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We generalize the gauge-invariant theory of the free bosonic open string to treat dosed 
strings and supcrstrings, All of these theories can be ~,ritten as theories of string differential forms 
defined on suitable spaces. All of the bosonic Iheories have exactly the same structure: the 
Ramond th¢o~ lakes an analogous first-order form. We show, explicitly, using simple and general 
manipulations, how to g;mge-fix each action it, the light-cone ga0ge and to the Feynman*Siegel 
gauge. 

I. Intr(ahlction 

Af te r  r ema in ing  for a long t ime incomple te  and i l l -unders tood,  the covar ian t  

fo rmula t ion  of  s tr ing theory is fin:dly being comple ted  to a g: |uge-invariant  s tr ing 

field theory.  The  recent deve lopments  began with Siegel 's formula t ion  of  a co- 

va r i an t ly  gauge-f ixed bosonic  s tr ing [1 ], based on the BRST f i rs t -quant izat ion of the 

s t r ing  [2]. Out  of  this work grew a gauge- invar iant  formulat ion of  free bosonic  

s tr ings,  to which many  authors  have cont r ibu ted  [3-15,  40]. The geometr ical  founda-  

t ion of  this theory  has been invest igated in refs. [16, 17]. In addi t ion ,  progress  has 

been  made  on the press ing issue of  ident i fying the gauge- invar iant  in teract ion terms 

for open  boson ic  str ing fields [3, 18-22,40].  Some of this progress has been reflected 
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in the theory of supersymmetric strings. The Neveu-Schwarz-Ramond formulation 
of the superstring theory has been written as a covariantly gauge-fixed string field 
theory [23-25] and as a gauge-invariant theory [4.6.7.26.27]. However. as yet none 
of these gauge-invariant formulations of the theory contain the full set of Stueckel- 
berg fields needed to make these theories equivalent to the covariant or lioJat-cone 
gauge-fixed formulations. In addition, the technology involved in many of these 
papers is complex, in a way that obscures the relatively simple structure of these 
theories. 

In this paper, we address these last two difficulties by presenting a unified 
formulation of the gauge invariant free string field theories associated with all 
known string models. We will construct lagrangians for these theories which have a 
common structure and which are simply given in terms of appropriate differential 
operators. A weakness of our formalism is that is does not properly treat the gauge 
invariances associated with the zero modes of closed strings: in particular, our 
formulation of the Ramond/Ramond sector of closed superstrings requires an 
externally-imposed dynamical constraint. Nevertheless, all of our string field actions 
are quantum-mechanically complete: We will show how to fix these lagrangians to 
the covariant Feynman-Siegel gauge and to the light-cone gat, ge by techniques 
applicable to all of the string theories, and we will prove that these manipulations 
lead to the known physical spectra. The differential operators which wc reqt, irc arise 
naturally from the strt, cture of BRST transformations for each string, though. 
unfortu,lately, we have not been able in all cases to connect our gauge tr:msfornl;t- 

tions precisely with BRST transformations~'. In the Ncvcu-Schwarz-Ramond theory. 
wc find intriguing relations, also noted by l.cClair [231. between world-sheet and 
space-time statistics and BRST inv:lriaqcc. Many of the results wc present have been 

obtained independently by other groups [3, 29. 301. 
The paper is organized as follows: in sect. 2. we introduce the calculus of forms 

and exterior derivatives on which our formalism rests. We will identify appropriate 
operators for each string as components of the BRST charge Q and use the rcl,ttion 
Q 2 = 0 to derive identities among these operators. This operator calcult~s generalizes 
that of ref. [7]. In sect. 3, we present the complete theory of free open bosonic strings 
[7-91 in a simplified formulation discovered independently by Restuccia and Taylor 
[31. Witten [181. Ramond [141. and Neveu, Nicolai, and West [151. We display the 
action of this theory and discuss the gauge-fixing in a manner conducive to 
generalization. In sects. 4 and 5, we generalize this construction to all other known 
string theories, treating first theories of bosons and then theories of fermions. 

2. The string exterior derivative and the BRST charge 

In this section, we will set up our conventions for discussing string forms and 
differential operators. Essentially, this formalism works by considering the ghosts of 

° ( )ogur i  ha.', claimed to have found thi~ connection for the open Ramond ~tring [2,% 
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the first-quantized string theory as differentials, a point of view advocated in a more 
general setting by Baulieu and Thierry-Mieg [32]. Our notation will generally follow 
the notation for the ghosts of string theories presented in ref. [31]. Note that our 
conventions here differ somewhat from those of ref. [7] and, in fact, serve to 
simplify some of the identities given there. 

The general string fields which we will use in this paper will be functions of the 
string coordinates x"(ty) and the reparametrizations ghosts b(o) ,c(o) .  In the 
covariant superstring theories, we need also the supersymmetric partners of these 
objects, the fermionic coordinates ff"(o ) and the superconformal ghosts fl( o ), y(o ). 
In general, we will work with the normal mode creation and annihilation operators 
associated with these fields. It is useful to group these operators into supersymmetry 
multiplets. Letting a ,  ~ represent the normal mode operators for the field x ~', we may 
group together: 

= ,L", ) • 

B ,  = (&,. K ) ,  

We will refer to tile first member of each pair as hosonic and tile second as 
fermionic. The index N runs over the appropriate set of normal m o d e s -  e.g. 
integers for the bosonie open string variables, or left-and right-moving integers for 
hosonic closed string variables. The notation h is intended to remind the reader that 
tl,c bosonic and fermionic variables may run over different sets, as happens in the 
Neveu-Schwarz string. We will need the notation: 

( - 1 )M.v -.- { +- 11" otherwiseif M and N are fermionic (2.2) 

We assign the commutation relations of the operators (2.1) as follows: 

p. v AMAN ( -  I)AINa" a~' = ",V"M ~ " $ (  M + N ), (2.3) 

B,,C N + ( -  I ) MN CNBM--- 8( M + N ). (2.4) 

These relations are preserved by the hermitian conjugation (M ¢~ 0) 

( a , , ) * = n  , ,  ( c M ) * = ( - I ) " ' c  - , ' .  (2.5) 

In these conventions, the A~I are real- or Grassmann-valued operators, the creation 
parts (the M < 0 components) of B,v and C M are real- or Grassmann-valued 
differentials, and the annihilation parts (M > 0) of B M and C '*t are operators which 
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remove these differentials. The fermionic components  of  A",~ then commute  with the 

bosonic  componen t s  of  B u and Cv- It is possible, by a Klein transformation,  to 

redefine b. c. /3. and ~, so that b and c behave as Grassmann-valued operators and 

fl and 7' as real-valued operators:  that is the formulation of the theory chosen in ref. 

