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A brief review of superconformal field theory and superstrings is presented. The spacetime 
spinor contribution to the fermion vertex operator is constructed and the four-fermion amplitude 
is calculated using the differential equation method in the SO(1,9) current algebra. The spinor 
field is also described as a vertex operator in the bosonization of the Ramond-Neveu-Schwarz 
fermions, and the two-cocycle for the ferrnion vertex is given. 

The original formulat ion of  superstring theory was the manifestly covariant  
Ramond-Neveu-Schwarz  (RNS) model [1-3]. The R N S  theory was never developed 

far enough  to describe general fermionic amplitudes and therefore the spacetime 

supe r symmet ry  of  the model  remained obscure. Only part  of the fermion emission 

vertex was constructed [4], the spacetime spinor field of  the RNS model, which we 

would  now call the matter  contr ibut ion to the fermion vertex. Spacetime supersym- 

me t ry  was proved in light-cone gauge, where the spacetime spinor field becomes the 
comple te  fermion vertex [5]. 

This paper  is par t  of  a program [6, 7] to give a manifestly Lorentz  covariant  

fo rmula t ion  of  superstring theory by complet ing the R N S  model. The motivat ions 
for  embark ing  on this project were: (i) to develop effective methods for calculating 

string tree ampli tudes and loop corrections in flat spacetime; (ii) to develop 
me thods  which can be used to describe strings in curved backgrounds;  and (iii) to 

take a step towards  unders tanding the general covariance of  string theory. 

In  this paper  we discuss the fermion vertex [6-8]. We use two methods.  One, 

deal ing with the matter  contr ibut ion alone, is based on the SO(l,  9) current algebra 
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of the RNS fermions. Using the techniques of Knizhnik and Zamolodchikov [9], the 
current algebra gives differential equations for the correlation functions of the 
spinor fields. We use it to calculate the four point function of the spinor field. 
Combining with other fields to get the complete vertex, we also get the four-fermion 
scattering amplitude, obtained previously by other methods [10,11]. This result was 
announced in ref. [6], and was also derived independently by Knizhnik in ref. [8]. 
The second method is a generalization of the Luther-Peschel construction of the 
order parameter in the Ising model [12]. The RNS fermions are bosonized [13], and 
fields are expressed as vertex operators [14,15]. The covariant fermion vertex 
operator [7] is formed by combining the spacetime spinor field of the RNS model 
with operators from the Faddeev-Popov ghost sector in Polyakov's quantization of 
the string [16]. In this paper we give the cocycle for the operator representation of 
the fermion vertex. 

The organization is as follows. In sect. 1 we briefly review conformal field theory 
and covariant bosonic string theory, and then discuss their supersymmetric exten- 
sions. In sect. 2 we discuss the SO(l,9) Kac-Moody algebra and use it for the 
four-point function of the spin fields. In sect. 3 we describe the spacetime properties 
and vertex operators, and calculate the four-fermion scattering amplitude. In sect. 4 
we give the bosonic representations of all the operators and their two-cocycles. 

1. (Super)conformal methods and strings 

Conformal methods, and their supersymmetric extensions, are extremely useful in 
covariant string theory. We begin by summarizing the conformal case [17]. The 
conformal group in two dimensions has an infinite number of generators. If the two 
coordinates (x °, x a) are written in complex form, z = x ° + i x  1 and 5 = x ° - i x  1, any 
analytic function of z or antianalytic function of 5 is a local conformal transforma- 
tion. The symmetry group splits into the direct product of two identical groups, one 
in z and one in 5. Hereafter, we will usually discuss the z sector alone. This sector 
corresponds to "right-moving" fields on the world sheet. Different string theories 
can be built by combining the z and 5 sectors in different ways [11,19]. 

The Noether current associated with local conformal transformations is the 
traceless stress energy tensor T~. (It is traceless due to scale invariance.) In two 
dimensions Tu~ has two independent components. These can be chosen to be 
T (  z ) = ( T o o -  i Tol ) and T(5)=  (Too + i Tol ). Conservation and tracelessness for the 
stress tensor implies these components are analytic or antianalytic. We focus on 
T ( z ) ,  whose Laurent coefficients L,  are the generators of the transformations 
Z --> Z -~- ~Z n + l "  

+ ~ L.  
T ( z ) =  ~'. z n + 2  , n integer. (1.1) 

H - -  - -  O D  
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The L, ' s  obey the Virasoro algebra [20] 

[L, , ,  L , ]  = (m - n ) L , , + ,  + ~ c ( m  3 - m)3,,,+,,, 

which is equivalent to the operator product 

IC 
T ( Z l ) T ( z 2 )  -- 

(Z 1 - -Z2 )  4 

2 
+ T(z2)  

(2" 1 --2"2) 2 

(1.2) 

1 
q-- (z 1 _ z2 ) Oz2T(z2) q- non-singular as z I -+ z 2 . (1.3) 

The central charge c is the numerical coefficient in the trace anomaly [21] and 
characterizes the operator representation of the algebra. 

Certain fields in the theory have an especially simple transformation law under a 
conformal transformation. These are called primary or conformal fields [18, 17]. If z 
transforms by z ~ z ' ( z ) ,  a primary field ~(z)  transforms as 

¢ ( z , ) ( d z , )  h = q~(z)(dz) h (1.4) 

By considering a scale transformation, z ' ( z ) =  hz ,  h is identified with the z scaling 
dimension of the field q,. Eq. (1.4) and the following operator product of q,(z) with 
the stress-energy tensor of the theory 

h 
r ( z l ) ~ k ( z 2 )  (z I - z2) 2~(Z2) q- 

1 
O~2q~(z2) + non-singular as z I ---4 7. 2 

(Zl 22) 

(1.5) 

are equivalent. One can establish a one to one correspondence between conformal 
fields and certain states in a Hilbert space. Consider 

Ih) = lim q~(z)lvac>, (1.6) 
z~O 

where ]vac> is the vacuum. From eq. (1.4), it follows that 

Lolh> = h l h > ,  (1.7) 

L,,Ih> = 0,  ,, > 0.  (1.8) 

These are called highest eight states and h is called the weight or dimension. 
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It is convenient to map operators to the w cylinder where 

r + io = w = log z. (1.9) 

These highest weight states are the asymptotic " in"  states created by q~ acting at 
r = - ~ (" time" on the sheet). L 0 generates dilations in z and thus translations in 
r. It can be viewed as the hamiltonian on the cylinder. 

