single point [36]. 

In the analytic formulation of string theory [29], nonperturbative string effects are 
to be described in terms of world surfaces of infinite genus. It might also be useful 
to study conformal field theory extended to some appropriate class of infinite genus 
surfaces. Here we only make some formal comments about infinite genus surfaces. 
There are two universal moduli spaces of interest. The larger space is 

, ~  =,~X 0 Symk(Jff~), (78) 
k=O 

I 

where .//¢'~ is the space of connected, stable Riemann surfaces of infinite genus. We 
think of these infinite genus surfaces as essentially compact, almost all of the 
infinitely many handles being very small. Except for the finite genus parts of ~ ,  
the surfaces with nodes should be dense in ~t '~, since adding or subtracting a very 
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small handle, or splitting off a very small component surface, should be a very small 
disturbance. Except for the finite genus parts, the analytic structure on ~ should 
be very smooth. The crucial question is whether it is possible to extend a conformal 
field theory, and a gauge system, to ~ .  

The second infinite genus universal moduli space is a subspace of oj~: 

-0  Lj Symk( - 0  , ~ = ~ )  (79) 
k = 0 

- - 0  where J g ~  is the space of connected, stable Riemann surfaces of infinite genus, 
which have the property that removing a finite number of nodes leaves only infinite 
genus connected components. ~ o  should be extremely regular. If the extension to 
infinite genus is possible, it would be interesting to know the relation among gauge 

- - 0  systems on ,~, on ~ and on ~ .  It might be conjectured that any gauge system 
on ~ would extend to ~ and thus to ~ ,  and that every gauge system on ~ o  

- -  0 would come this way. But to reduce a surface in ~ to finite genus, an infinite 
number of nodes would have to be formed and removed. We might suppose that 
there could be more than one way of extending a gauge system on ~ o  to o ~  and 
~ .  The gauge systems on ~ o  might serve as universal approximations to the more 
various collection of ordinary conformal field theories, the gauge systems on ,~. We 
might even speculate that the factorization algebra, and projectively flat hermitian 
metric, associated with the projective vector bundle W over ~ o  might have an 
especially simple structure, perhaps equivalent to a Fock space. The holomorphic 
section q~ would be an analytic field over ~ o  of free field ground states in this Fock 

space. 

9. Discussion 

We have formulated two-dimensional conformal field theories as gauge systems 
on universal stable moduli space ~ .  A gauge system is a vector bundle W over 
universal stable moduli space, a projectively flat metric h in W, and a holomorphic 
section ~ of V - - E c ® W ,  where E C is the line bundle (?~H) ~/2. The partition 
function is Z(~,m)--h(+(rn ) ,+(m)) .  The factorization conditions which are 
equivalent to analyticity of ~b and smoothness of h on ,~ imply factorization of the 
partition function and allow reconstruction of the correlation functions of the 
conformal field theory from the gauge system. Projective flatness of h and global 
analyticity of + imply modular invariance and real analyticity of the partition 
function, which in turn imply crossing symmetry and real analyticity of the 
reconstructed correlation functions. 

The description of two-dimensional conformal field theory as geometry on 
universal moduli space exposes an underlying gauge invariance, which is the 
projective unitary gauge group of the projective vector bundle W. Note that these 
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8. Universal moduli space 

The gauge system, in order to be equivalent to a conformal field theory, must 
obey the factorization conditions described in the previous section. These factoriza- 
tion conditions are natural from the point of view of conformal field theory. In this 
section we show that they are also mathematically natural. 

We define the universal moduli space ~ of stable Riemann surfaces. We show that 
a holomorphic vector bundle V on the universal moduli space ~ is exactly a 
collection of holomorphic vector bundles Vg on the moduli spaces//gg along with a 
factorization structure at the compactification divisor. In particular, the projective 
line bundles E c = (?~H) C/2 on the moduli spaces J / g  define a projective line bundle 
E c on ~ .  The partition function Z ( ~ ,  m), satisfying factorization at the compactifi- 
cation divisor, defines a section of E~ ® E c over ~ .  The holomorphic sections +<g) of 
the vector bundles V~, satisfying the factorization conditions, define a holomorphic 
section + of V over ~ .  The metrics h <g) on Wg = E c ® Vg, satisfying the factori- 
zation conditions, define a metric h on W = E c ® V. 

A gauge system, or two dimensional conformal field theory, is simply a holomor- 
phic vector bundle V over universal moduli space ~ ,  a holomorphic section ~ of V, 
and a projectively fiat hermitian metric h in W = E , ® V. The partition function is 
Z =  h ( ~ , + ) .  

The definition of universal moduli space is motivated by the intuitive picture of 
factorization. From the point of view of two-dimensional conformal field theory, 
when a smooth Riemann surface of genus g develops a node and the node is 
removed, the surface becomes a possibly disconnected Riemann surface of genus 
g - 1 .  More generally, if k nodes are removed the genus becomes g - k .  For 
disconnected Riemann surfaces, the Euler number is X = 2 - 2g = 2(1 - ~h - ~c), 
where #h  is the number of handles and ~c is the number of components. The genus 
is therefore g = ~h -- #c + 1. Removing a node raises the Euler number by two and 
lowers the genus by one. 