[311. 
We now define a string differential form as an object containing a product  of 

string differentials. To be more specific, define a vacuum state [0) such that 

,4,~, 10) = 0. B,,  10) = 0.  C "10) = 0.  (2.6) 

for M > 0. and such that 10) has no dependence on the zero modes of the coordinate 

or  ghost  operators*.  (We will later discuss a more complete vacuum I ~)  which 

includes this dependence.) Then. keeping tile restriction that integers M. N take 

only positive values, we can represent a string differential form as a state in the 

Fock space built on 10): 

I,~) = c ' , . . . .  c ' ,~ , ,  .../~.,,.,~[ A 1 '"  "',, , ,10).  (,.7)_ 

O[A]W' may be expanded in a sum of local fields times products  of A;' %1 
creat ion operators.  We ,,'ill refer to a state with a B ' s  and /, (".s as an ('/.)-form. I t  

,,,,ill be useful to focus on the difference between h and a. the difference, that is. 

bct~veen the number  of ghosts and antighosts. We will label a string form with 

(h - a )  = g as a g-form and refer to g as the ghost numher. 
Since we have identified differentials with ghost operators,  the BRST charge Q 

takes the form of ,m exterior differential operator.  Then tile central identity Q2 = 0 
can be recast as an identity, or as a set of identities, defining tile cohomology of 

string exterior derivatives. Let us now work out these Mentities explicitly for tile 

,,'vrious string theories. 
For any string theory, the BRST charge can be written in the following form: Let 

the L v be the generators of  the appropriate reparametrization algebra - the Virasoro. 

Neveu-Schwarz,  or Ramond algebra [33] - and write this algebra as 

[ L , , .  g , .  ] ,  = t~,,.,,~t.~ + ~8( M + S )1:,, .  (2.S 

where I:~ / is the central charge. Let L.,, = L . , , -  8v..l, where / =  (1, ~,0) for bosonic. 

Nevcu-Schwarz,  and Ramond strings, respectively. Then 

Q = C '~"i.,v + l .uh:C sC /BK: (2.9) 

° The state labeled ]O) in ref. [3L] differs fronl this oa¢ b3 including dcpcmlence on the zero mode. and 
,.hift,, arc" nccc.,,.,,ary to make the slate S[.(2. R I - invar iant .  It is ~,ho~.'n there duit these .,,biffs account  
for  the ~,hift / o f  /.,, given below cq  (2.,~) 
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satisfies Q:  = 0 in the critical dimensionality. The form (2.9) is precisely that given 
by Kato and Ogawa [21 for the bosonic string. The BRST charge for the fermionic 
string, found by Friedan. Martinec. and Shenker [35] and discussed more recently 
by a number of authors [23.25.27.34]. can be readily cast into this form. The critical 
dimensionality is required in order that terms in the square of the second term of 
(2.9) with two contractions can cancel terms in the square of the first term arising 
from the central charge. All other terms in Q- ' - -0  vanish by virtue of the Jacobi 
identities of the reparametrization algebra. 

Let us now decompose Q into terms with distinct action on forms. In addition. 
we should extract terms in Q which depend explicitly on the ghost zero modes. 
which we have ignored up to now. For the bosonic open string, and for the 
Neveu-Schwarz string, the only ghost zero mode operators are b 0 and c °. When Q 
acts on a form Iff). every term in Q raises the ghost number g by l unit. However. 
the terms with explicit zero mode operators do not affect the total number of B v 
and C - 'v  operators in I'~), while the other terms may create an additional C -~  or 
destroy a B ,v. Let us, then, break Q into pieces as follows: 

Q = c " K  + d + ~ - 2~ b . .  (2.10) 

where d = C "eL N + • • • contains all terms which create a net C. 3 = C'VL _,v + • "" 

contains all terms which destroy a net B, and all zero modes operators are indicated 
explicitly. The action of d and ~$ on forms reproduces the definition of the string 
exterior derivatives given in ref. [71, up to some overall minus signs (which are 
simply a matter of conventk)n). The operators K at'td U, may be evaluated from 
(2.9). K is given by 

K ~  t . , , - t + ~  ,~. ( 2 . i t )  

where ~V'= M ( C - ' ~ t B M  + B M ( - l ) ' l t C  '~t) is the sum of the indices of the differen- 
tials in Iq')- This is precisely the kinetic energy operator of ref. [7]. II is given by 

where 

= ~j~, , ,C ,~1( _ ! )~ 'C '~ (2.12) 

M, M bosonic (2.13) 
~M,~ = 8~f..v 1, M fermionic " 

This differs from the definition of 1~ in ref. [7] by signs and a normalization factor. 
Using (2.5), one can see that d t ~- 8, and that K and U are self-adjoint. 

Now we have defined the basic operators of the bosonic and Neveu-Schwarz 
string theories. Since these operators appear as components of Q, they will obey 
identities which follow from the relation Q- '= 0. To find these relations, square 
(2.10), separ:,te the result into terms which create a fixed numhcr of C's  and destroy 
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a fixed number  of B's. and set each of these terms equal to zero. From the terms 
which create two C's and those which destroy two B's. we find: 

d" =$:  =O. (2.14) 

The term which preserves the number of the various differentials and contains no 
zero mode operators gives 

(d~ + &l)  = 2tt" 1~. (2A5) 

Eqs. (2.14) and (2.15) are the fundamental relations for string differential operators 

applied in ref. [71. The remaining pieces of the identity Q" = 0 imply that U and K 
commute  with d and & and with one another. 