We now discuss a simple conformal field theory, the free scalar field, X ( z ,  5). The 
equations of motion allow us to split it into two chiral components, X ( z ,  5) -- X ( z )  
+ X(5). The two-point functions are 

<X(z1)X(z2) > = - I n ( z ,  - Z 2 )  , 

( X ( ~ )  X(~2) ) = - I n ( q -  72), 

(X(Zl)X(~2) ) =0. ( 1 . 1 0 )  

The stress-energy tensor is 

T s c a l a r ( Z )  = - -  1 . 0 z X O . X  : (1.11) 

C : denotes normal ordering). X is not a conformal field, as it does not obey eq. (5), 
nor is it a quantum field, since its correlations grow with separation. But primary 
fields can be made out of it. 

An example is the "vertex operator" [14,15] 

V~(z)  = :ei~X(:':, (1.12) 

where a is a real number. The operator product of V, with Tscalar shows that it is 
, 2 If X is regarded as an electrostatic potential, V, primary, with dimension 5 a .  

introduces a source of "charge" a into the system. Nonzero correlation functions 
must have zero total charge (which may include operators at infinity that create 
"background charge") [22]. A correlation function of an arbitrary number of V,'s is 
given by 

1 
<VclI(Z1)VII2(Z2)...Vol,,(ZII)) = ~ (Zi__ zj)OliOl/~O, Oll+ll2+...+Ol n . (1.13) 

These tools are useful for constructing many conformal field theories. We will 
apply them to bosonic string theory, and then generalize to the supersymmetric case. 
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The bosonic string [14] is defined by the sum over world sheets 

f~urra,:es(d X) e s(x). (1.14) 

X"(z ,  5) is a map into spacetime from the world sheet and /~ runs from 1 to D, the 
dimension of spacetime. For the Nambu-Goto string [23], S is given by the area of 
the surface swept out by the sheet: 

S(x)= fdzde j 2~r - g (  z, Y, ) g"b( z, 5) OaX" ObX,, (1.15) 

where the metric g,h is the induced metric from spacetime. Here, g is the 
determinant of gab, and z and ~ represent the two coordinates on the world sheet, 
x ° +_ ix 1. In the Polyakov string [16], g,h is an arbitrary metric, and must also be 
summed over in the path integral. This action is reparametrization invariant. To 
make the path integral well defined, gauge fixing is needed. Two common choices 
are the light-cone gauge [24] and the conformal gauge. Light-cone gauge leaves only 
the transverse, physical degrees of freedom, but is not manifestly Lorentz invariant. 
Conformal gauge is Lorentz invariant and allows the use of two-dimensional 
conformal methods, but leaves unphysical states which must be eliminated through 
residual gauge conditions. In the following we shall be using conformal gauge: 

g,h = e~'(:' 5)6,b - (1.16) 

The choice of conformal gauge in string theory is analogous to choosing a 
covariant gauge to quantize electromagnetism. There one finds upon quantization 
negative metric states and a longitudinal mode. To eliminate them, one must impose 
Gauss' Law ( O~A ~ = 0) on the physical states. Here, conformal gauge is being used, 
and the appropriate symmetry generating operator is the stress-energy tensor. Thus 
we require that T = 0 on physical states [21]: 

(phys] Ttotallphys ) = 0. (1.17) 

Ttota 1 is the complete stress-energy tensor, including the ghosts required for gauge 
fixing [16, 21, 25], i.e. Tto t = Trnatte r + Tghost .  The symbol T will continue to refer to 
Tmatter. The condition (1.17) determines a positive metric Fock space [26] and is a set 
of "gauge conditions" for the Laurent coefficients L,,: 

L,  lphys ) = 0 ,  n > 0. (1.18) 

States satisfying (1.18) are the highest weight states in the conformal theory. For the 
bosonic string, the ghost sector can be chosen so that L~ h°st= - 1  [25]. So the L 0 
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gauge condition is: 

L~°tlphys ) = (L  0 - 1)[phys) = 0. (1.19) 

We now turn to the fermionic string [1, 2]. In addition to the coordinates XU(z, 5) 
on the world sheet, there are fermionic coordinates +~(z, 5) related to X ~ by 
world-sheet supersymmetry [27]. Both of these fields have a vector index /, in 
spacetime. The sum over two geometries leads to a theory of two-dimensional 
supergravity and matter [28]. Going to superconformal gauge, the action becomes 

( d2Z [ OzX~ O,X ~ ~p~ f "  0~7"] (1.20) Sgauge fixed = fl ~ -- 0Z + tt -- • 

(The fermions ~b, { =  ~b 1 _+ i~b2, where the subscripts are spinor indices, are sheet 
spinors in a chiral basis.) The global supersymmetry can be expressed by combining 
the fields into a two-dimensional superfield X~(z, 5, 0, t~) [28]: 

X~(z, ~,0,0) = X"(z, 5) + O+~(z, 5) + 0@'(z, 5) + eOF~(z, 5). (1.21) 

Here 0 and 0- are anticommuting parameters with scaring dimension ~, 0, t~= 01 _+ 
i02, and F ~ is an auxiliary field. With these, the action can be written in a 
manifestly supersymmetric form: 

1 

Sgauge fixed = f d2z d20 27 DX~'" DX~" (1.22) 

where D = 00 + 03 z, and D is the conjugate. 
Conformal symmetry generalizes to superconformal symmetry [7,29,30]. The 

generators of the algebra are the Laurent coefficients for the super-stress-energy 
tensor, 

T(z, O) = ~o(Z) + OT=(z). (1.23) 

The superconformal algebra comes from the operator product of the stress-energy 
tensor with itself 

¼~: 3012 l 
T(z2,e2)T(z2,02) + 7--7T(z2,02) + ~ D 2 T  

Z ?2 ZZI" 2 Z12 

¼~ 
T(zl' OOTIz2' 02) - z?~ 

3012 ± 012 

+ 2~122 T ( z 2 , 0 2 )  q- 2-~..-D2T+z12 --z12 0 2 T  . . . .  (1.24) 

where z12 = z 1 - z 2 - 0102, and 0~2 = 01 - 0 2. One expands in Laurent coefficients 

T(z, 01 = *..,"g-'" "-3/2 l!ct  2 - ,  + Oz-1/ZL,] , (1.25) 
n 
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and obtains the superconformal algebras: 

[ Lm, L , ]  = ( m -  n)Lm+ . + ~O(m 3 -  m ) 8  . . . . .  