The natural setting for the factorization conditions is the space of all compact 
stable Riemann surfaces, connected and disconnected. The moduli space ~ of all 
compact, smooth Riemann surfaces consists of infinitely many disconnected compo- 
nents: 

~ =  f l ( ~ J  Symk(~ 'g ) )  = ~ I~I S y m ~ ( J l ~ ) ,  (71) 
g=0 k=0 {n~} g=0 

where Sym k is the k-fold symmetric product. The connected components of ~ are 
indexed by the multiplicities {rig}, where rig > 0 is the number of connected 
components  of genus g in the Riemann surface. On the other hand, the moduli 
space of all compact stable Riemann surfaces, 

~ =  I-I U Symk(J ' g )  , (72) 
g=0 \ k=0 
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is a connected space• Given any two surfaces, there is a third surface of higher genus 
which can be continuously, even analytically, deformed into either of the two 
original surfaces by forming nodes and forgetting the punctures. The universal 
compactification divisor is ~ = f ~ - ~ .  

We define an analytic structure on ~ which makes this intuition precise. The 
naive analytic structure on ~ is the product structure inherited from the J/7~. But 
we impose a stronger analytic structure by requiring that the removal of nodes be 
analytic• Define, for n > 0, 

~ n =  U fi Sym~(~g), 
~ggng<_n g=0 

~ , =  U f i  Sym"~(i/g),  
Z~g~lg<n g=0 

The universal moduli space ~ is the limit of the inclusions 

~70 ~ ~1 ~ ~2  ~ " ' "  --' ~ .  

(73) 

(74) 

Let ~r: ~n "-~n-1 be the map which takes a surface m~ with nodes to the 
smooth surface 7r(m~) which results from removing the nodes and healing the 
punctures that are left. Along with the inclusions ~n ~ ~ .  and ~n ~ / 7 ,  the maps 
~r form diagrams, 

which do not  commute in the naive analytic analytic structure on ~.  We define the 
analytic structure on ~ to be the strongest analytic structure, having the fewest 
local holomorphic functions, which includes the local holomorphic functions on 
and for which the diagrams (75) commute as diagrams of analytic maps. In terms of 
the local analytic functions @(~) on ~ ,  0 ( 2 )  on 2 ,  0 ( ~ )  on ~ ,  there are the 
commuting diagrams 

o(~.) ~- o(Y<) 

• " " qz* , /  

o ( . .  1) 

0 ( 2 )  ~ o(y~)  

- 1 /  (76) 
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gauge transformations do not necessarily leave the metric invariant, but can change 
the curvature form ~/ in its (1, 1)-cohomology class. These extended gauge transfor- 
mations change the partition function, but only by changing the overall factor e f in 
eq. (52). The correlation functions of the primary fields are unchanged, so these 
gauge transformations take a conformal field theory to an equivalent one. Presum- 
ably this gauge symmetry includes the fundamental redundancy in the field algebra 
of a conformal field theory, since the redundant operators [47] are perturbations of 
the system which do not change the partition function. 

The main technical task in establishing the foundations of this analytic formula- 
tion of conformal field theory is to make rigorous the arguments outlined in sects. 4 
and 6 that a conformal field theory can be reconstructed from the partition function 
of every gauge system and that the partition function of every conformal field 
theory is given by a gauge system. 

It would be interesting to have a natural way of constructing projectively flat 
bundles, for example from natural analytic functions on the universal analytic 
coveting space of the universal moduli space, in analogy to the character Xo(q), 
eq. (39), for the Ising model in genus 1. In any case, effective means of constructing 
gauge systems are certainly needed. 

The classification of gauge systems seems a worthwhile mathematical enterprise. 
Present knowledge of conformal field theory puts interesting constraints on the 
structure of gauge systems. We list some of these known facts. For c < 1, unitarity 
forces c to be in the discrete series, the highest weights h~ are restricted to a finite 
list, and the multiplicities are highly constrained. In particular, the rank of each 
vector bundle Wg is finite, for finite g. In all known conformal field theories, the 
weights h~ form a discrete set, with multiplicities which can be calculated or 
estimated under some circumstances, e.g. in the c < 1 discrete series or in the 
infinite volume, a'  ~ ~c, limit of Calabi-Yau spaces. The identity operator is the 
only field with conformal weights 0,0. In general, the multiplicities h~b of the 
genus-1 partition function are integers. When a symmetry group S acts, these 
integers h~b become the multiplicities of the representations of S in the Hilbert 
space of the two-dimensional conformal field theory. It is especially important to 
understand how the constraints which follow from the structure of the Virasoro 
algebra arise in the gauge systems. 

There is a straightforward generalization of gauge systems to supergauge systems, 
which are the abstract versions of superconformal field theories. Super-Riemann 
surfaces [48] replace ordinary Riemann surfaces; supermoduli space replaces 
ordinary moduli space; and supervector bundles replace ordinary vector bundles. 
The supergauge systems are of interest because of their application to fermionic 
string theory [3] and supersymmetric critical phenomena [8, 19]. 

We thank Tom Banks, Dan Freed, Emil Martinec, Edward Witten and Scott 
Wolpert for helpful conversations. 
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