We note parenthetically that the index-raising operator of ref. [7]. written in this 

new notation, takes the form 

= T1 ~t~B it fl~., (2.16) 

where r / v v =  (r/~l~.) t. t} can be used to invert II by virtue of the relation 

[11,111=(" " f l , , , - B  . , , ( - l ) M ( ' ~ ' = g .  (2.17) 

In the Ranlond theory, the fcrmionic ghosts fl and y arc also intcger-modcd, so 

the BRST charge contains two new zero mode operators/'Jo and "t". Let us write the 
decomposit ion of Q in this case as follows: 

Q = ( ' K  + y " F +  d + 8 -  2g I , . -  2J, fl,, + (y.)"/, , , .  (2.18) 

The separation between d and ~ is defined just :ts bcforc, and K and II arc again 
given by (2.11) and (2.12). (2.18) also contains the Grassmarm operators 

r =  t.;, " n , ,  - . (2 .19)  

where the bar on an index changes it from bosonic to fermionic or vice versa, arid 

where 

9 A/ bosonic 
" '  = - "  (2.20) 

f .~7 ~, M, M fcrmionic " 

J, = ~MC "'C '~. (2.21) 

F is the gcncraliz:ltion of the Dirac-Ramond operator to the space of string forms: 

one may easily check that 

F 2 = K.  (2.22) 
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Writing out the square of (2.18) and equating it to zero term by term yields a 
myriad of relations among the various operators we have introduced. One of these 

relations identifies ], : 

2J, = IF,  1~1: (2.23) 

others imply that K, F and II commute with d and 8, and that g = F 2 commutes 
with lI. Finally, one finds as before 

d 2 = 8 2 = 0, (2.24) 

and. making use of (2.23) and (2.22). 

(d ,+Sd)  =r ( rU  + r ) .  (2.25) 

Note that the two factors on the right-hand side of (2.25) commute with one 
another. 

3, The Olnm Imsonic string 

The operators defined in tile previous section provide the basic components 
needed to build gauge-invariant free string actions, as has been shown already in rcf. 
[71. Recently. however, a form of the open bosonic string theory considerably 
simpler than the original formt, lation of ref. [7-91 has been discovered by Restuccia 
and Taylor [31, Witten [181, Ramond [141, Nevcu, Nicolai. ;.rod West [151, Aratyn 
and Zimermann [271 ;.in*,[ Baulieu and Ouvry [40]. It is most convenient to take this 
formulation as our starting point for a construction of the other free string theories. 
In this section, then, we will review this formulation and derive some of its 
properties. 

In its simplified form. the gauge-invariant open-string action can be written as an 
expectation value of the corresponding BRST charge Q. To describe this construc- 
tion, we must first adjoin to I 0) a wave function for the ghost zero mode. Define, 
then, 

112) =10) ®1~). (3.1) 

where I ~) is the zero mode wave function obeying bol~0) -- 0. 112) has the properties 
of the open string ground state, the tachyon. It is useful to recall that, in the 
covariant quantization of ref. [31], this state has the properties: 

(1~{{2) = 0 ,  (f21c°ll2) = 1. (3.2) 

In this paper, we will simply assume (3.2) as our starting point. 



78 1". Bahias et al. / Free .~trtn~ theorte~ 

Now let Iq~) be an arbi t ra~ 0-form on this extended space: 

I~ )  = (1~) + c')l))))[ '# ), (3.3) 

where ¢, is a 0-form and r) is a ( - l ) - f o r m  of the structure (2.7). The free open 
bosonic string action can then be written as 

s = - ! ( ' / ' I Q I ~ ' ) .  (3.4) 

This action has the obvious gauge invariance: 

,~,.I ~ ) = Q I E ) .  (35)  

where E is an arbitrary ( - l)-form. To understand the structure of this transforma- 
tion a bit better, let us write 

I E)  = (IF) + c"10)) l~) .  (3.6) 

Then the gauge transformation is 

6~,/ ,= ( d +  ~S)~'- 211 0, 

~t..rl = K e  - ( d + c5 ) 0 .  (3.7) 

The v transformation of ~ displayed hcrc is the gauge symmetry identified in refs. 

17 ~91. 
The action presented in rcfs. [7--91 may bc obt:fincd from (3.4) by gauge-fixing 

some of the auxiliary fields which this action contains. Let us first expand (3.4) in 
the component forms ,#, 7t. This yields: 

S = - ~(,/,Igl,#) + ("71 li 10) 

-' ( ~ 1 , / +  ~10) - ~( -,_ ol,/+ ,~1~) • ( 3 . s )  

To go further, we should recall from rcf. [71 the conccpt of a maxmudlv 
svmmetrized form. Consider the coefficient ~s~. ~tx, ~ as a tensor with upper 
and lower indices, separately antisymmetrizcd. Imagine lowering the upper indices 
using the metric (2.13) and then projecting the full set of indices onto combinations 
of definite symmetry. Because of the separate antisymmetrization, one may find 
only representations of the permutation symmetry corresponding to Young tableaux 
with two columns. The maximally symmetrized combination is defined to be the 
combination in which the second column is its long as possible, that is, in which as 
many lower indices as possible are symmctrizcd with upper indices, and vice vcrsa. 
In a 0-form such as q~, with equal numbers of upper and lower indices, the 
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maximally symmetrized component is that in which every upper index is symme- 
trized with a lower index in the process of Young symmetrization. In general. 
maximally symmetrized forms with g > 0 are annihilated by i1. 