1 [ O , ~ , G , , l + : 2 L , , + , + ~ ( m 2 - x ) S m . _ , ,  

[ L m , G , l = ( ~ m - n ) G , , + , , .  (1.26) 

is ~ of c in the Virasoro algebra, eq. (1.2) above. In the Neveu-Schwarz [2] algebra 
n is half integral, and in the Ramond [1] algebra n is integral. 

Again, in covariant gauge one must impose the requirement that 

(physl Ttotallphys ) = 0. (1.27) 

There are now gauge conditions for both the L,,'s and the Gn's: 

L,,Iphys ) = 0, G, lphys) = 0, n > 0, (1.28) 

and in analogy with the conformal case, the states satisfying (1.28) are the highest 
weight states in the superconformal theory. We will discuss the L 0 gauge condition 
shortly. 

The Hilbert space of superconformal field theory divides into 2 sectors, depend- 
ing on the boundary conditions of the fermionic fields. On the Neveu-Schwarz 
sector 

Tzo(e2'~iz ) = Tzo( Z ) , (1.29a) 

and on the Ramond sector 

~0(e2~'z) = - Tzo( z ) . (1.29b) 

This leads to the two possible algebras for the Laurent coefficients G,, and hence to 
the Ramond and Neveu-Schwarz algebras. 

The sheet fermion q,"(z) has a Laurent expansion 

~b"(z) = ~ ~k,," (1.30) 
z n +  l / 2  ' 

n = oQ 

with n half integral for the Neveu-Schwarz sector, and integral for the Ramond 
sector. Imposing canonical commutation relations on the fields q,", one finds that 

[ q'.",, q4] + = - g " % + , , . o .  (1.31) 

The Hilbert space vacuum 10) is in the Neveu-Schwarz sector. It is invariant 
under the OSp(2[1) symmetry generated by L o, L +1, and G _+1/2. Physical states in 
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the Neveu-Schwarz sector are obtained from conformal superfields acting on this 
vacuum. The L o condition includes Lo gh°st, which equals - ½ on the Neveu-Schwarz 

ground state [6, 7]. This is a sum of terms from the ghosts of the original bosonic 
string (L0gh°st -~ - - 1 )  and their superpartners (Lo gh°st = + !)2 . The result is that [14] 

( L 0 - ~)lphys) Ns = 0 (1.32) 

for the fermionic string. States in the Neveu-Schwarz sector are spacetime bosons. 
The Ramond sector has a fermionic character. The zero modes ~,~) of the field +" 

with Ramond  boundary conditions obey a Clifford algebra (eq. (1.31), above), and 
so are gamma matrices. 

As a result, the states in this sector and the operators which create them 
transform as spacetime spinors, in the 16 and 16 of SO(10). These operators take the 
field + from one set of boundary conditions to the other, intertwining the Neveu- 

Schwarz and Ramond sectors. We call such operators spin fields [29] and denote 
them S~, where a is a spacetime spinor index. Their action can be visualized as 
opening or closing a cut in the world sheet. One can make an analogy between the 
Ramond  sector and the supersymmetric quantum mechanical construction of a 

massless Dirac spinor [28, 31]. 
World-sheet supersymmetry constrains the L o eigenvalues in the Ramond sector. 

The generator associated with supersymmetry on the sheet is G 0. Since this is a free 
field theory on the sheet, supersymmetry will be unbroken. This means the ground 

state must be annihilated by G o , 

G0l gnd) R = 0. (1.33) 

But the commutat ion relations of the Ramond algebra state that 

G0 z = L 0 - la6 ~ . (1.34) 

This algebra is valid for just the matter fields alone, or for the matter plus ghost 

system. In the combined matter and ghost system, ~tot = 0 for consistency (this 
determines D = 10), so L~ °t = 0. The evaluation of L 0 must include the ghost ground 
state energy in the Ramond sector. The bosonic string ghosts here give - 1 ,  and 
their supersymmetric partners give + 3. These produce a ghost contribution of ~5 
to the value of L~ °t on the ground state. This implies that L~ hatter o n  the vacuum 

must  be ~. So the matter operator creating the Ramond ground state from the 
OSp(2] l )  invariant Hilbert space vacuum must be a conformal field S~, with 
dimension ~ which transforms as a spinor under the spacetime SO(l, 9). 

The spin fields S, are unfamiliar objects to many particle physicists, but their 
close relatives have been long known in another context, that of the 2-dimensional 
Ising model of statistical mechanics. At the critical point, the 2D Ising model is 
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equivalent to a theory of one massless free Majorana fermion ~, with h = 1. The 
order parameter field o(z, 5) and disorder parameter [32] field /~(z, 5) are spin 
fields in this fermionic system. The fermion ~b is double valued around these 
operators. In 10 dimensions we have 10 q,'s, i.e. +". Roughly speaking, the S~ can 
be built from a product of ten order or disorder parameter fields. The order and 
disorder operators have h = 116- So the product of such fields has dimension 
10- ( 1 )  = ~,5 just as was found above using supersymmetry. 

