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Covariant quantization of string theories is developed in the context of conformal field theory 
and the BRST quantization procedure. The BRST method is used to covariantly quantize 
superstrings, and in particular to construct the vertex operators for string emission as well as the 
supersymmetry charge. The calculation of string loop diagrams is sketched. We discuss how 
conformal methods can be used to study string compactification and dynamics. 

1. Introduction 

The  pas t  yea r  has seen the open ing  of a new era in the search for a fundamenta l  

phys ica l  theory .  In  the past ,  a t t empts  at unif ica t ion of  the forces of  na ture  have 

focussed  on  enlarging the symmet ry  group of  short  d is tance  physics  - large non-  

abe l i an  gauge  groups  [1], supe r symmet ry  [2] higher d imens ions  [3] etc. Dua l  str ing 

theor ies  [4] a re  a radical  step in this direct ion,  incorpora t ing  the in f in i te -d imens iona l  

a lgeb ra  of  two-d imens iona l  r eparamet r iza t ions  (and perhaps  affine Lie a lgebras  as 

well  [5]) in to  the picture.  This  vast  increase in symmet ry  is accompan ied  by 

c o r r e s p o n d i n g l y  severe res t r ic t ions  on the s t ructure  of  the theory.  NatUre seems to 

en joy  runn ing  on the verge of inconsis tency;  the more  poten t ia l  anomal ies  a theory  

has,  w i thou t  ac tua l ly  being anomalous ,  the closer it  seems to be to physical  reality.  
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Actually, local and global gauge and reparametrization anomalies are helpful in 
constraining the content of theories. The two-dimensional reparametrization group 
of string theories provides it with a rich structure of anomalies. One particularly 
important subgroup is that of conformal reparametrizations, the conformal group 
[6]. One may fix a covariant gauge condition upon quantization which leaves 
conformal transformations as a residual symmetry; this large remnant of coordinate 
invariance has proved an extremely useful tool in the analysis of string theories. In 
the days of hadronic dual models, conformal invariance was used as a consistency 
requirement [7]. It is now understood that avoidance of local and global conformal 
anomalies is responsible for the critical dimension d = 10 (or 26) [8, 9], spacetime 
supersymmetry [10], and restrictions on possible gauge groups [11,12]. The alterna- 
tive light-cone gauge quantization has proven to be extremely useful in initially 
formulating the theory [9] and carrying out basic calculations, but it is our belief that 
covariant methods will yield greater insight, especially in unravelling whatever 
nonlinear invariance underlies string theory. 

In its current state, string theory lacks an organizing principle. Historically, much 
of dual theory was worked out before a string interpretation was developed. The 
present state of the art consists of a prescription for computing string S-matrix 
elements about some fixed background; the deep connection between the string and 
the environment in which the string lives remains to be uncovered. Some idea unifies 
background and quantum fluctuations, combining the algebraic structure of the 
string vertex algebra with spacetime general coordinate and local gauge symmetry; 
conformal invariance seems to be the key component of that idea. 

In this work we shall undertake an exploration of the conformal structure of string 
theory using techniques in two-dimensional conformal field theory [13,14]. A rather 
brief description of this structure was set forth in a previous letter [15]; here we 
present the details of the formalism. Elements of the construction were worked out 
independently in [15a]. A great deal of the material covered here is scattered 
throughout the early literature on dual resonance models. We have endeavored to 
reference the work we are aware of, but our knowledge of history is incomplete. 
Those wishing to delve further into the literature should consult previous reviews [4]. 
The language of conformal field theory provides a concise statement of these 
previously known results as well as an indispensible tool in our further development 
of the covariant approach. 
showing how the structure of the string theory is built on its conformal properties. 
We review the general properties of two-dimensional conformally invariant field 
theories, indicating how the conformal algebra together with the operator product 
algebra of conformal fields determines all the correlation functions. We also quan- 
tize the Faddeev-Popov ghosts of the conformal gauge [8,16,17] and connect the 
conformal algebra with the BRST quantization method [18]. Our description of 
strings is first-quantized since we quantize the motion of single strings rather than 
fields of string. Sums over surfaces represent the Feynman rules for string theory. 
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The ghosts provide the appropriate compensating factors in loop graphs for the 
covariant gauge. They also clarify some aspects of the old operator formalism, such 
as the negative shift in the ground state energy which generates the tachyon. 

Sect. 3 is an exposition of superconformal field theory, i.e. 2d supersymmetric 
conformal field theory. Just as the algebra of conformal transformations is infinite- 
dimensional, conformal supersymmetry is likewise an infinite-dimensional algebra. 
In addition, it comes in two varieties [19-22, 62] because fermions may be double- 
valued on the string world sheet. The additional operators (called spin operators) 
which interchange periodic and antiperiodic 2d fermion boundary conditions [22, 22a] 
are an integral part of the construction of the fermionic string theory [14, 15]. We use 
them in sects. 4 and 5 to build the spacetime fermion vertex and the spacetime 
supersymmetry charge of the fermionic string. The Faddeev-Popov ghosts for local 
supersymmetry also enter into this construction in an essential way; without them, 
one could not make fermion vertices with the requisite conformal properties. In sect. 
4 we also discuss the world-sheet superfields of the fermionic string, and how they 
intertwine with the spin operators. The 2d superpartners of the string coordinates 
are shown to be completely described as a representation of a Lorentz group affine 
algebra. A constant theme of our work is the use of current algebra structures to 
simplify the analysis of strings. Here the Lorentz current algebra facilitates the 
treatment of operators with spacetime fermion quantum numbers. 

Sect. 5 finishes the covariant quantization of fermionic strings with an in-depth 
analysis of the BRST procedure and the superconformal ghost field theory. The 
fermion vertex operators have a rather elaborate structure having to do with the fact 
that they contain the ghosts; nevertheless, the theory is unitary. The algebra of the 
ghost current plays an important role; it enables us to find the operators needed for 
a complete description of the fermion sector. We also present some sample calcula- 
tions of string scattering amplitudes and explain how conformal techniques are used 
to calculate correlation functions. In sect. 6 we discuss some aspects of supersymme- 
try in the covariant formalism, showing how various correlation functions are related 
by supersymmetry. We also conjecture a relationship between our covariant quanti- 
zation procedure and other potential covariant quantizations [23,24]. Sect. 7 con- 
tains an introduction to the calculation of string loop graphs, adopting methods 
developed in the heyday of the dual resonance model. 

As mentioned above, string theory must self-consistently determine the geometry 
of spacetime. A first step in understanding how this comes about is provided by the 
study of string propagation in general background fields [25-27]. The conformal 
algebra structure generalizes to any scale invariant 2d quantum field theory, and 
could provide a unified picture of string dynamics. Therefore, in sect. 8 we discuss 
the generalization of the fermionic string away from flat space. Another motivation 
for this exercise is to find candidate vacuum solutions for the purposes of phenome- 
nology [26]. Given a conformal field theory which describes a solution to the string 
equations, we indicate how the conformal and operator product algebras encode 
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information about the low-energy effective theory of the string. In sect. 9 we present 
our conclusions. 