Let us. then. partially gauge-fix (3.8) by imposing II IO)=0 .  The resulting 
Faddeev-Popov determinant is nondynamical. Since 11 commutes with d and 8. we 
can see that (d  + ~1~) is a maximally symmetrized l-form: thus. only the maximally 
symmetrized component of 117) couples to the remaining components of I~)- Since 
IO) is in any event nondynamical, we can freely drop (or integrate out) the other 
components,  leaving only the maximally symmetrized one. This component is 
annihilated by ll: thus (2.17) implies I1 If 171)= 17/). Using this relation to integrate 
out this last piece of Irl). we find at last 

S = - ~(q,I r lq , )  + .~(q,l(d + ,5)11 (d  + ~)1¢,) • (3.9) 

which is the action of ref. [7]. written in our new conventions. Our gauge-fixing left 
the residual gauge invariance: 

,L I~,) = ( a +  ~)1~). (3.10) 

where I t) is restricted to be maximally symmctrized: this is precisely the gauge 
invariance of refs. [7-9 I. 

In principle, one could now complete the gauge-fixing of this action along the line 
given in ref. [71, for the covariant Feynman-Siegel gauge, or ref. [12 I. for the 
light-cone gattge. However. it is much simpler to begin again from (3.4). 

"f'o reach the Feynman-Siegel gauge, we use the gauge-fixing condition 

h,,I,t,) =In) --- 0. (3.l l) 

The associated Faddeev-Popov ghost action is 

S~: = ( EIl~t:.bo,lJ ) = - ( ,~lb,,QI f ). (3.12) 

In this expression, the ghost E is a general ( - l)-form, and the antighost is a general 
2-form. In a manner familiar from the analysis of refs. [7-9], this ghost action has in 
turn its own gauge invariances which require the introduction of higher-order 
ghosts. In particular, (3.12) is clearly invariant to the motion 

8 d E ) = Q I G ) ,  8~;IE) = 0, (3.13) 

reflecting the fact that a gauge parameter of the form IE)-~ QI G) leaves I~) 
invariant. Note that only the c ° component of the antighost survives in (3.12), and 
that this component  has no corresponding gauge transformation. In addition, since 
every component  of 117) transforms under some gauge motion, fixing the functional 
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integral with a 8(I)/)) produces no hidden ghosts. These two statements have 
analogues at all higher levels. The fully gauge-fixed action is, then, 

S - -  - ~(¢)1Q1¢')  - ( f f . l b o Q I f )  - ( G I b ( , Q I G )  - ( E ' I b , ) I E ' )  . . . .  . (3 .14)  

where I~),  IE)  . . . . .  are constrained to be annihilated by b~). if we decompose each 
field into components ,  according to (3.3), (3.6), 

IG)  = (IY) + c ') l~'))l ,~).  (3 .15)  

etc., (3.14) takes the form 

S = - ~(q)lKlq)) - (OIKle) - (~IKI ' r)  - (t~'tKl~") . . . .  • (3.16) 

In this expression, I(t') is a general 0-form, I ~) is a general 1-form, le) is a general 
( - 1 ) - f o r m ,  etc. The action (3.16) is thus exactly the covariant-gauge open string 
action (Feynman-Siegel  gauge) derived by Siegel ill rcf. [1 l. 

So that tile reader can compare  this analysis to the more intricate gauge-fixing 
procedure  of ref. [7], let us give a second gauge-fixing prescription closer to the 
spirit of  that analysis. As we noted above, tile non-maximally symmctrizcd compo-  
nents of J)l) in eq. (3.8) arc nondynamical  and do not couplc to [q,); thus they may 
be discarded. This allows us to use the ahcrnative gauge-fixing condition of setting 
to zero [l Iq)) anti tile maximally symmctrized component  of ]r)). The reader may 
verify that this leads to a Faddccv-Popov action for le), IO), Ik), and ](1) which 
reproduces tile form of (3.8), :rod to thc appearance of hidden ghosts. Cont inuing 
this procedure,  following the logic of rcf. [7], one also eventually arrives at the 
action (3.16). 

Let us now discuss the gauge-fixing of (3.4) tO the light-cone gauge. The action of 
the open string in the light-cone gauge is given by 

S =  - ~(~.rlKI~T). (3 .17)  

where "/'-r contains only transverse states. To characterize these states, let us denote  
tile l ight-cone components  of A~ by 

K u = A~,, M,~ = A.,,, . (3.18) 

With this notation,  the transverse states are those which include no K, M,  B, or C 
creat ion operators  acting on 10). We must, then, show that all states other  than the 
transverse states may be removed from (3.4) by a choice of gauge. To do this, we 
will use a count ing argument similar in form to the one developed in ref. [12] to 
discuss the gauge fixing of the action of refs. [7-9]. (Tile reader who finds this 
argument  a bit sketchy should consult rcf. [12] for a more discursive presentation.) 



7". Banl, set al. / Free string theorws 

Represent the classes of states we must gauge away as: 

Kt 'CqM'B~[O),  

81 

(3.19) 

where p, q, r, s denote the number of creation operators of the given type which act 
on 10), p + q + r +  s--.,,¢'> 0. Since at any given mass level, ,,4/. has a maximum 
value, we can confine our attention to states with a fixed value of ¢¢', beginning at 
the maximum, and sequentially remove all of these states from (3.4). We can remove 
these fields without generating Faddeev-Popov determinants if we shift by terms in 
(3.7) which involve no factors of p- .  We will, in fact, use only terms in (3.7) 
involving (d + ~). We will only need to consider the term in d of the form 

d =  C - ~ . p *  M~ + . . .  (3.20) 

and the term in 8 of the form 

~ = C ~ ¢ . p ' M _ ~ ¢ +  . - ,  ; (3.21) 

we may imagine, then, that d simply converts a K to a C and # simply converts a B 
to all M. 

As a simple illustration of the use of these rules, let us disctiss the counting of 
gauge parameters for states with ,A/'-- i and 2. For states with ,,4/'-- i, the only gauge 
parameters are of the form BI0). These suffice to gauge away all states in Iq') of the 
form M[0). The remaining states in I6) which we need to eliminate arc those of the 
form KI0). "l'hese states appear together with the states MI0) in the first term of 
(3.8), but this term has been removed by our choice of gauge. The only re,u:tining 
place that the states KI0 ) appear is in the cross terms of (3.8); since d converts a K 
to it C, this state can overlap with states B[0) in IT/). This matrix element uses only 
the term (3.20) in d, which contains no p- .  Thus, the states KI0) act as Lagrange 
muhipliers to eliminate the states BI0) in 17/). Thus, we have exactly the gauge 
freedom we require to eliminate all states with .,4/'= 1. 