The combination of the Ramond and Neveu-Schwarz sectors is the Ramond- 
Neveu-Schwarz (RNS) fermionic string. This theory has the matter fields X ", @", 
and S,. The world-sheet field theory is completely described by giving all correla- 
tion functions. X" and ~" are free, and so their Green functions can be read off. 
The Green function for X ~ is eq. (1.10), and 

- g"" ( 1 . 3 5 )  
Z - - W  

The spin field S~ is more complicated. However, we know that its operator product 
with its conjugate includes the identity (as for any conformal field in a unitary 
theory), and it is a spacetime spinor. The operator product with its conjugate is: 

w + less singular. (1.36) So(Z)s ( ) ( z - w )  '/4 

The tensors which raise and lower indices are antisymmetric tensors e ~B and e,B, the 
charge conjugation matrices for SO(10). The power ~ is known since it is twice the 
dimension of S,. The spinorial nature of S~ means we know how it transforms 
under a SO(10) current J"": 

J~(z)S~(w) 
Z m W  

J"~(z) = :g ,"(z)q ,~(z) : ,  (1.37) 

where ~,"~= ½3,["y ~1 is the rotation generator for a ten-dimensional spinor. This 
means that the operator product of two S 's  contains J. To get the +, S~ operator 
product, consider the three-point function 

(1.38) 

Taking z a ~ m, z 3 ~ 0 ,  eq. (1.38) becomes the expectation value of ~" with 
Ramond boundary conditions. This picks out the zero mode of ~p", the gamma 
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matrices, and so leads to 

( r " ) g s ~ ( ~ )  
@ P ~ ( z ) S a ( w )  ( Z  -- W) 1/2 " (1.39) 

This also means that qJ~ appears in the operator product of two S's. Combining 
these results gives 

So(z)S,(w) - ~  + (y.)~¢.(z) + (v~.)~¢~(z)+~(~) 0.40) 
(Z -- W) 5/4 (2" -- W) 3/4 (Z -- W) 1/4 

The most general operator that can appear in the operator product expansion of two 
S j s  is a composite of Neveu-Schwarz fermion operators, objects with integral or 
half integral weight. 

These operator products are not enough to get the full correlation functions of an 
arbitrary number of S~'s. There is a general method for finding such correlation 
functions, developed by Knizhnik and Zamolodchikov [9], which can be applied to 
these generalized Ising spins. 

2. Kac-Moody algebra 

We note that the ~u are vectors under the SO(1, 9) algebra of the Lorentz group. 
Using Wick rotation, this becomes an SO(10) algebra. This SO(10) is made of the 
zero modes of a current algebra of the conformal field theory. The presence of a 
Kac-Moody algebra, a chiral current algebra, in certain conformal theories provides 
a differential equation which the correlation functions satisfy, as Zamolodchikov 
and Knizhnik have shown [9]. We outline their method below and apply it to 
determine S, correlations. 

The ff~ system has a chiral SO(10) symmetry. The corresponding hermitian chiral 
currents are: 

j~vCz ) = i : ~ ( z ) ~ V ( 2 ) :  =ja,  a = 1 . . . . .  45 for SO(10), (2.1) 

where • : stands for normal ordered product with respect to the +'s. 
The J~(z) 's  can be expanded in a Laurent series: 

J~(z) = ~ (2.2) 
Z n+l 

and the components J~ will then obey a Kac-Moody algebra 

[ < ,  j~]  = .~ob,,c 1 (2.3) q a.,+,, + ~km6.h6m+,,.o. 
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In eq. (2.3), k is an integer, and is related to the currents by 

587 

Tr(~OX b) -- k8 ub , (2.4) 

where the X~ are the representation matrices of the group in the representation of 
the ~b's. In our case, k = 2. The J~ obey the SO(10) Lie algebra. 

Given these currents, the Sugawara stress-energy tensor can be constructed [33]: 

1 
T =  - - : J J : .  (2.5) 

2K 

Here normal ordering is with respect to the J ' s .  T can also be expanded in Laurent 
coefficients L , ,  which obey a Virasoro algebra. The Kac-Moody algebra can be 
extended to the semi-direct product of the Kac-Moody and this Virasoro algebra, 
with the additional relation, 

[Lm, J~] = - n J a + n  " (2.6) 

Eq. (2.5) translates into an expression relating Laurent coefficients: 

+oc 
2KL,, = ~ :J,~J, ,", ,: .  

t ~ l =  - oo 
(2.7) 

This can be imposed as an operator equation. One can define primary fields @(z) 
for the combined algebra [9] satisfying: 

L.q, (O)105 = O, Jflq, (O)105 = 0 for n > O, 

Loq,(O)[O 5 = hq~(O)[05, Jo~q,(O)[05 = t"q~(O)105. 

(2.8) 

(2.9) 

(t u are the matrices representing the group generators in the representation of ~ and 
group indices on q, are suppressed.) The states @(0)[05 are the highest weight states 
in the combined algebra. 

The properties of highest weight states can determine the c of the theory 
constructed from the currents, and the value of proportionality between the stress- 
energy tensor and the currents, ~ [9, 34, 35]. Start with a highest weight state and 
compute [Lm, L ,,] in terms of the currents for m = 1,2, using eqs. (1.2), (2.3) and 
(2.6). Then take the expectation value of L o. This gives 3 equations for 3 unknowns: 
K, c, h. One finds primary fields in a particular representation of the group have 
conformal dimension h given by 

Crep 
h (2.10) 

Cad j "[- k 
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The constant r is determined to be 

= ½(Cad j + k ) .  (2.11) 

The value of c for a Sugawara stress-energy tensor is 

k d  ~dj 

C --  Cadj -~- k '  ( 2 . 1 2 )  

where dad j is the dimension of the adjoint representation, and C~e p is defined by 
t~ t  ~ = C~epI. Putting in the values for SO(10), we see that c = 5, for k = 2. Since the 
value of c for one free fermion field is ~, the free fermion stress tensor should have 
c = 5. The Sugawara stress tensor (eq. (2.5)) need not coincide with the free fermion 
stress tensor [35]. The matching of the values of c indicates that it does in this case. 
As can be easily checked, eq. (2.10) correctly gives the conformal weight h for the 
S~ ' s .  