2. Conformal field theory and the bosonic string 

2.1. INTRODUCTION 

We begin our discussion with a rather detailed account of the bosonic string. The 
language we develop will have direct application when we consider the fermionic 
string later on. The world sheet of a propagating bosonic string is described by a 
map X(~) from a two-dimensional parameter space manifold $, ~ c  S, into a 
spacetime ~)%. The path integral over such surfaces yields a first-quantized descrip- 
tion since the basic object is a string trajectory rather than a function(al) on strings. 
The geometry of M is specified a priori, and the string represents a fluctuation 
propagating on this background. Because the string theory contains quantum 
gravity, the dynamics in principle determines ~qL. A proper treatment of this 
problem must await a second quantized formalism* where general coordinate 
invariance, or its string generalization, is manifest. Even so, one can examine 
whether strings propagate consistently (without ghosts, anomalies, or tadpoles) on 
~ .  The requirement is equivalent to demanding conformal invariance of the 
first-quantized string theory and may be used to search for the allowed ground states 
of the string [27] and for the classical equations of motion of the string acting as 
background geometry. We will return to this point in due course, but for the 
moment,  let us consider ~ to be flat, d-dimensional Minkowski spacetime. The 
map X is then given by d fields X~(~), # = 0 , . . . ,  d - 1. The action governing string 
dynamics should be geometrical and therefore cannot depend on the choice of 
coordinates for either $ or ~¢. The most general Poincar6 invariant, reparametriza- 
tion invariant, renormalizable action in flat space is [8, 29] 

s = f g o°x  obx x )  + R(:) + x ] . (1) 

We have coupled the string fields X ~ to a two-dimensional metric g,b in order to 
ensure two-dimensional coordinate invariance; R (2) is the intrinsic curvature of this 
metric; and for simplicity we choose Cartesian coordinates in ~ so that G,~ = ~ .  
In calculating the path integral over surfaces 

z = f ® X ~ e  ~s(g' x) 

* Conformal field theory techniques may be of considerable help here, however, in sorting out the 
dynamics and the kinematics of string gravity [28]. 
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we must choose a gauge in order to remove the degeneracy of paths generated by 
coordinate transformations. Typically, one of two choices is made; one can either 

(i) integrate over the Lagrange multipliers vfgg ah, fixing a gauge involving the X ~ 
[9, 30], or 

(ii) fix the Lagrange multipliers by setting [29, 8] 

= e % b ,  (2) 

where g~h is a fixed reference metric which will depend on several parameters for 
surfaces S with handles. For instance, we can choose g~b to be a constant curvature 
metric for the space $ adapted to light-like coordinates ~ -+. 
For case (i), the path integral now contains the &function constraints ( a + = 80 + 81) 

a(a+x, o+x)a(a x. a x), 

which are quadratic in the fields. These constraints are easily eliminated if they can 
be linearized, which is achieved with the gauge choice [9] 

X + = x + + p + ~  o, X + = x O - I . - X  d-1 

Integrating now over X -+ yields the light-cone gauge-formalism. It has the advantage 
that all the gauge freedom has been eliminated, with the exception of constant shifts 
of the ~" generated by the total hamiltonian and momentum 

H =  fd2~½[(O0X) 2 + ( 8 , X ) q ,  

P = [aoX. a,x] 

as well as certain discrete diffeomorphisms (known as modular transformations) 
which act on world surfaces with g handles. These residual invariances must be 
imposed as constraints on the Hilbert space of physical states [4]; they provide, for 
instance, some of the constraints which determine the structure of the heterotic 
string [12]. One unfortunate difficulty of the light-cone gauge is that p+ is not 
globally defined on surfaces of genus g > 2, which makes string perturbation theory 
calculations somewhat awkward. Also manifest Lorentz invariance is lost. 

In the present discussion, we wish to consider instead case (ii), which manifestly 
preserves Lorentz invariance. Because this covariant gauge quantization fixes the 
Lagrange multipliers of the gauge constraint, and does not eliminate the negative 
metric field X °, we will be left with an indefinite metric theory. All is not lost, 
though, because the gauge (2) is preserved by analytic coordinate transformations 

~ + - ~ f ( ~ + ) ,  (3) 
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generating the group of two-dimensional pseudo-conformal transformations [6]. 
Henceforth we will continue to euclidean space, where these are (anti)analytic 
transformations on complex coordinates z, ~. This residual invariance group 
guarantees that the negative metric states decouple from physical amplitudes [31,32] 
much as A ° decouples in the Gupta-Bleuler formalism for QED. Conformal invari- 
ance is typically anomalous in quantum field theory, however, so we must be more 
careful. It has been known for some time that string theories are only consistent in 
26, 10 or 2 spacetime dimensions depending on whether they have N = 0, 1 or 2 
world-sheet supersymmetries. Polyakov [8, 33] showed that precisely in these dimen- 
sions, the conformal anomalies of the string fields cancel with anomalies in the path 
integral measure associated with the jacobian for the (super)conformal gauge choice 
(ii). More recently, conformal field theory techniques have been used to solve a 
number of interesting problems in two-dimensional statistical mechanics [13,14], 
current algebra [34,35], and field theory [36]. The power of these techniques for 
analyzing the structure of a theory and computing correlation functions may be 
applied to string theory as well. Therefore we digress for a while to explain what is 
meant by conformal field theory. 

2.2. CONFORMAL FIELD THEORY* 

In general, a two-dimensional field theory whose stress-energy tensor is traceless 

T~ = Tz, = 0, ~ ,  = Too + Tll 

is not only dilation invariant but also respects the symmetries (3) which preserve the 
metric g~h. The local conformal fields [36a] Oj of the theory (sometimes called 
primary fields) may be classified according to their conformal weights hi, hj under 
the dilations z --+ )~z, ~ --+ XY. In conventional terms hj + hj is the scaling dimension 
and b y - h i  the spin of ~j. Ordinary tensors q,~ .... ~ . . . (dz )" (d~)"  have h~=n, 
h+ = m; in particular, the metric may be split into its trace and traceless parts 

ds 2 = g . ; d z d ~ +  gzzdz2 + c.c. 

The gauge choice (2) means that locally (but not necessarily globally) we may choose 
g:.~ = e2°, gz.-= g~ = 0. In field theory the Noether currents generating spacetime 
transformations on the fields are the moments of the stress-energy tensor. The 
transformations z ~ w(z), ~ --+ ~(~), change the conformal fields according to 

O~ 1 ~, ,j( Z, ~) ~ ( ~zz ) h~ ( ~Z ] epj(w, ~). (4) 

This may be regarded as the definition of a conformal field. Note that, due to the 
conservation laws 0 e ~  = O ~  = 0, T=.(~.O is an (anti)analytic function of z(~). 

* The discussion here follows [13,14] and references therein. 
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Anticipating the application to strings, it is natural to consider the dilation operator 
to be the hamiltonian of our field theory; we can map the cylinder swept out by a 
propagating string onto the complex plane via z = e t+i°. Time ordering is then radial 
ordering; t = const hypersurfaces are circles concentric about the origin of the 
z-plane. More generally, the local operator product relations extend naturally to 
arbitrary Riemann surfaces with local conformal coordinates z, S. We usually 
specialize to the complex plane to simplify the presentation and to make use of 
operator  and Hilbert space notions. The infinitesimal transformation z --* z + f ( z )  is 
generated by 

T/=(~fZTzz, Tz: = Tit - T22 - 2iT12 -= T(z),  (5) 
a ¢  

T~, T~ Tal Tz2+2iT12 T(£ ) ,  (6) 

where C is a contour surrounding the origin. In correlation functions, the transfor- 
mation (4) can be rewritten in terms of a contour integral [37, 38] 

dz 
(7) 

Here the contour Cow surrounds 0 and w while C O contains 0 but not w; radial 
ordering produces the commutator (see fig. 1). The last equality is obtained when the 
contour C o , , -  C o is deformed to a curve C w about w, asymptotically close. This 
deformation is allowed because T(z)  is analytic in correlation functions everywhere 
except at the locations of operators. Since this contour is infinitesimally close to w 
the information about conformal transformations is contained entirely in the oper- 
ator product relations 

1 1 
T(z)Oj(w,~) = (z - w) 2h/pj(w'~) + - -Owq~j  + finiteas z--* (8) 

~W 
~ w 

oz=O 

Fig. 1. The  difference of two t ime-ordered  con tour  in tegra t ions  yields a commuta to r .  
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We see that commutation relations are efficiently expressed in terms of contour 
integrals which pick up the singularities in operator product expansions. In most of 
what follows we shall use the operator product expansion rather than commutators; 
one can think of the operator product relations as generating functions for the 
commutators.  The algebra of conformal transformations 

[ L m ,  Ln]  = (m - n ) t m +  n + ~2c(m 3 - m ) ~ m + n ,  0 , 

d z  
(9) 

is itself embodied in the operator product relations 

c 2 1 
T(z)T(w) T(w) + - - O T ( w ) .  (10) + 

2(z - w )  4 ( Z  --  W )  2 7 - -  W 

The leading singularity yields the Schwinger term in (9); c = 1 for a free field such as 
X ~. This anomaly describes the lack of invariance of the theory to deforming the 
background metric gab [38, 39]. The maximal closed subalgebra of the conformal 
group is SL(2, R), which is generated by L 0, L+I ;  its commutation relations are 
unaffected by the anomaly and thus correlation functions on the complex plane will 

exhibit an invariance under 

az+ b 
z-- - ,y(z)-  c z + d '  a , b , c , d ~ R ,  ad-bc  1. (11) 

For  higher-genus world surfaces, this will not be true (see below). Of course, all the 
above considerations also apply to the Y-dependence of the theory, which may be 
treated in a similar fashion, so that in fact we have SL(2, C) (the parameters in (11) 
may be complex). We will focus on the z-dependence to avoid repetition. 