The analogous argument for ../I/'= 2 illustrates some complications found at higher 
levels. The states in Iqb) and I'q) which must be eliminated have the form 

K210), KMI0), M"I0),  KBI0), MBI0), BCI0). (3.22) 

The gauge parameters in le) and 10) have the form 

KBIO), MBIO),  B-'IO). (3.23) 

In addition, we must consider the gauge parameters of the gauge parameters, which 
characterize the redundancies in (3.23). These are states in [G), of the form 

B:IO). (3.24) 
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It is useful to think of these multiplets of states as components of tensors whose 
indices run over all positive integers. The commutat ion relations of these operators 
place restrictions on these tensors: Bzl0) is antisymmetric in its indices, and M-'I0) 
is symmetric.  Thus. we can use (3.241 to gauge away the antisymmetric part of 

MBIO) in (3.23): the remaining symmetric part of this muhiplet can gauge away the 

states M-'I0) is (3.22). KBIO) in (3.23) can gauge away KMIO), and B'-tO) in (3.23) 
can gauge away the antisymmetric part of MBI0) is (3.22). The remaining states in 
(3.22) are either Lagrange multipliers or are eliminated bv Lagrange multipliers: 

K Zl0) eliminates the symmetric part of MBI0). and KBIO) eliminates BCI0). 
Let us now generalize this counting argument to all levels. As a first step. we must 

reduce the full set of gauge parameters in I E)  to those parameters which cannot be 

gauged away by higher-level gauge transformations. Consider. for example, the 
components  of ]E) of the form 

Ke('~M r IB' ~ ti0). (3.25) 

Some of these components can be removed by acting with (5 on conlponents of t( ;)  
~1' the form KeCUM'-ZB"ZlO).  These components have their own rcdtmdancics. 
ct,rrcsponding to the states KeC'~M ~ ~B~*~I0). and so forth. The nonredundant 
components  of I E ) c a n  be identified .'is follow, s: Operators ~,1 ~ form an r-index 
sytumctric tensor with indices in the set of values of N ( N > 0). Similarly, operators 

B'  I'ornl an s-index antisymmetric tensor. It is convenient to project states with both 
,'~! "s ;and B's  onto states of definite (mixed) permutation symmetry, labeled by 
Young tableaux. For example, M4B~[O) belongs to 

Since we will be seeing many products of this fornl, let us refer to a Young tableau 
or r synlnlctrizcd boxes as { r }, a tableau of s antisynlrnctrizcd boxcs as [s], and :~ 
tableau with a row of r boxes above a column of s boxes as (r /s ) .  In this I:tnguagc, 

(3.26) reads 

{4} x [31 = (5 /2 )  + ( 4 / 3 ) .  (3.27) 

One can then see that states (3.25) in IE) contain M ' s  ilnd B's  in the representation 
( r / s )  + ( ( r -  I ) / ( s  + 1)). The i r  r e d u n d a n c i c s  beh)ng to ( ( r -  1 ) /  
(s + 1))+ ( ( r - 2 ) / ( s  + 2)). The rcdund:mcies of the redundancies belong to ( ( r -  
2 ) / ( s  + 2)) + ( ( r -  3) / (s  + 3)). Continuing until one runs out of M's ,  and then 
resolving the net effect of these parameters, one finds that the nonrcdundant 
component  of the gauge parameters in (3.25) have M ' s  and B's combined to the 
symmetry ( r / s  ). 

We will act on I(b) with these symmetry motions in a different way depending t)n 
whether or not r > p. If r >p,  act 8 on the nonredundant components of (3.25) to 
rcmovc statcs of the form (3.19). The piece of (3.19) which rein:fins has M ' s  and 
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B's  symmetrized according to ( ( r +  l ) / ( s - 1 ) ) ,  so that the full set of operators 

displayed has the character 

{ p} x [q] x ( (r+ 1 ) / ( s -  1)). (3.28) 

If r<p, decompose {p} x [ q ] - - - , ( ( p +  1 ) / ( q - 1 ) ) + ( p / q ) .  Act 8 on the ( ( p +  
l ) / ( q -  1)) component to remove states of the form K,"CqM"BsIO). Act d on the 
(p/q) component,  to remove states of the form KP-tCq+ tM"-tB" +tl0 ). The effect 
of this transformation is to reduce each group of states KPCqM"B"[O) with r < p  to 
the structure: 

( p / q ) × ( ( r + l ) / ( s - l ) ) + ( p / q ) x ( r / s ) = ( p / q ) ×  {r} × I s ] .  (3.29) 

Now let us examine the form of (3.4) that we have obtained. We have gauged 
away all states with q = s = 0, r > p. Thus, the states with q- -s - - -0 ,  r < p cannot 
appear in the first, diagonal term of (3.8). They can only appear in the off-diagonal 
terms involving ( d + 6 ) ,  using a d to convert it to the structure KP-tCtM'IO). 
which has a nonzero matrix element with states of the form K"Me-tBtlO). As in 

our simple examples above, the terms with q = s = 0 act as Lagrange multipliers 
which eliminate terms with s = i. After the gauge transformations described in the 
previous paragraph, both sets of states have been reduced to the multiplet (p /O)  x 
{ r }, so all of the remaining states of the form (3.19) with q -- 0, s -'- 1. and r > p are 
eliminated. Now the states with q - -0 ,  s =  I, r<p appear only as Lagrange 
multipliers for the states with q -  1, s = 1, r > p. Comparing the representations 
into which these have been projected, we see that all of these states are eliminated. 
The pattern continues until all components of [c/J) have either been removed or have 
acted as Lagrange multipliers to remove others. 