The properties (eqs. (2.8)-(2.9)) of primary fields can also be used to reduce the 
infinite sum of J~'s in the equality between T and the currents J, eq. (2.7). For 
instance, consider m = - 1 .  Acting on a highest weight state, the equation becomes 

( - • L  l+J51J~)~h(0)l  0 ) = 0 .  (2.13) 

Using the properties 

0 
[ L _ l , ~ ( z ) ]  = ~ z ~ ( Z  ),  (2.14) 

t r/ 
[ J ! 1 ,  ~ (z ) ]  = - - ~ ( z ) ,  (2.15) 

2 

eq. (2.13) inserted inside of a correlation function of several primary fields yields the 
differential equation [9]: 

0 __ E t a ' t a s l ( ~ ( Z 1 ) ~ ( 2 2 ) ' ' ' ~ ( Z n ) ) = 0 .  ( 2 . 1 6 )  
r •Zi j~i  Zi -- Zy 

This can be used, for instance, to calculate a four-point function of primary fields. 
Due to SL 2 invariance, one can consider 

( , ( ~ ) ~ ( 1 ) ~ ( x ) ~ ( O ) )  (2.17) 

~w ~(w).) A without loss of generality. (Here ~(oo) is to be considered as limw~ 2h 
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simple example demonstrating the basic ideas is the four ~ correlation function: 

(q,u, (oo) q,"~ (1) +", (x)  q,~, (0) ) .  (2.18) 

This must be a singlet under SO(10). There are three invariants in the tensor 
product of four SO(10) vectors, so we can write 

(~b~'(oO)~2(1)t~ ' (X)~U4(0))  = Gl(X)Inv 1 + G2(x)Inv 2 + G3(x)Inv 3, (2.19) 

where the G,'s are functions of x and the Inv/s are linearly independent invariant 
tensors. The Inv/s can be chosed as products of delta functions. Writing the Gi's as 
a vector G = (G 1, G 2, G3), the differential equation (2.16) becomes 

0 0(1  1 )  
~ x  G = 9 ~ x G =  - - A + - - B  G, (2.20) 

x x - 1  

where A, B are matrices that do not necessarily commute. In this case 

- 9  - 1  - 1 ]  
A =  0 0 1 , 

0 1 0 
( 2 . 2 1 )  

[°li] B =  1 0 • 

- 1  - 1  - 

(2.22) 

The two-point functions give various limits as x --+ oe, x --+ 1, and x ~ 0. This 
information can be combined with the restriction of analyticity, asymptotic falloff 
at infinity, and knowledge of the operator product expansion to determine a general 
form of solution: 

G _  
x ( x -  1) 

[a 'x  + b ' ( x  - 1) + e ' x ( x  - 1)1 

x(x-1) [ a + b x + c x 2 ] ,  (2.23) 

where a, b, c are constant vectors. Solving for these vectors, and normalizing with 
the two-point function, one finds for the four-point function 

1 1 
= - + 

x 1 - x '  

(2.24) 
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as expected. Now, consider the correlation function of four So's: 

( S~,(oo)S~2(1)S~,(x)S~,(O)) • (2.25) 

The S, 's  are primary fields of dimension h = 5 ~, and lie in a 16 of SO(10). There are 
three SO(10) singlets in 16 ® 16 ® 16 ® 16. The most likely candidates for the Inv,'s, 

the three different pairings of gamma matrices, are not linearly independent, due to 
properties of gamma matrices in ten dimensions (the sum of cyclic permutations of 

three of the indices is zero). The solution uses only two of them. Putting two 
combinat ions in, and taking limits to get overall factors of x and 1 - x as before, 
one finds: 

3 G 1 = 1 ~2 + _ ~ G1 

! _3- x 0 1 G2 j ' Ox G2 ~ 4 - 
(2.26) 

where G~, G 2 are defined as 

< s ~ , ( o O ) S o : ( a ) s o , ( x ) S o , ( O ) ) = c ~ ( ~ )  ~ . ~ ~,~,~7~,~, + Gz(x)yol~,7~,. (2.27) 

The solution is 

( S~,(oo)S~,(1)S~,(x)S~(O)) 

= 12X 3 /~ (X  -- 1)  3/4 [ ( 1 --  X ) ~/~'~1 ~2'YOg~3 Or4 -- X ~/Ot~'l 0/4"Y~2 ~ 3 ] . ( 2 . 2 8 )  

The normalization is not fixed by this method, but can be found using the 
three-point function. 

In addition, one can find the correlation function for two right-handed and two 
left-handed spin fields: 

< S~I ( oo )SB'(1)S~( x )S~2(O) ) 

=GI(x )8~Ia~+Gz(x)6~2a~+G3(x)M~,Mf~ .  (2.29) 

The differential equation 

0 
- - c ( x )  = 
Ox 

1 0 0 00 
0 + 0 12 

_1  0 - 1 ~  0 _1  13 
9 9 36 

G(x)  (2.30) 
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yields the solution 

ll_sj4x+lj4x21, G2 = c o n s t x  5 / 4 ( x  - 1) 5/4 X 2 
m 

G3 x --  X 2 ] 

591 

(2.31) 

These results agree with previous calculations [10,11]. This technique is rather 
general, and applies to many other situations. 

3. Spacetime supersymmetry and vertex operators 

Although the RNS model has sheet supersymmetry and spacetime fermions, its 
spectrum is not supersymmetric in spacetime. It is not yet the ten-dimensional 
superstring. To get the superstring, a projection F =  ( - - 1 )F =  1 is made in the 
Ramond and Neveu-Schwarz sectors, where F is the fermion number on the world 
sheet. This is the G-parity projection of Gliozzi, Olive and Scherk [4]. 

This projection originates from the requirement of modular [14] invariance in 
loop diagrams. Loop diagrams involve traces over correlation functions. Since 
Neveu-Schwarz and Ramond sectors have antiperiodic and periodic boundary 
conditions (in o) respectively, it is necessary to sum over both o boundary 
conditions in calculating a diagram. Modular invariance requires symmetry under 
interchange of ~- and o. Therefore one must sum over both periodic and antiperiodic 
boundary conditions in ~" as well. Periodic boundary conditions correspond to a 
factor of ( - 1 )  r in the trace, so adding both together provides a factor of (1 + 
( - 1 ) r ) .  This is a projection on the F =  1 sector. 