On the sphere or the torus, correlation functions calculated from the path integral 
can also be written in an equivalent operator formulation in terms of operator 
expectations in a Hilbert space. For higher genus, there might be an interpretation in 
terms of some kind of "local Hilbert space" in the neighborhood of a point on the 
surface. The vacuum h0) of the 2d field theory may be chosen to be an SL 2 invariant 
state (i.e. invariant under translations, dilations, and special conformal transforma- 
tions), with Lnl0 ) = 0 for n >i - 1 .  This follows from the vacuum expectation value 
of (10). The conformal fields ~j acting on the vacuum create asymptotic " in"  states 
I J )=q~j (0) [0)  with energy LolJ)=hflj) (recall that z = 0  is t = - o ¢  on the 
cylinder). There is a one-to-one correspondence between the fields and the states in 
Hilbert  space that they create at z = 0. The operator product (8) implies LnIj) = O, 
n > 0. To see this, evaluate (8) at w, ~ = 0 and expand T using (9). The L n, n > 0 in 
general lower the energy of a state by an amount n; conversely, the L, ,  n < 0 are 
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raising operators. The states [j) are thus annihilated by all the lowering operators of 
the Virasoro operators and are called highest weight vectors because mathematicians 
reverse the sign of L 0. 

From such a state we can build a representation of the Virasoro algebra by 
applying the L_~, n >/1, much in the same way one builds representations of 
compact Lie groups using ladder operators. The states can be classified by L 0 
eigenvalue (=  energy); and nth level state has L 0 value hj + n. A basis of nth level 
states in the family associated with q,j is given by all the combinations of raising 
operators of total energy n: 

L k L k 2 . . . L _ k , , l h ) ,  Y ' ~ k i = n ,  kl>~k2>~ . . .  >~km>0. (12) 

These states have operator products with T that are more singular than (8) because 
the positive frequency modes of T don't commute with the L k, in (12). The tower 
of such levels is called a highest weight representation or Verma module V(h j )  of the 
algebra. Since the full conformal group is a direct product of its analytic and 
antianalytic components, the representations are also direct products V(h j )  ® V(h/) .  
When c < 1 the structure provided by the conformal algebra in fact completely 
determines the theory [13,14]- both the allowed representations V(h j )  and the 
correlation functions. 

In equivalent field theoretic language, these higher level states correspond to fields 
"descended" from the "ancestor" field ~j by applying products of stress-energy 
tensors T(z ) .  One conclusion is that correlations of the descendants are determined 
from those of the ancestors via conformal Ward identities [13]. We shall often 
proceed in this manner, using operator and field theoretic methods interchangeably 
and employing whichever framework is most suited to the problem at hand. 

Finally, the sets of fields 0s and their descendants completely characterize the 
theory in that the product of any two fields may be represented as a sum [13] 

E (13) 
r t ,~  

where q'/ .... /(0) are members of the family of operators generated from 0t(0) by 
applying products of Ln's and L~. Eq. (13) is essentially a Clebsch-Gordan series for 
the decomposition of two representations of the conformal algebra with highest 
weight vectors 0j and q~k. Conformal invariance imposes powerful constraints on the 
form of the coefficients Cs~ " ' ~ ( z ,  ~); for instance, the coefficients of the ancestor 
fields determines the daughter coefficients 

C j • { n , m }  = C t  Rt{n}Rl( ,~} ~jk t-'jk t.'jk , 

with the fl 's determined through the conformal algebra. Also, crossing symmetry of 
four-point functions relates quadratic sums of C's in the s- and t-channels to give 
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the so-called bootstrap constraints [13]; schematically, the operator product (13) 
implies 

<~i~j~k~)l) = E i~_p__~ I = ~p i ~ t  , (14) 
p j k j k 

where the vertices are the operator product relations (13). These must be satisfied by 
any conformal field theory, and give a set of nonlinear relations among the h i and 
Cij k . 

It is a rather remarkable fact that a conformal field theory is completely specified 
by its spectrum of anomalous dimensions hj and operator product coefficients Cij k. 
All correlation functions may in principle be calculated by repeated application of 
(13). 

2.3. STRING THEORY 

We now return to the string theory to elucidate its structure as a conformal field 
theory. In conformal gauge (2) the action (1) describes a set of d free fields. The 
solution to the equations of motion O~ O~X ~' = 0 is X~'(z, ~) = xr'(z) + x~'(5). The 
two-point function (on the complex plane) 

(X~'(z, ~) X~'(w, ~ ) )  = - g ~ q n l z  - w[ 2 (15) 

demonstrates that the fields X ~ do not have a well-defined scaling dimension; they 
do not rigorously exist as quantum fields [40]. Nevertheless, we shall only need to 
consider conformal fields such as OX ~ of dimension 1 and e ip x of dimension 2p.~ 2 
Eq. (15) has finite corrections on higher genus surfaces to be discussed in sect. 7. The 
stress tensor 

T(z )  = - ½ 3~X" azX (16) 

satisfies the algebra (9), (10) with c = d. By eq. (16) (and similar expressions below) 
we mean the normal ordered product of operators, which may be obtained by 
subtraction of the singular part of the operator product expansion 

OzXOzX:= OzXOwX (z2w) 2 " 

z~w 

The Laurent expansion coefficients L n are the gauge operators which decouple 
negative metric states [31, 32, 4]; thus physical states satisfy 

L,  lphys ) = 0, n > 0. (17) 

This is precisely the condition that Iphys) = Vphys(0)[0 ) be a highest weight vector 
of the Virasoro algebra. The string vertex operators creating such states are therefore 
conformal fields; the spurious states are created by their descendants. 
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Because of the anomaly term in the commutation relations (9), one cannot 
demand that all the generators of conformal reparametrization annihilate physical 
states; the best that can be done is (17). However the remaining reparametrization 
generators L . ,  n < 0 generate spurious states which decouple from physical processes. 
In this sense string theory is invariant under conformal reparametrizations of the 
fields. As mentioned above, the mechanism is similar to the decoupling of longitudi- 
nal photons in the indefinite metric quantization of QED (but rather more subtle). 
As for the middle generator L0, reparametrization invariance dictates that physical 
vertices have dimension one in both z and £ (denoted by h = (1, 1)) so that their 
integral against d z d £  is invariant. The standard example is the first excited level, 
where the physical state conditions are those of massless gravitons, antisymmetric 
tensors, and dilatons. To see how the conditions (17) work in general, consider the 
second mass level. Candidate conformal fields are V~ ~= 3X~OX~e~kX(z) and 
V~ = 02X,~e~kX(z), k 2 =  - 2 ;  we focus on the z-dependence - the same considera- 
tions independently apply to the ~ dependence. The operator products of V~ and V 2 
with the stress tensor are 

1 1 
T(z)V~'~(w) = (z - w) 4~/~'fkX + ~ 

+ - -  
1 1 

OwX Ow X e (z_w)2(½k2+l). . ~, ~ ik.X+__z_w Ow[ OwX ~ a~a . . . .  eikX] 

+ (finite as z ~ w),  

1 1 
V(z)V~(w)  = (z w)~k"eikX + OwX~e 'kX 

- ( z - w )  3 

1 1 
+ ( z -  w) ----------~ (½k2 + 1) O2XJ'e i kx  + ~ - w  3w[ O2X~'e~kx] 

+ (finite as z ~ w).  (18) 

In the Hilbert space interpretation, the singularities in these operator products 
correspond to commutators of :V~'~(z): and : V2~(z): with L,  = fD(dz/2~ri)z'+lT(z) 
for n >/ - 1. Since the leading singularity is (z - w) -4, only L 0, L1, L 2 contribute. 
Physical state operators are constructed from linear combinations 

Vphys(k , z )  = ~ ( k ) V ~ ( k ,  z)  + ~ ( k ) V ~ ( k ,  z)  

such that the two leading singularities in (18) cancel to leave the operator product 



104 D. Friedan et al. / String theory 

characteristic of h = 1 highest weight vectors; hence 

I3..v nr,.~, + k~.~( k ) = O, 

kj,~"(k) + ~ ( k )  = O, 

k 2 = - 2 .  