In comparing this argument to that of ref. [12], the reader should note that here 
we find no nondynamical component fields in addition to the transverse fields. All 
unwanted components of I~/)) disappear. It is never necessary to use the fact that the 
ITI) components  are purely auxiliary. This last feature is essential for generalizing 
this argument to the theories we will consider in sect. 5. 

4. More haJsonic strings 

Now that we have discussed the simple example of the open bosonic string in a 
very thorough fashion, we are ready to construct the free field actions corresponding 
to the other known string theories. We will see that all of these actions can be 
written as expressions of the same structure as the open string action (3.4), In 
general, the operator Q will be replaced by another operator Q which is not the 
BRST charge but which does satisfy Q-'---0 by virtue of the operator identities of 
sect. 2. The correspondence among these actions will be sufficiently strong that the 
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proofs that each action leads to the correct covariant and light-cone gauge-fixed 
theory will be essentially identical to those given in sect. 3 for the open bosonic 
string. 

We begin with the closed bosonic string. In this case, the Hilbert space of 
first-quantized string states factors into a product of two spaces, one containing 
left-moving and one containing right-moving string modes,  each isomorphic to the 
open-string Hilbert space (excluding zero modes) and each possessing its own 
Virasoro algebra. We will denote operators acting on these spaces as unbarred and 
barred, respectively. The BRST charge on the full space is given by (Q + Q), where 
Q has the structure of an open-string BRST charge (eq. (2.10)). 

We will write the action for the closed string in terms of string forms satisfying 
the condition: 

( X -  X)l,t,) = 0 .  (4.1) 

Correspondingly. we will reduce the space of ghost zero modes from that spanned 
by the operators b 0. c °. b0, 30 to that spanned by two formal operators satisfying 

- ") - ) 2  ( b o ) ' = ( c ' )  = 0 ,  {; . ,go}_._ I. (4.2) 

In principle, a gauge-invariant action might enforce the condition (4.1). In the 
gat, ge-fixcd action of rcf. [I], the coefficients of the extra ghost zero modes arc 
Lagrange multiplier fields which impose (4.1), In this paper, however, we content 
ourselves with imposing (4.1) from outside and use only the operators (4.2). 

To construct ;in action, begin by defining I,~,) to be a state such that 

/,,,1,~) =0.  (,~17()1,~) = 1, (4.3) 

following the properties of tile ghost zero mode subspace of tile open string, 
described at the beginning of sect. 3. Define 

0 = ? ' ) K + d + 8 + d + 8 - 2 b o ( t l  +~-) .  (4.4) 

This equation is symmetric between left- and right-movers and satisfies 0 2= 0 on 
states satisfying (4.1). Finally. let 

Iq,) = (1¢) + z:"ln))l~).  (4..5) 

which q) a 0-form and r/ a ( - 1)-form. The closed-string action then can be written 
a s 7  

S =  - ~(¢'101q').  (4.6) 

This action has the gauge invariance 81,.[q~) -- QIE), which, in particular, includes 
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the transformations 8EI~)= (d + 8)~ which correspond to the gauge symmetries of 
the closed string actions discussed in refs. [71 and [81. The gauge-fixing can clearly 
be done exactly as for the open string, after enlarging the index space of N to run 
over all unbarred and barred integers. 

The Neveu-Schwarz open string action can be constructed in a similar fashion. 
Here we may use precisely the ghost zero mode operators c o and b0; the appropriate 
ghost vacuum again obeys (3.2). The index N runs over bosonie integer and 
fermionic half-integer values. However, we have already made clear in sect. 2 that 
our fundamental operator relations (2.14) and (2.15) are left unchanged by this 
modification. Thus, we may take over the formalism of the bosonic open string 
directly. Defining I~) as in (3.3), the free Neveu-Schwarz string action is 

S = - ~ ( ~ l O l ~ ) ,  (4.7) 

where Q is now the BRST charge of the Neveu-Schwarz model. The gauge-fixing 
can again be done just as for the open string, the only change being that we must 
utilize, in the descent to the light-cone gauge, graded Young symmetrization of 
tensors. 

It is important to note that the Neveu-Schwarz string forms, as we have described 
them so far, contain as expansion coefficients tensor fields of different statistics. For 
example, the general form I'~) has the expansion 

I~) = {X(x) -id/~-112A,(x) - i[J_ i/,./:(x) - i ? - i l 2e (x )  

_ ia~_ tV( x ) _ tg,~_ i/2,/,~_ i/2T~,(x ) + . . .  }10) " (4.8) 

The field A~(x) is the vector gauge field of the Neveu-Schwarz theory; we would 
like to make this a Bose field. Then I¢) must be a Grassmann-valued form. This 
makes c(x)  and ?(x) Grassmann fields, as is correct for the ghost and antighost of 
A~,. But the integer-spin physical fields X(x),  V~(x), T~,(x) are also assigned Grass- 
mann values. In general, the fields with the wrong statistics are those whose 
coefficients contain an even number of the fermionic creation operators 
~_ ~,, fl_ ~,, 1/-~'. These fields may be removed by projecting all string forms onto their 
components with 

(7--- (-I) :'+ l = I, (4.9) 

where .A/" F is the total number of fermion creation operators included in that state. 
This G is of course just the projection operator of Gliozzi, Scherk, and Olive [361 
needed to define the supersymmetric string theory! The remarkable correlation 
between two-dimensional and space-time statistics first appeared in Siegei's papers 
[I] on the gauge-fixed bosonic string theory. The observation that the GSO projec- 
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tion must be made in order to preserve the correct statistics of fields in the 
Neveu-Schwarz-Ramond theory has also been made by LeClair [23]. 