In the Neveu-Schwarz sector, F = 1 selects even world-sheet fermion number 
operators and eliminates the tachyon. In the Ramond sector, F anticommutes with 
all the zero modes of the fermion field ~ ,  acting as Yu on the Ramond sector 
ground state. The projection picks out left-handed Majorana-Weyl spinors. The 
resulting spectrum of the lowest-lying states is a ten-dimensional massless supermul- 
tiplet. The chirality of the theory in spacetime depends on the various ways the z 
and £ parts of the theory are combined. The different combinations produce 
different types of superstring theories. 

Physical processes in string theories can be interpreted as particles being emitted 
or absorbed by the string. Vertex operators describing these emission or absorption 
processes are local operators on the world sheet. Scattering amplitudes for particles 
are built from correlation functions of these vertex operators. A vertex operator in 
any kind of string theory must be independent of all coordinate transformations on 
the sheet. For  example, a particular z or 0 value has no physical meaning. Different 
values of all the sheet parameters must be integrated over, and the resulting integral 
should be independent of all transformations on the world sheet. This means that 
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the integral of the vertex operator should have conformal weight zero (h = 0). So the 
vertex operator must be a conformal field with h = 1 or a superconformal field with 
h -  - -  2 "  

Vertex operators for the supersymmetric string can describe fermions or bosons. 
These are made from fields in the Neveu-Schwarz and Ramond sectors which have 
the correct (super)conformal properties. The fields staying within the Neveu-Schwarz 
or Ramond sectors must respect superconformal symmetry. The spin fields inter- 
twining the two sectors must be conformal fields (and obey other constraints as well 
[7]). These will create bosons and fermions respectively. 

The vertex operator respecting superconformal symmetry is the supersymmetric 
version of the vertex operator for the bosonic string [14]. Replacing the coordinate 
X ' ( z )  in the bosonic string by a superfield, the lowest mass operator even under the 
/" projection is 

f dO VNS ( p, Z, 0) = g, fdODX'e  ,p.x~...o~ = g,(a.X,  + i P ~ b ~ ) e - ' P ,  x"~:) . (3.1) 

Conformal weight 1 requires P 2 = 0. VNS does not change the boundary conditions 
of the field ~b on the sheet, and has a vector index. It corresponds to a massless 
bosonic vector particle. Calculation of the correlation functions of the Neveu- 
Schwarz vertex is straightforward, since it involves only the fields X ~ and ~b". 

The fermion vertex which creates Ramond ground states is more difficult to 
obtain, as are its correlation functions. The fermion vertex operator must have 
dimension 1, since it respects conformal symmetry. So the dimension-~ spin field 
needs to be combined with some operator of dimension 3. This operator turns out 
to be a ghost spin field 2:. Changing boundary conditions actually forces the 
inclusion of N in the vertex. The vertex operator not only twists the boundary 
conditions on ~b ~, but also those of all the other sheet fermions. So the ghosts for 
super-reparameterization symmetry must also be twisted, by 2:. The resulting 
operator is [6, 7] 

VR(P, Z) = Z(z)So(z)e  *PS(z). (3.2) 

where u,  obeys the Dirac equation. Counting scaling dimensions, Z has dimension ~, 
S~ has dimension ~, and p2 =0 .  This operator is closely connected with the 
supersymmetry generator in spacetime, as might be expected. This is not the whole 
story (for a detailed discussion see ref. [7]). There are an infinite number of 
operators, all equivalent under a "picture changing" operation. This additional 
structure is crucial for calculating the fermion scattering amplitudes, but we will not 
need explicit formulas here. 

One way of doing calculations with the Ramond vertex is to factorize its 
correlation functions into separate correlation functions of the ghost fields, spin 
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fields and  m o m e n t u m  dependent  exponentials .  The spin field correlat ion funct ions 

can  then be calculated separately and mult ipl ied by those of the ghosts and of the 
m o m e n t u m  factor.  The  ghost fields can be represented as exponentials  of free scalar 
fields with a background  charge [6, 7]. As an example,  we calculate the four- fermion 
scat ter ing ampl i tude.  

The  form of the fermion vertex we will use is 

V,,(zl) = e ik '  X ( ~ ' ) S ~ I ( Z 1 ) ~ ( Z 1 )  • (3.3) 

Al though  there are m a n y  forms of the fermion vertex, the four-point  funct ion can 
be wri t ten in terms of V~, [7]. So it is necessary to evaluate 

(Va l ( z1 )Vaz ( z2 )Va3(z3 )Va , ( z4 )  ) = F 4 . (3.4) 

Fac tor iz ing  into  the various componen t  fields this becomes  

(eikl " X(zl)eik2" X(z2)eik3. X(z3)eik4.X(z4) ) 

X ( S c q ( z 1 ) S ~ 2 ( z 2 ) S a 3 ( z 3 ) S c ~ 4 ( Z 4 ) ) ( ~ ( Z 1 ) ~ ( Z 2 ) Z ( Z 3 ) Z ( Z 4 ) ) .  ( 3 . 5 )  

We can  use the SL 2 invariance to take three of  the points  to constants:  

Z 1 ~ ¢3Q, Z 2 --* 1, Z 4 --* 0 (3.6) 

and  choose  z 3 = x. After  substi tut ing for the various terms (eqs. (1.13), (2.28)) we 
get 

F , -  (1 --X)k2k3xk3k'[X(X -- 1)1 3/4[x(x-- 1)1-1/4  

× [(1 -- X) 7~ ,~Y~ ,  --/~/Ot~l~4Y,~2~ 3 ] " (3.7) 

The  ampl i tude  is the integral of  this over  the remaining free variable x, with the 
a p p r o p r i a t e  measure  factor  (the j acob ian  f rom the t ransformat ion  (3.6), and factors 
of  V~- at each vertex): 

- - x)Y,, ,27 . . . .  xT~,, ,y . . . .  ] . (3.8) 

Recogniz ing  these integrals as be ta  functions, 

A = I  2 # t~ 2g {n(l-~-k2"k3.~ k3"k4,'~'~'.,~,~r,~,~4 ~'~' - B ( k e ' k 3 ,  k3"k4+l)Y,~,7,~,~} . (3.9) 

This  can  be  rewri t ten in terms of the Mande l s t am variables,  s = - 2 k 1 " k  2 = - 2 k 3 "k 4, 
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t = - 2 k l - k 4 =  - 2 k z . k 3 :  

1 1 - -  1 1 ) , y  . . . .  "yot 21~ 3 }. (3.10) A =  g2( B ( 1 -  g t , -  2s)'Yotll 2"Y 3ot4 B(- t,1 2S ~l 

This has crossing symmetry, as can be verified by inspection, and is the same result 
as obtained previously [10, 11]. 