The last of these reproduces the mass level condition; the first two are d +  1 

conditions on ½d(d+ 1) + d polarizations, leaving ! ( d 2 -  d -  2) physical state 2 
operators - a massive symmetric tensor multiplet; the d combinations which are 
total derivatives O(OX"e ikx)  won't contribute when integrated over the world 
sheet). The preceding construction clearly generalizes to any mass level N; the linear 
combinations of polarizations having finite operator products with T(z) yield the 
physical vertices. The leading singularity will be of order N + 2, so there are always 
only a finite number of constraints. Put differently, L ,  for n > N automatically 
annihilates the states of level N since it lowers the energy by n units. 

The vertex operators create asymptotic incoming states as ]z I = e t ---) O; e.g. 

eikx(o)[o ) = Ik) ,  

the ground state of center of mass momentum k. Similarly, 

OX"(O)lO) = a~_,[0), 02X"(0)]0) = a~ 2b0), etc. 

/ 

f dz z" OX ~ 
a~ = 27ri 

From these correspondences one can build up the operator which creates a given 
state in the Hilbert space. Information about the Hilbert space states can also be 
turned around to give the operator product coefficients by comparison with (13) 
evaluated as z, w ~ 0. Having constructed the set of physical vertex operators, we 
may construct their correlation functions 

N 

A(1 . . .  N)  =  fd2z,<V (kl,Ul, (19) 

which are determined entirely in terms of the propagator (15). Unphysical states 
decouple from scattering processes as a result of conformal invariance [31, 32]. The 
descendant fields (12) may be written as contour integrals about highest weight 
fields; the contour is then deformed away without encountering any singularities. 
The standard example is the amplitude for ground state scattering, where all the 
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vertices in (19) are V ( k ,  z )  = e i k X ( z )  with k 2 = 2 [41] 
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N 

A,v N(1 - . .N)  = I-[ f d2z~ I-I e x p [ k m ' k , l ° g l z m - z , [ 2 ]  . 
i = 1  m<n 

(20) 

The operator algebra (13) may be used to expose the resonances in (19) and (20) 
corresponding to on-shell intermediate states. For example, if z i ---, z j  in (20), 

eik,X(zi)eikjX(zj) ~ ekikjloglzi zjl2ei(ki+kj)X(z J) 

× (1+ 

+ l z i - z j l 2 ( k i - k / ) " ( k i - k j ) ~ c ? i X " O i X ~ +  " - }  (21) 

as ki .  kj --+ - 1, we have ( k  i + k j )  2 --+ 2 corresponding to an intermediate ground 
state tachyon resonance; k,.  kj - - 2 picks out the massless pole (k~ + k j )  2 - O, etc. 
Appropriate integrations by parts in the limit z~-~zj pick out the relevant reso- 
nance; thus operator products factorize the amplitude. Poles only occur at physical 
states due to the decoupling theorems, so only the operator product coefficients of 
the ancestor fields enter. In particular the physical operators for higher mass levels 
can be deduced from any lower level operators carrying the relevant quantum 
numbers. 

To summarize, the physical vertices of the bosonic string are in one-to-one 
correspondence with the dimension-one (in both z and Z) conformal fields formed 
from combinations of O X  ~, 0 2 X  ", etc., multiplied by e i k x  with k z=  - m  z, and 
such that the polarizations are physical. The states created by the conformal fields 
and their descendants span the Hilbert space. The operator products of the highest 
weight states of the Virasoro algebra factorize physical amplitudes. The descendant 
fields create the spurious states which fill out the representations of the Virasoro 
algebra. This structure has been used to explore classical string field theory [28]. 

The foregoing analysis of the physical state conditions may be recast in an 
equivalent BRST formulation [16,17]. The proper treatment of path integral measure 
factors associated with the gauge choice (2) has little impact on the calculation of 
tree-level string amplitudes since they contribute only to an overall normalization. 
On the other hand, string multiloop correlations will require Faddeev-Popov ghosts 
propagating in the loops in order to guarantee the decoupling of unphysical states. 
The modification is only in the measure for the bosonic string, as the ghosts 
decouple from the vertices. We will see below that this is no longer true for fermionic 
strings; the vertices for spacetime fermion emission couple to the ghosts. 

The fluctuations about the gauge slice (2) are generated by infinitesimal diffeo- 
morphisms [38, 42] 

8g~z = v z S f  z , 8 g ~  = G~8~. (22) 
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The diffeomorphism group volume is factored out of the path integral by trading the 
integrations over the traceless metric fluctuations 8gaz, Sgee for integrals over 
diffeomorphisms 8~:, 8~e. 

6~gz~ @g:~ = det V~- det V'~ o)~. 6)~ .  (23) 

The determinants may be rewritten as a path integral over a conjugate pair of 
anticommuting Faddeev-Popov ghost fields b=, c: and bzz, c ~ with the action 

Sgho.,,= l f dzz [b=a,c: + c.c.] , (24) 

O~c ~ = Ozb = = 0, (25) 

imply that b and c are analytic fields. Hence the ghost system is also a conformal 
field theory. The fields b, c are effectively free fermions of the wrong spin; the 
propagator on the plane is therefore 

1 
(b~zc w) - , (26) 

Z - - W  

with additional finite terms on higher genus surfaces. The variation of the covariant 
derivative on rank n tensors under a traceless deformation of the metric is [38,42] 

8vz=   agzz  + (27) 

Using this in the variation of (24), we find the traceless stress-energy tensor of the 
ghosts 

Tgh(Z ) = c Ob + 2(  Oc )b .  (28) 

Using the two-point function (26) we may calculate the operator product 

- 1 3  2 1 
L h ( Z ) r # w )  ( z - -  w )  4 + ( z - -  w)2 Fgh(Z) + --Z__W OThh (z) + nonsingular, 

demonstrating that c = - 2 6  for this system. When the number of spacetime 
dimension d = 26, the total anomaly c x + Cg h vanishes and allows the consistent 
application of the Virasoro gauge conditions to decouple unphysical states. More 
properly, we should construct the BRST operator which is the gauge-fixed analogue 
of the reparametrization generators T ( z ) .  If a field theory has a gauge symmetry 
with generators G i, the general form of the BRST operator is [43] 

0 
: i c,cJf k QBRST ciGi + 5 Jij Oc k , 

[G i, Gj] = £ j k G  k . 
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QBRs-c = 0. In the case of the string, the conformal QBRsT is designed to satisfy 2 
symmetry results in 

JBRST : C ( T x ( Z  ) -[- 1Zgh(Z)) -I- 32 02C 

_---2cl O X O X + b c O c + 3 0 2 c ,  

dz 
Q B R s T  = - (29) 