The Neveu-Schwarz-Ramond theory contains three types of closed strings, those 
with Neveu-Schwarz boundary conditions for both left- and right-movers, those 
with Ramond boundary conditions for one set of modes, and those with Ramond 
boundary conditions for both left- and right-moving modes. The sectors of the first 
and third type lead to bosonic string states: however, it is convenient to treat the 
third type together with the fermionic strings. We are ready, though, to write the 
action for the first sector. In fact, this action is exactly (4.6). with the bosonic string 
operators d. & K, 1~ replaced by their Neveu-Schwarz counterparts and with a GSO 
projection applied independently to the left-and right-moving components of each 
form. This projection does not affect the proof of gauge invariance or the process of 
gauge-fixing, both of which proceed exactly as above. By replacing only the 
left-moving operators by Neveu-Schwarz operators, while keeping the right-moving 
operators those of the bosonic string, we find a free field action for the bosonic 
states of the heterotic string [37 I. 

5. Fermionic strings 

When we attempt to extend tile analysis of tile previous section to the Ranlond 
string, wc find two complications. Tile first is that the string action must be 
converted from a second-order fornl involving the kinetic operator K -  (it'-+~/[2) 
to a first-order lagrangian involving F -  (i¢~ +./[). The second is that the supercon- 
formal ghosts/J and ~, now halve zero nlodes which must bc taken into account. Wc 
will see that these two problems can be deah with in a simple way by using thc same 
trick that we applied to the bosonic closed string, that of ignoring completely the 
space of the additional zero modes attad defining an appropriate auxiliary charge Q. 
which satisfies Q- '= 0 by virtue of the identities of sect. 2. In the case of the 
fcrmionic string, however it is known that the space of superconformal ghost zero 
modes is very large, including states with all possible values of the "'Bose-sea'" 
charge of ref. [31]. It is likely, then, that tile Ramond theory we present here is 
simply a projection down from a much richer formal structure. 

We can build the 0 of the Ramond string by using abstract operators t~,~ and ?c~ 
with the properties (4.2), together with a vacuum state ]~) satisfying (4.3). Let us 
define 

O = ? " ~ ' + ( - l ) ' ( d + 8 ) - i , , , ( ~ ' ~  + ~ ' ) ,  (5.1) 

where .A'" v is the fermion counting operator defined below (4.9). With this factor 
included, ~) is a Grassmann-valued differential operators. Q ' - = 0  follows from 
(2.24). (2.25). 
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The basic fields of the Ramond theory are string forms Ih) carrying 10-dimen- 
sional fermion indices. The Dirac matrices which act on these indices are the zero 
modes of ff~'(o): 

~ =  ~ ; r . :  . (5.2) 

Since application of F ~' flips chirality, it is appropriate to consider the fermion 
parity ( - 1 )  -*'~+ l of a 10-dimensional spinor to be given by its chirality F n. This 
assignment becomes explicit if the spinor representation of 0(9, 1) is represented by 
states formed as products of ~k~'s acting on a vacuum state. We must also require 
the zero mode operators b0, ?o to have odd GSO parity. Thus 

a = [~,,, ~° ] .  r " .  ( -  i V  ~ . (5.3) 

where ,g)" F refers to nonzero modes only. With this definition. [G, Q1 = 0. As in the 
Neveu-Schwarz case, a GSO projection must be made to insure that all component 
fields have the correct statistics. The Ramond string fields will have Grassmann 
character if they satisfy (4.9). 

The properties of our basic operators under hermitian conjugation are the 
following: l-~,t ~ _ i ,oi ,~I-O; F t = _ I ,~F  I,~; d ~ = l-O~l,tl: ~ t  = _ l , O ~ F o ,  it is use- 
ful to define (~1-'-(~'1/'°; the Dirac matrix will compensate the Grassmann char- 
acter of O in the Ramond theory action. 

To complete our construction, we introduce 

14) = (IX) + ~"1~))1~), (5.4) 

with ~. a 0-form of chirality i , t l=  + 1 and ~ a G-- +1 ( - l ) - fo rm.  Then the 
Ramond action can be written: 

s= -~(SIOIA) .  (5.5) 

This action has the gauge invariance 8~.IA ) = QIE), where E is now a spinor-valued 
( - l ) - f o r m .  By directly applying the steps leading from (3.11) to (3.14) this action 
can be gauge-fixed to the Feynman-Siegel gauge 

S~s = - ~.t, i (XIFIX) ,  (5.6) 

where now Ih) is a general G = + 1 form in the space of nonzero modes. Using the 
arguments given for the descent to the light-cone gauge, (5.6) can also be gauge-fixed 
to the form 

S =  - ~'~-.,~ i(XTI Fib.r) ,  (5.7) 
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where IX T) is a transverse state. From this formula, one can then easily reach the 
light-cone gauge action by integrating out the components of [Xr) satisfying 
I '~ IXT)=0 .  

Written in components (after performing the zero mode algebra), the action (5.7) 
takes the form 

/r~. 
S = -V 5 ,{(XIFIX) + (#IF 1~ + ll FI~) 

- ( X I d +  81~) - ( # ld+  6IX)}. (5 s)  

Note that in this expression, unlike the bosonic string actions, the auxiliary field I,~) 
has become dynamical. This turns out to have no effect on the gauge-fixing of the 
action by the methods of sect. 3. our arguments there did not make use of the 
explicit form of the term quadratic in the auxiliary field. However, it is interesting to 
note that this fact does play a role in more conventional, component-by-component 
covariant gauge-fixing. As a concrete example, let us consider the first excited mass 
level. The components of I~.) at this level are the vector-spinor coefficients of the 
states c~ t 10) and ~ '  tl0); these have opposite chirality and thus can form a massive 
spin- ~ field. The conventional covariant quantization of this field would bring in 3 
massive spin-~ ghosts, the third being the Niclsen-Kallosh ghost [38,39 I. The 
Fcynman-Sicgcl gauge action for the Ramond string contains only two massive 
ghosts. But (5.8) also contains, at this level, two dynamical components of I~J), 
corresponding to the states h t l 0) and /3 t l0); these have opposite chirality and 
combine to form a massive spin-~ fermion with normal statistics. This fcrmion 
preciscly compensates the Niclscn-Kallosh ghost. 