Using the loop algebra to calculate the correlation functions of the spin fields 
separately is one way to approach the problem. Although it keeps spacetime 
symmetries manifest, it becomes difficult to use for more than four spin fields. The 
number of unknowns in the differential equation becomes unwieldy. An alternative 
is to take a hint from the connections between spin fields and the Ising model and 
the properties of fermions and bosons in two dimensions. These suggest bosonizing 
all the fields in the theory. It turns out to be useful to not only bosonize the spin 
fields, but to include the ghosts. 

4. Bosonization 

It has long been known that 2 fermions can be combined to form one scalar [36]. 
In the present situation, there are 10 fermion fields, each with a value of c of ~, 
which, roughly speaking, can be combined to form five free scalar fields, each with 
c = 1. One prescription for nonabelian groups, due to Witten [37], associates 
currents with group elements. The commutation relations follow directly. The 
bosonization presented here is more closely related to the original abelian bosoniza- 
tion and was used for the vertex operator construction [38-41]. 

This approach uses exponentials of free scalar fields to represent currents. 
Cocycles guarantee the commutation relations and provide a local theory. Correla- 
tion functions can be evaluated using free scalar theory. Bosonization has been 
applied to currents and vectors in the past, and for spinors in special cases 
[13,19, 41, 42]. (In the E 8 construction, for example, the currents contain the SO(16) 
spinor representations, and spinors in another context have been bosonized by 
Goddard  and Olive.) Here, the fermion vertex is bosonized, which requires a 
combination of the above techniques. 

The bosonized theory can be identified with the original theory if the new 
operators have the correct conformal weights and operator products, and if the c 
value for the system is correct. The value of c for 5 free scalar fields is 5, and the 
conformal weights can be read off with the knowledge of scalar field two-point 
functions (½a 2 for ei~*). The cocycles give the correct operator product coefficients 
and the associativity required for a local quantum field theory. 

We are looking for descriptions of three operators: ja ,  q~, and S~ in terms of five 
scalar fields q~(z). The SO(10) properties of the currents Ja, vectors +" and spinors 
S~ are encoded in their weight vectors. The weights of SO(10) lie on a five-dimen- 
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sional lattice since SO(10) is rank five. The bosonized operator with weight vector a 
is %:e~*(z) : ,  where c,  provides proper (anti)commutation relations. The (length) 2 
of a weight vector a is 

o/.o/= E(o/ i )  2. (4.1) 
i 

Starting with the currents gives a natural relation between the G's  and the 
structure constants of the group. The currents j a  obey, by definition, 

[ J¢;, J~ ] = i f  ~h¢Jd ' , (4.2) 

with f,,b,. =fl ,h , . l  the structure constants of S0(10). The currents can be put in a 
basis of Cartan generators, H ~, and raising the lowering operators E~, with the 
following commutation relations: 

and 

[ H  i, H J] = 0, 

[Hi ,  E,,] ' = a f  a , 

[ E . ,  Eb] = e (a ,  b)E.+h, 

(4.3) 

if E,+ b is a raising or lowering operator, zero otherwise. 
The weights of the SO(10) adjoint representation (the roots) are 

&= (+1, +1,0,0,0) (4.4) 

and permutations. Their exponentials provide forty of the currents. The other five 
currents are 0zg,j, corresponding to the Cartan generators H j [38-40]. The currents 
which are exponentials are written as 

j[tav] = j a  = :eiB~¢,(z): Ca. (4.5) 

The zero modes of these operators must satisfy the commutation relations, eq. (4.3). 
So the factor c, must obey 

G G  = e (a ,  b)ca+ b . (4.6) 

This is one of the defining relations for a cocycle e(a, b), in the basis where the 
structure constants f~h,, are all _+1. The other relations e(a, b) must obey are 
associativity, 

e(a, b)e(a  + b ,c )  = e(a, b + c )e (b ,c )  (4.7) 
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(guaranteeing the associativity of the operator product), and a symmetry property 
under interchange of arguments. 

An explicit representation for the cocycles has been given by Segal [40]. He 
defines cocycles for currents, which are on even lattices (lattices which have vectors 
of (length)2 = 2). There are two cocycles present in the theory, one which gives the 
Schwinger term in the Kac-Moody algebra, and one which gives the commutation 
relations. The Schwinger term in the algebra is taken care of by the operators in the 
fields Oj (z) which produce c-numbers in the operator product. The other two-cocycle, 
dependent only on the group lattice, appears in the commutation relations above. It 
is 

= ( -  (4.8) 

where 

o(a, a) = ~(a, a), (4.9) 

o ( a , B ) + o ( ~ , a ) = ( a ,  fl) mod2.  (4.10) 

Here, (a,  fl)  is a suitable scalar product on the lattice, and o(a, ~) need only be 
defined mod 2. One can easily check that this definition of the two-cocycle obeys eq. 
(4.6). Currents (of SO(10) in particular) are represented this way, with Ca,/3) = a./9.  
This causes e(a, iS), and thus the structure constants fab~. to be antisymmetric. 