The reparametrization ghost c: is the parameter of BRST "gauge transformations"; 
the ½ before Tgh ensures that QBRSa" generates the right transformation on the ghosts, 
and the last term is required in order that JBRSa- is a conformal field (being a total 
derivative, it has no effect on flat space correlation functions, but ensures the 
conservation of the BRST current on curved world surfaces). The BRST charge acts 
on the fields as 

dw 
[ QBRST, O( Z )1 = ~  ~ t .  JBRST ( w)O( z ), 

[QBRsa-, X"] = c:O~ X" ,  

[QBRsT, cZ] + = c:O~ .c= - ( O:c= ) 2 = c"O.c:, 

[QBRsT, b : : ] + :  T=z[X ] + c:O.b:~ + 2(O:c:)b.:  

= L : [ x ] +  (30) 

Again, the easiest way to calculate these commutators is to use operator products to 
evaluate contour integrals of the BRST current JBRST around X, b, and c. The 
conformal algebra and the cancellation of anomalies in d = 26 translates into the 
statement 

QzRs T = 0 for d = 26. (31) 

Because the ghosts are decoupled, physical states must be of the form (up to a null 
state) 

I( n } ; p)  x ® C110)gh (32) 

(here {n } ;p  denotes the occupation numbers and momentum of the state). The 
operator c I lowers the energy of the state by one unit and is necessary for BRST 
invariance. Since we can represent physical states in this way, only the part 
~n >1 oc -nL ,  of QBRST contributes to the BRST version of the physical state condi- 
tion (17) 

QBRsTIphys) = 0. (33) 
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The ghost excitation in (32) may be thought of as responsible for the shift in 
the ground state energy which produces the tachyon (and thus the condition 
L 0 - 1]phys)x  = 0). Hence we see directly the equivalence of the BRST formalism 
and the operator methods of the past. The operator equivalent of (33) is 

[QBP.ST, Vphys] = 0, 

by which we mean that QBRST commutes with Vphys(Z ) up to total derivatives, which 
vanish when the vertex operator is integrated over the world sheet. Note that any 
operator  of the form 

Vphys = [QB~sT, O] ,  

where O is any operator, is physical due to the Jacobi identity and (33); however 
such operators create states of the form ]null) = QBRsT]anything) which have zero 
norm. Thus it is only the operators with nontrivial "BRST cohomology" that are of 
concern, and we may choose the states (32) to be the characteristic representatives of 
the cohomology classes. 

The bosonic string BRST quantization procedure as described thus far differs 
little from the covariant operator formalism of the old dual model [7, 44]. Its main 
advantage, which we now discuss, is the description of the vacuum of the string 
theory which it provokes. In particular, the ghost partition function provides the 
proper  measure factor in multiloop amplitudes, a difficulty never fully resolved in 
the past [45]. 

In calculating the jacobian in (23) we should omit the zero modes of the operators 
and ~: [42]. These appear in the Faddeev-Popov procedure as nontrivial 

normalizable solutions of eqs. (25) in a background g,b appropriate to the world-sheet 
topology. The zero modes may be analyzed by treating the ghosts as fermions of the 
wrong spin (see sect. 5) coupled to a U(1) gauge field, the 2d spin connection. On the 
sphere, the gauge field is like a U(1) instanton background. Because of these zero 
modes the ghost number current Jz = C:~z is anomalous [17]: 

O~j~ = ~ Q v ~ R  ~2) , (34) 

w h e r e  R (2) is the intrinsic curvature of the world sheet described by gab and Q = 3. 
The integrated anomaly yields an index theorem (the Riemann-Roch theorem [46]) 
for a surface with g handles 

( #  zero modes of c) - ( #  zero modes of b) = ~Qx = Q(1 - g ) .  (35) 

Zero modes of c are called conformal Killing vectors; b zero modes are known as 
moduli, and correspond to the deformations of the metric ~t ,  which change its 
conformal structure. Further investigation shows c has 3 zero modes for g = 0 (the 
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complexified isometries SO(3) of the 2-sphere), one complex zero mode for g = 1 
(the U(1) isometries of the torus), and none for g >1 2. The index (35) then tells us 
that the sphere has no moduli; the torus has two moduli, one in z and one in i ,  

describing the shape of the torus - its shear and elongation. For g >/2, the 3(g - 1) 
complex moduli describe the "shape" of the surface of genus g. The path integral 
instructs us to integrate over all conformally inequivalent surfaces, thus the multi- 
loop amplitudes will involve an integration over the moduli. The path integral 
provides the following prescription for the integration measure [38]: compute the full 
b, c and X ~ Neumann functions for the surface in question (this will be detailed 
when we discuss fermionic strings). These propagators will involve the moduli as 
parameters, as will the correlation functions calculated using them. In particular, the 
partit ion function (1) is determined from 

- - + C . C .  " : - -  j 2 ~ V / - ~ g  g2z~miT;z+C.C. (36) 
~m i ¢~m i 8g~ 

by integrating with respect to each m~, i = 1 . . . . .  3(g - 1), using the measure induced 
from the inner product 

8g > = f dZz ~ ( ~b~cd _ ½~bd)6g,~gbd" 

The stress tensor ~ is determined from the propagator 

T~ z = ! ~ ~ + { c z -t- -2{0~ X OwX )z=w O, bw~ 2(OzcZ)bww).~=w 

in the coincidence limit z --* w. We subtract the leading singularity in the operator 
product  expansion to render the expression well-defined; this is the analogue of 
normal ordering on a multiloop surface. The partition function e - s (~ ' , ) )  is the 
appropriate measure for modular integrals in g-loop amplitudes: 

3(g- 1) N 3(g- 1) 
A(1 . . . . .  N)=f I--[ dg,(m') e-s'~(mj)lx I-[ fd2z,  • I-I fd=w,  

i=1 k=l  /=1 

X ( h i ( w 1 ) . . .  b3(g_l)(W3(g 1))" V l (k l ,  ~1, z1) . . -  V N ( k N ,  ~N, ZN)~" 

(3v) 

The free-field expectation value is calculated with the relevant Neumann functions 
arising from the X ~ and b,c path integrals; the bt(wt) are zero-mode wave 
functions of bzz that are absorbed by the path integral over b. These ensure that the 
gauge fixing determinant is taken in the space orthogonal to the zero modes of 
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the gauge fluctuation operator (22), and produce a factor in the measure of the 
determinant of the matrix of inner products of zero-mode wave functions [42]. 

Physical correlation functions only involve vertices satisfying (33), and therefore 
will only contain X ". The demonstration that spurious states decouple involves an 
argument that we shall often invoke. The BRST charge is the contour integral of a 
dimension one analytic field. Spurious state operators are of the form [QBP, ST, O] for 
some O. This may be written as a contour integral of the BRST current about a 
contour circling O. When such a quantum field is inserted on a string world surface, 
perhaps in a correlation function with other vertices, the contour may be deformed 
away - pulled off the back of the surface, if you will. The BRST current only sees 
the analytic parts of the correlation functions, so there is no problem carrying out 
this operation. Specifically, any dimension (1, 0) or (0,1) conformal field integrated 
along a contour is conformally invariant. In any coordinate patch one can deform 
the integration contour. Deforming the contour through other operators produces no 
commutator  terms when the other operators are also BRST invariant. Eventually the 
contour sits in one patch with no singularity or operator inside, so the correlation 
function with the spurious state vertex vanishes. On multiply-handled world surfaces, 
the BRST contour does not pass through the b zero modes in the correlation 
function (37), however the extra piece is a component of the stress energy tensor 
which is a total derivative with respect to a modulus of the surface (cf. eqs. (30), 
(36)); this contribution should vanish upon integration over the moduli space. This is 
the case when the moduli space is a closed manifold; however, in the example of 
open strings the boundary of the moduli space for the annulus as the inner hole 
shrinks away is the moduli space for the disk [47]. The discussion of BRST 
invariance on higher genus surfaces is really a rephrasing of the question of whether 
the theory is anoma lous -  i.e. do the longitudinal string modes decouple from 
physical processes? The bosonic string should not be problematic in this regard. The 
requirement of decoupling of BRST relics provides a check on the path integral 
measures for multiloop diagrams [42, 48] postulated on the basis of 2d coordinate 
invariance. The contour deformation argument employed above is a useful tool in 
demonstrating several properties of the amplitudes, including some supersymmetry 
non-renormalization theorems (see sect. 6). 