The fcrmionic closed string theories can bc constructed along the same basic 
lines. The closcd strings with Ramond left-movers and Neveu-Schwarz right-movers 
can be written for string forms satisfying the constraint (4.1). Define 

0 = ? " k ' +  ( - l ) " ' ( d + 8 + d + 8 ) - b , , ( F U  + I~F+FII + [IF). (5.9) 

Then the appropriate action is given by (5.7), where now [A) is a string form built 
on tile product space of left- and right-movers, GSO projected independently in 
each subspace. The fermionic heterotic string action is constructed in the same way, 
using the bosonic string operators to build the right-moving subspace, 

Finally, we turn to the closed superstring theory corresponding to Ramond 
boundary conditions for both left- and right-movers. In this sector, our simplistic 
treatment of the zero modes breaks down. We have been able to construct a 
quantum-mechanically complete theory, but this theory has two defects. First, it 
requires a constraint which, in a general frame, is dynamical. Second, it requires that 
part of the GSO projection be done after quantization rather than before. Despite 
these defects, we are encouraged to present this formulation because it does 
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generalize the formal structure we have set out for the other strings, and because it 
continues our formulation of the other closed superstrings in a suggestive pattern. 

The basic fields in this sector will be string fields carrying two Dirac indices and 
satisfying the condition 

( F -  ,~)l,O) = O. (5.10) 

Since F'- = K. this condition implies (4.1). However. while (4.1) is a purely algebraic 
condition, this condition contains time derivatives of Iw). Choose 

( ? = ~ ° + ( a + ~ + a + 8 ) - b o ( r ( r ~  + ~ r ) + r ( r ~  + u r ) ) .  (5.11) 

where Ix),?° satisfy (4.2) and have even GSO parity with respect to both the 
left-moving and the right-moving GSO operators G and (~. Define 

IB) = (IB) + ?"lp))l~).  (5.12) 

( BI  -- ( BI I"" I "'--S . (5.13) 

Then the gauge-invariant action for this sector may be written 

(5.14) 

I ll) should be restricted to have the correct statistics: G - G  = 1. llowcver, if we 
apply at this point the separate conditions G--- G = i. tile chirality conditions (.It) 
not match and (5.14) vanishes. Note that the closed superstring charges that we have 
defined (eqs. (4.4), (5.9), (5.11)) fall into a simple pattern. 

Despite the fact that the constraint (5.10) is dynamical in a general frame, we can 
quantize this system straightforwardly by observing that, in the light-cone frame, 
(5.10) becomes a set of nondynamical relations. To make this point clear, we will 
discuss in a very explicit way the quantization of the massless level of this string. 
This level contains antisymmetric tensor fields, and so one would suspect that it 
should have a gauge invariance. In our formulation, however, there is no gauge 
invariance; the required reduction of degrees of freedom is implemented by the 
dynamical constraint. (The constraint (5.10) looks suggestively like a gauge-fixing 
condition for a Duffin-Kemmer iagrangian.) The light-cone quantization of the 
remaining levels will then follow by analogous manipulations, after fixing of the 
light-cone gauge for the oscillators in the manner of sect. 3. 

Choose the following representation of the F )' matrices: 

( )  ( )  0 - 0 0 i'r~, 0 
r ' =  , J , r - =  , ~,ri= , (5.15) 

o i¢~ o o - i ~ ;  
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where ~',~ are a set of real symmetric Dirac matrics of 0(8). Express the massless 

level of I/3) as b =/3F°;  b transforms under Lorentz transformations like a Dirac 
matrix. The action (5.14), restricted to this level, takes the form 

s = ~ t r[ F ° g  F"#, l- ( 5.16 ) 

Decompose b in the basis of eq. (5.15), as follows: 

• ( 5 . 1 7 )  b =  b i  

On the massless level, F =  - ¢2-,0 ~' so (5.10) may be written: 

pn = -bp. (5.18) 

Let /3 = p'-¢~. Then the full content of (5.18) is expressed by the relations: 

vr2-p"b~,=-(-2~P+br-[[ ~,b l. 

~ i ,  ' t, , = (~- t, t, - ( / 3 .  t, , ) .  ( 5 .1< i t  

Use these equations to eliminate h ~ and h + in (5.16). Then h t may be seen to be 
auxiliary and can be integrated out. This reduces (5.16) to the form 

(5.2o) 

If one now imposes the chirality conditions on b which follow from G = G-= l, we 
are left with a theory of a double chiral 0(8) bispinor. This is tile correct physical 

content for the massless sector of the Ramond /Ran lond  closed string. 
To generalize this discussion to higher mass levels of tile string, we need two 

observations. First, the light-cone gauge-fixing procedure of sect. 3 still allows us to 
remove all states with longitudinal, time-like, and ghost excitations. Then tile 
quantization procedure reduces to the treatment of the explicit Dirac indices. On 
higher levels, (5.10) equates two massive Dirac operators. The mass terms always 
couple two different field components which have opposite chirality but the same 
GSO parity. Thus, each massive Dirac operator may be written as the action on a 
pair of Dirae spinors of the operator 

(i¢9 + Mid,t), (5.21) 

where I~, anticommutes with the U'. (If these massive equations follow by dimen- 
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sional reduction, in the manner suggested by Siegel and Zwiebach [8]. /~, = Ftt.) 
Then the analysis of the previous paragraph can be repeated for every massive level 
by treating the mass term in (5.21) as an extra component of the transverse 
momentum. This demonstration completes our formulation of free field theories. 
which can be explicitly gauge-fixed to the known physical spectra, for all of the 
known strings and superstrings. 

We are grateful to Charles Thorn and Edward Witten for many enlightening 
remarks. Special thanks go to Luca Mezincescu for pointing out an error in a 
previous version of the Ramond/Ramond closed string theory. T.B. thanks Hermann 
Nicolai and Pierre Ramond for informative discussions of their work. 

Note added in proof 

After this paper was submitted, several preprints have come to our attention 
which describe work closely related to ours [41-49]. 
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