The next objects in the theory to look are the Lp;(z), SO(10) vectors. They have 
dimension -~ and weight vectors 

p;= (_+1,0,0,0,0) (4.11) 

and permutations. The vertex representation [13, 39,41] is 

~pO,(z) = :e;O;-*¢~:% . (4.12) 

This is an integer lattice, not an even lattice. 
The cocycle relations were defined to get commutation relations for the currents 

on the sheet. Since ~ is a sheet fermion, it must anticommute, not commute on the 
sheet. Taking this into account, a generalized inner product can be defined [41]: 

ffa, /~)=a.fl-1~1211312 mod2,  (4.13) 

which can be used to define the cocycle in (4.8)-(4.10). Since this is defined mod 2, 
the scalar product is unchanged for (length) 2= 2 vectors. The operators with 
length 2 = 1 weight vectors anticommute with each other but commute with every- 
thing else. 

The third operator to construct is the spin field S~. It is a dimension-~ operator 
and a SO(10) spinor. The 32 spinor weights (of the 16 and 16 representations) of 
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SO(10) are 

xo= (4.14) 

The number of minus signs in ~ is even or odd, depending on the spinor 
representation. The weight ~ has (length)2 a.5 The natural candidate for S~ is: 

S~ = :eia'-~',{~): c~. (4.15) 

There is no obvious way to generalize the inner product for Segal's construction 
and keep anticommutation elations on the sheet and in spacetime. Anticommutation 
relations are guaranteed if this spin field can be made (length)2= 1. The answer 
comes from realizing that on the sheet, it isn't meaningful to consider a matter spin 
field without a ghost spin field. These two comprise the fermion vertex, which does 
have integer (length)2 weight vectors associated with it, on an expanded lattice that 
includes a weight for the ghosts. 

To construct the integer lattice, we represent the ghost spin fields ~? as exponen- 
tials of a free scalar field. 

~ + ( z )  = :e+i%h(~)/2: . (4.16) 

The field Ogh(Z) has an opposite sign metric 

(Ogh(Z)~gh(W)) = + ln (z  -- w) (4.17) 

and there is a background charge present. So the conformal weight of :eiq%htz): is 
~q q + 2). Thus 2?_ 1/2, with dimension 3, is the ghost spin field discussed earlier. 

Its chiral conjugate, Z1/2, has dimension 5 - ~. Combining these operators with the 
matter spin fields, we get operators of dimensions 1 and 0, which are the spin field 
parts of two representatives of the fermion vertex: 

V ~-+ = ,g +- S ~+ = :exp( i)~q,j (z)  + ½i~gh( Z) ) '% + 

where 

-= :e'X°~'{:): c~+ , (4.18) 

X = ()~,)~gh), Xg h = _+ l ,  (4.19) 

= ( * ,  ~ g h ) "  ( 4 . 2 0 )  

The six-dimension weight lattice of this system is integral and lorentzian, with 
inner product (+  + + + + - ), i.e. 

~k" ~k = )k" ~ --  ~kgh~g h . (4.21) 
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So cocycles are defined for the V ~ -+ 's using the cocycle for integer (length)2 weight 
vectors, eqs. (4.8)-(4.10), (4.13). The vertex operators obey anticommutation rela- 
tions on the sheet. 

This is a generalization of the approach used by Narain [42]. He used weight 
vectors lying on even euclidean or lorentzian lattices of dimension 8n + 2q, with 
signature ( + + + + + + + + ) n times, and ( + - ) q times, for operators obeying 
commutat ion relations. Here, weight vectors lie on integer lattices of dimension 
4n + 2q with metric n ( +  + + + ) + q (+  - ). It includes operators obeying commu- 
tation or anticommutation relations, depending on the (length) 2 of the weights. 
Instead of using the connection between the roots of E 8 and SO(16) spinor weights, 
this uses the properties of SO(8) and its isomorphisms between the two-spinor and 
one-vector representations. 

The nonlocal model containing all of the above operators is defined on an 
integral, but not self-dual lattice. After the F projection to a local theory, an integral 
self-dual lattice results. The F projection is done on the product of ghost and matter 
spin fields [7], and 

FV'~ +- = 1--[ sign( ?~i ). (4.22) 
i 

The requirement F = 1 picks out an integral self-dual sublattice. The existence of 
cocycles for self-dual integral lattices has been shown by Goddard and Olive [41]. 
They show that an identification can be made between the prefactors c a and gamma 
matrices. (It is interesting to note that there is a similarity between the requirements 
of the metric of the lattices, and the dimensions where Majorana-Weyl fermions can 
be defined.) 

Using the weight lattice is not Lorentz invariant, as only SU(5) (of the five pairs 
of fermions) is manifest, but it is efficient. 

More in line with the original Luther-Peschel doubling scheme is to add ten new 
fermion fields, each contributing a c of ½. This "squares" the correlation function, 
giving a set of ten fields with c = 1 each. Calculations are easy for these ten free 
scalar fields. At the end, the "square root" must be taken (this is the difficult step). 
The advantage of this approach is that the SO(10) symmetry (Lorentz covariance) is 
manifest as a subgroup of SU(10) throughout. In this case, perhaps one of Narain's 
lattices could be used, with SO(1,9) manifest. (Obeying commutation relations 
rather than anticommutation relations on the sheet would be alright, since these 
objects would be the squares of the spin fields.) 

5. Conclusion 

We have identified the spin fields of Corrigan et al. [10,11] as the SO(10) vertex 
operators with spinor weights. We have given two methods of calculating their 
correlation functions: the Lorentz invariant linear differential equation (eq. (2.16)) 
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and bosonization. The Lorentz invariant approach, utilizing the SO(10) loop alge- 
bra, may be useful for deepening understanding, but is impractical to apply to 
correlation functions of more than 4 operators. (The number of invariants in the 
differential equation grows quickly.) The bosonization approach is not Lorentz 
invariant in intermediate stages, but it is practical. The role of the ghosts in 
simplifying this construction is noteworthy. The SO(10) loop algebra demonstrates a 
special connection between spacetime Lorentz symmetries in 10 dimensions and 
sheet conformal symmetry. Perhaps this will provide more clues for relationships 
between world-sheet "string-like" properties and spacetime ones. 

We thank D. Kastor, A. Kent, E. Martinec, C. Preitschopf, J. Traschen and D. 
Zoller for interesting conversations. 
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