We must also consider the c z zero modes which enter into the structure of tree 
and one-loop amplitudes. The parameter space for tree amplitudes is the complex 
plane, on which the Laurent expansions of c z, bz~ are 

c(z) = E c . z  -"+1, b(z)  = Eb.z .-2. (38) 
n ?l 

The Fermi sea-level of the b, c system determines the vacuum state 10)gh of the ghost 
Hilbert space. The canonical choice is the SL 2 invariant state annihilated by the L n 
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for n = 0, _+ 1; inserting the expansions (38) into Tg h (eq. (28)) we find 

C n]O)g h = O, n >/ 2, 
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bnl0}gh = 0, n>~ --1. 

Note that ]0}g h, although a highest weight state of the Virasoro algebra, is not a 
highest weight state of the b, c algebra, i.e. it is not annihilated by all the negative 
frequency modes of b and c since 

c(O)[O)g h = c~[O)g h ~ O. 

It is this state (or equivalently its degenerate partner c Oc(O)[O} = ClC0]0}) which is 
the lowest energy state of the string Hilbert space, such that only positive frequency 
states propagate forward in time (or rather outward from the origin). The energy of 

this state 

L~°t(c(O)[O)gh ® IO)x) = (-- l)-(c(O)lO}g h ® [O}x ) 

confirms that it produces the tachyonic vacuum of the bosonic string theory. Note 
that we never need to discuss divergent sums over zero-point energies to find the 
ground state energy - its value is a natural consequence of the conformal approach. 
Energies of states are always given by the dimensions of the operators which create 
them from the SL(2) invariant vacuum. The adjoint of this state is 

(Cl  IO)gh) * = gh(O [ C._ 1C0 • 

This property is a consequence of the three zero modes of the c field on the sphere: 

gh(0[0)g h = 0, but gh(0[C lCoC 1 [0)g h = 1. 

Indeed, in QBRST these modes multiply the SL 2 generators L0, L+ 1 which act as 
conformal killing vectors on the fields. Because the correlation functions are in- 
variant under the SL 2 transformations (11) the amplitude is not completely gauge- 
fixed. To factor out the SL 2 group volume, we may use the three independent 
degrees of freedom in (11) to fix the location of any three vertices on the world sheet. 
This means that we drop three of the integrations in (19) and insert the jacobian 
factor 

O(z i, zj, zk) (39) 
O(a ,b , c )  = I ( z i - z j ) ( z i -  z k ) ( z j -  zk) 12" 

Alternatively, the desired result is a BRST invariant scattering amplitude. If f d2z Vphy s 
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is a physical vertex, then C(Z)g(g)Vphys(z) is a BRST invariant combination. One 
can use three such operators to cancel the background charge of the ghost system 
(i.e. to soak up the c zero modes); because of the BRST invariance the location of 
the three z ' s  is irrelevant, but any given choice removes the SL 2 invariance (the c 

correlations produce the factor (39)). Typically one chooses z i = (0,1, or); one can 
then think of the asymptotic " in"  and "out"  states as being built on the tachyonic 
ground state discussed above. Similar considerations apply on the torus. The upshot 
is that nonzero correlation functions in the ghost sector involve the zero-mode wave 
functions of c as well as b, and one must fix the location of one vertex in scattering 

amplitudes. 
This concludes our analysis of the conformal and BRST properties of the bosonic 

string. The use of the conformal algebra enabled us to describe the physical states of 
each mass level as highest weight vectors of the Virasoro algebra. The physical state 
conditions were then recast in a BRST formulation using the Faddeev-Popov ghosts 
of the conformal gauge. A proper treatment of the ghost system is essential to derive 
the correct integration measure for string loop amplitudes; a method was outlined 
whereby the measure factors could be derived from the field propagators and a 
parametrization of moduli space. Having completed this warm-up exercise, we now 
move on to discuss the fermionic string. Naturally, we begin with a description of 
the superconformal algebra and superconformal field theory. 

3. Superconformal field theory 

Superconformal field theory combines conformal field theory with supersymme- 
try. The rich structure of the Virasoro algebra admits two equally rich supersymmet- 
ric extensions, the Neveu-Schwarz (NS) [20] and Ramond (R) [19] algebras. These 
infinite algebras are generated by the moments of the super stress-energy tensor 

r ( z ,  0) = L0(z)  + Orzz(Z), (40) 

which effect analytic coordinate and supersymmetry transformations on the local 
superfields ~j(z, 0; ~, 0) of the theory. Here 0, 0 are complex analytic fermionic 
coordinates, the supersymmetry partners of z, ~ [49]. In this basis the two-dimen- 
sional T-matrices are especially simple: ~'~0 = ~'o0 = 1, ~,03°= _ ¥ ~0 =  1; indices are 
raised and lowered with e0~ = - e g  o = 1, and all other components of these matrices 
vanish. Complex analysis has a simple extension to superspace [14, 50]. There are 

complex superderivatives 

D = O o + 0O z, D = O 0+0o~,  

in terms of which the supersymmetry algebra is simply 

D 2= az, ~2  = 0~. 
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We again focus on the analytic (z, 0) part to avoid repetition. Define the coordinate 
displacements 

Z12 = Z 1 - -  Z 2 -  0 1 0 2 ,  012  = 01  - -  0 2 ,  

whose derivatives are 

D1z12 = D2z12 = 012 , 

D1012 = - D2012 = 1 .  

These are useful for instance in writing the Taylor expansion of any superfunction 
about a point in superspace: 

1 
f ( z l ,  01) = • -~. (z12)"( O2)"[f(Zz, 02) + 012D2f(z 2, 02)] 

i 1 ~ 0  • 

= f (  Zz, 02) + 0 1 2 D z f (  z202) + Zlz a z f  + . . "  . 

Contour integration and Cauchy's theorem also have analogues: defining fdO 0 = 1, 
f d 0 1 = 0, we have 

012 1 
1 - ~ d z l d O l f ( Z l ' O 1 ) z ~  1 n! O~f(z2'02)'  

2 ~ri 

1 1 
1 - ~ d z l d O l f ( Z " O 1 ) z ~ f  a -  n! 3~Dzf('z'2'02)" (41) 

2 ~ri 

An infinitesimal super vector field V(z, O)= v o + Ov 1 parametrizes infinitesimal 
supercoordinate transformations 

1 8z = v o + ~Ov 1 = V -  080, 

80 = ½(01 + e0v0) = ~2DV. (42) 

This acts on conformal fields ~(z, 0) of conformal weight h as 

8ep= Lvq~= [VO+ ½( DV)D + h( OV)]ep. (43) 

The commutator of two such super-Lie derivatives is then 

[Lv, L w ] =  L[v, wl , 

IV, W] = V O W -  W O V + ½ ( D V ) ( D W ) .  
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As was mentioned above, the super stress-energy tensor (40) generates the transfor- 
mation (43) by (anti) commutation relations which are now written as superspace 
contour integrals (cf. the derivation of eq. (7)) 

L v q ~ = 2 ~ l ~ d z d O V "  T 'O.  

The operator product which produces (43) using (41) is 

z~22 ± 0t2 T(zl ,  O,),(z2, 02) - h ~,(z2, 02) + ± D 2 ~  + - -  a2~ . . . .  
Z12 Z12 

the superconformal algebra itself is 

1 ^ ± 012 ~C 3012T(z2,02) + 2 D2T+ - - 0 2 T +  . . . .  

I n  terms of the coefficients of the Laurent expansions 

V ( z , O ) = E z  " -3 /2 (~)C.+OEz  " -2<,  
tl 11 

i f (z ,0)  V' z n-% + a x P .  n h-1/2a. (44) ~ L~  0, n ~A.~  ~ ~ " l , n ~  

n n 

the algebra becomes 

[ L,,, L,] = (m - n)tm+ n "4- le(m3 - -  m)6,,+,,0, 

[Gin, G,]+ = 2Lm+, + ½O(m2--¼)Sm+n,O, 

[Lm,G,]=(½m-n)Gm+,  (45) 

and the fields transform as 

[ L m , q J o ( Z )  ] 

[~a~,~o/Z)] 

[L~,<(z)] 

[,~Grn, ~ l (  Z )] 

We have normalized the 

= z "÷2 a~,o + h ( m  + : )Z%o(Z) ,  

= ~ z - , + l / 2 < ( z ) ,  

=z  m+20~o + (fi + ~)(m + 1)zm~l(z), 

=e(zm+l/2Oq~o+2(m+½)hzm '/2q~o(Z)). (46) 

central charge O= ~c so that 0= 1 for a free scalar 
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superfield X(z, O) = x(z) + Oq~(z) consisting of a free scalar field of c = 1 and free 
Majorana fermion of c = ½. e is a Grassmann parameter which keeps track of 
statistics. 

The fermionic components of the conformal superfields V, g,, and T are allowed 
to be double-valued fields since they are two-dimensional spinors. Thus the Hilbert 
space of the theory divides into two subspaces: the Neveu-Schwarz subspace [20] in 
which A.NS , 2~ri_'~ N S  ~, • e fe rmionic~ ,e  z )  = + ¢ ~ f e r m i o n i c ( O )  and the Ramond subspace [19] in which 
epfn(e2~iz) = - q ~ ( z ) .  If we transfer to cylindrical coordinates (z, 0) ~ (log z, Oz a/2) 

the rule (4) shows that oR is periodic on the cylinder; it is the natural fermionic 
superfield component on the cylinder. From the mode expansion (44) we discern 
that the indices of the G n are integral in the Ramond sector and half-integral in the 
Neveu-Schwarz sector. Indeed, the expression of supersymmetry in the NS sector is 
G21/2 = - L _  1, the translation generator on the plane; in the R sector it is Go 2 = 
L 0 - ~ ,  the translation generator on the cylinder. Supersymmetry is unbroken if 
and only if there are Ramond ground states with G o = 0, i.e. h = ~ .  Since the 
vacuum I 0) is the lowest energy state (with h = 0) it will occur in the NS sector; it is 
invariant under the global superconformal group generated by L 0, L _+ 1, and G + 1/2- 
The conformal superfields q~j(z, 0) of weight hj create all the NS highest weight 
states Ihj)=ffj(0,0)10), annihilated by all of the lowering operators G,, L,, for 
n > 0. However the superfields do not exhaust the set of fields in the theory; they 
cannot  create states in the Ramond sector since the boundary condition on fermionic 
states remains unchanged. The states of the Ramond sector are created by conformal 
fields called spin fields. The operator product expansion of a spin field with the 
fermionic parts of the NS superfields is non-local (i.e., double-valued) in order to 
generate the correct Fourier series expansion of fermions in the Ramond sector; spin 
fields flip the boundary condition on the fermion fields between periodic and 
anti-periodic. A spin field may be represented as the endpoint of a branch cut in the 
fermion fields. One should not think that there are two sets of superfields, one for 
NS boundary conditions and one for R boundary conditions; rather, there is one 
superfield whose fermionic component has its Laurent expansion modified in the 
presence of a spin field. Since G o and L o commute these spin fields come in pairs 
S ± (z)  such that 

Ih +) =S+(0)10>,  

Ih-> = Golh+>, 

( h -  ~?) lh+> = G0lh- > (47) 

or, in operator products, 

1 1 
T"°(z)S±(w) 2 ( z - w )  3/2a+S~-(w)' (48) 

with a + =  1, a = h - ~ .  If h = ~ ,  global supersymmetry is unbroken in the 
Ramond sector. In this case the ground states need not be paired - we can drop the 
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states Ih ); the supersymmetry index [14, 51] t r ( - ) r ,  or some appropriate modifica- 
tion, counts the number of these unpaired ground states. The general state in the 
Ramond sector is reached from one of the R ground states (created from the NS 
vacuum by the spin fields of lowest dimension) by applying products of superfields. 
The operator product expansion of the fermionic part of a superfield with a spin 
field will be an expansion in half-integral powers of (z - w), as in (48); thus in the R 
sector ~f (z)l  h -+) will have a Laurent expansion in half integer powers of z, whereas 
~r (z ) ]0)  in the NS sector has an expansion in integer powers of z. The different 
boundary conditions on the cylinder can be thought of as being due to a "hidden"  
spin operator at z = 0. 

In the general superconformal field theory, the operator algebra has a form 
analogous to (13), with similar consequences for crossing symmetry, etc. Irreducible 
representations of the NS and R algebras are created from superfield and spin field 
highest weight states by applying combinations of raising operators L n and 
G n, n > 0. The superfields and the spin fields play complementary roles. Picture the 
operators of the superconformal field theory as 2 x 2 matrices acting on a two-vector 
consisting of the NS and R Hilbert spaces. The superfields of the theory are 
"diagonal",  taking the NS sector into itself and the R sector into itself: 

INS') INS) 

The spin fields are "off-diagonal", interpolating between the NS sector and the R 
sector: 

INS') s INS) 

The dimensions of the superfields are given by the energies of the NS states they 
create from the NS vacuum state; the dimensions of the spin fields are determined 
from the energies of the R states they create from the NS vacuum state. The full 
superconformal field theory is not local since the fermionic fields are double-valued 
about the spin fields; in other words the operator product of ~r(z), the fermionic 
component  of a superfield, with a spin field S(w) is expanded in half integral 
powers of (z - w). Locality is essential in order to have a well-defined string theory, 
where correlation functions must be integrated over their arguments - such integrals 
are ill-defined at the branch points of the correlations. It is difficult to have a Hilbert 
space interpretation when one requires information about the multivaluedness of the 
expectation values. There are two ways to project onto a local field theory, i.e. such 
that all operator products contain integer powers of (z - w). The first is to restrict 
ourselves to one of the two fermion boundary conditions, NS or R, giving the usual 
algebra of superfields on the plane or the cylinder. 

The second way, chosen by the string theory [10], takes both sectors; upon 
eliminating half of each, one regains a local field theory. The fermion parity operator 
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( _ ) v __ F anticommutes with all of the fermionic components of the superfields and 
commutes with the bosonic parts, counting fermion number mod 2. Since it anticom- 
mutes with T ( z ,  O) (and the hamiltonian L 0 in particular), i r" imposes a superselec- 
tion rule on the theory. Because of its role in the fermionic string theory we refer to 
i w as the chirality operator. Witten's index [51] t r ( - ) F  in the Ramond sector counts 
the number of chirally asymmetric (unpaired) h = ~6 ~ Ramond ground states. If the 
index is nonzero, then 2d supersymmetry cannot be broken, and some states will 
exist with h = 1~; otherwise 2d supersymmetry is generally broken. Spin fields of 
opposite chirality are nonlocal with respect to each other since their operator 
product contains 2d fermionic fields; spin fields of the same chirality are mutually 
local and their operator products close on bosonic fields, including fermion bilinears. 
Projection onto the F = 1 subsector yields a local field theory, the spin model. The 
projected theory is local because q~f(z) changes the chirality but is projected out, so 
there are no square roots in operator products. Spin fields of opposite chirality 
recreate q,f in their operator product, so one chirality of the collection of S 's  must 
also be removed. The fields which remain are the bosonic parts of the superfields 
(including fermion bilinears) and the spin fields of positive chirality. This projection 
turns out to be required in the fermionic string theory in order that multiloop string 
amplitudes are invariant under the modular transformations mentioned in the 
previous section [52]; in fact, it is precisely this projection which yields the super- 
string [10]. 

4. Fermionic strings 

4.1. INTRODUCTION 

The fermionic string is obtained from the reparametrization invariant action (1) 
by incorporating local supersymmetry. Thus the string coordinates X~(() acquire 
two-dimensional supersymmetric partners ~p"(~); a gravitino X a gauges the super- 
symmetry and, like v/-gg ab, is a nondynamical Lagrange multiplier. The action [29, 8] 

s =  

(49) 

is invariant under the local supersymmetry transformations 

8g,~ = 2iey~, X b), 

8 X .  = 2V' ,e ,  

8 X  ~ = ietp~, 

= v°( a°x - 
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Both gauge choices described for the bosonic string have supersymmetric analogues. 
We choose the covariant superconformal gauge [29, 8] 

gob = p~o~, x o = v d ,  (50) 

which is the extension of (2). The action (49) now reduces to 

Sgaug e-fixed = f d2~ I-x2(~aXg) 2 -  ½i~ p' a~b~] . 

The fields p and ~ decouple due to the super-Weyl invariance of (49). The free fields 
X ", q~ may be combined into one free superfield X"(z, 2, O, O) with the action 

Sgauge_fixed = f d2z d 2 0  1 T)X, DX ~" 

The residual conformal invariance of (50) extends to superconformal invariance 
generated by 

T(z,O) = - ~DXgD2X ~ 

= __1 O ( a X  aXe-  a~ ~)]. ~ [ + . a X +  • • (51) 

The bosonic component of T is the usual stress tensor; the fermionic component is 
the spin-]  Noether current for conformal supersymmetry which can be seen in the 
last term of (49). The local invariance is needed to decouple the negative metric 
states created by %.  The solution to the free field equations of motion 

x .  = X ~ ( z )  + x . ( 5 )  + o ¢ . ( z )  + 0 + . ( 5 )  

separates into analytic and antianalytic superfields X~(z, O) and ~>(5, 0). The 
two-point function on the z-plane is 

(X"(Zl ,  01)X~(z2,02) ) : - g ~ q o g  z12. (52) 

Because of this factorization we may again focus without loss of generality on the 
z, 0 dependence of the theory. The L 0 dependence may be copied directly, or the 
portion of the theory may be taken to be a bosonic string theory as in the heterotic 
string [12]; we would then have a (1, 0) Majorana-Weyl supersymmetry on the world 
sheet, but our analysis of the analytic z, 0 supersymmetry is unchanged. The 
reparametrization algebra of the superfields is 

T ( z l ,  02)  O X g ( z 2 ,  02)  ~ _ _ _  
1 012 

2 z12 

1 012 
D2x~  + ! D 2 ( o 2 ( x ~ ) )  + - -  a 2 ( o 2 x ~ )  

Z12 Z12 
(53) 

and T(z, O) satisfies (45) with ~ = d. 
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It is useful to examine the equivalent operator structure of X ". In the NS sector 
the conformal field DX"(z, O) may be expanded in mode operators 

DX~= E -,, l: Oa~] Z / ~"n+ 1/2 + @ 

,~IEZ 

The field ~p"(z) has a half-integral mode expansion. These mode operators must be 
supplemented by the zero mode q~ conjugate to a0 ~ in order to completely char- 
acterize X~(z, 0). The super-SL 2 invariant vacuum 10)x, annihilated by all the a~ 
and ~p2 for n > 0, resides in this sector. With R boundary conditions the fields 
~p ~(z) have integer mode expansions. From the (anti)commutation relations (valid in 
either sector) 

[a~, a~m] = --g~m~m,_,,, 

[a~,q~] = -g~"6, ,0,  

we see that the zero modes ~p0 ~ of the R sector form a Clifford algebra. These 
commute with L 0 (see (46)) and therefore act on the R ground states, which must 
transform collectively as a spacetime Majorana spinor. From our general discussion 
of the previous section, there will be a set of spin fields S~(z) which create these 
ground states from the NS vacuum and which thus transform as a spacetime spinor. 
The operator  product expansion of ~p"(z) and S~(0) is responsible for the change in 
the mode expansion of ~p". We will follow the gamma matrix conventions 

[ v . ,  + = - g . . ,  = v L -  

From (47) we see that S~ has conformal weight h = ~ = 1~6d; we will find below 
that d = 10 is needed for spurious state decoupling. 

The spin model obtained by projecting onto even fermion number J? = ( - ) F  = 1 
is the superstring [10]. The NS vacuum state is assigned parity F = - 1 (the rationale 
for this, as well as the values of the ground state energies in the NS and R sectors, 
will be provided when we discuss the Faddeev-Popov ghosts), so it and all states 
created from it using even numbers of q~f operators will be projected out. The lowest 
energy states remaining in the NS sector are the states ~p~l/210)=DX~(0)I0 ) 
describing a ten-dimensional massless vector. Because of eq. (47) and the fact that F 
anticommutes with ~p", F acts on spin fields by FS, F = 711S~, so in the R sector 
( _ ) v =  1 projects onto the positive chirality spinor states; the R ground states with 
YH = 1 form a Majorana-Weyl spinor which combine together with the NS vector 
states into a massless vector supermultiplet. We will see below by constructing the 
spacetime supersymmetry current that all the states of the spin model form ten- 
dimensional supermultiplets. 
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Although manifestly Lorentz invariant, the action (49) is not manifestly spacetime 
supersymmetric. This should not bother us greatly because it is the spin model which 
we wish to consider. Spacetime supersymmetry is a property of the algebra of spin 
model fields, not the 2d superfields. The spin model properties are not readily 
apparent in the 2d superfield action. 

Calculations of fermionic string scattering amplitudes involve computing correla- 
tion functions of spin fields S~ and fermions ~ u. These are completely specified by 
their properties under SO(9,1) current algebra [53]. In this framework the fermion 
bilinears 

j t '~(z) = ~bt'~b~(z) (54) 

are a representation of the generators of an SO(9,1) affine algebra defined by the 
relations (with level k = 1) 

.#tr o] Jn , JXm = f~f  'x°i°~ + 1 Jrt+ -- m 

j ~  = ~ -~ i  z~j~ ( z ) . (55) 

The stress-energy tensor is determined from these currents [54, 35] via 

- 1  
• ~ p  • . 

T+ = 4 ( d -  1) "J Jz"" (56) 

as may be easily verified through the use of the operator product expansion 

j ~ ( z ) j ~ ( w )  
-d (d -a )  
( z _ w ) 2  + 2 ( d - 1 )  O+.+(z)  

(normal ordering subtracts the leading singularity). The current algebra defines a 
conformal field theory in which ~b" and S~ are the conformal fields of the vector and 
spinor representations, highest weight vectors of both the SO(9,1) current algebra 
and the Virasoro algebra. Note that the current algebra also has a representation 
structure similar to the Virasoro algebra - highest weight states annihilated by all 
the positive frequency modes of the currents j ( z )  together with a tower of descen- 
dant states generated by the action of the negative frequency modes of j ( z )  on the 
highest weight states. The property (56) provides a method for calculating correla- 
tion functions [35,55]. Consider the relation L l = ( 1 / ( d - 1 ) ) j ~ _ ~ M  ~ where 
M "~ = j ~  are the Lorentz generators in a particular representation. Conformal fields 
of the representation i therefore satisfy 

[ j g r l M i g t ' - ( d - 1 ) Z  1 ] ~ i = 0 ,  
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which implies in correlation functions 

121 

1)~Zi -- Zi--ZJ (d#I (Z1) . . .d#N(ZN)}=O (57) 
j= l  

since L ~ generates translations and j_~ group transformations on the fields. These 
linear matrix differential equations may then be solved for the correlations; the 
correlation function of four S~'s has been calculated this way and agrees with 
previous results [53, 56]. The method demonstrates that only the current algebra 
properties 

1 
j ~ " ( z ) ~ b X ( w )  - _ _  [gUX~"(w) - g"Xff,(w)], 

Z - - W  

1 

j ~ ( z ) S ~ ( w )  (~[~7~1 B 
- - -  ) o S e ( w )  (58) 

Z - - W  

are needed to determine all the spin field and superfield fermion correlations. In 
particular we find the operator algebra 

¢ , (  Z ) S o (  W ) - ( z - w ) -  w ) + . . . ,  

SO(z)S twt - t z -  w )  + ( z -  + . . .  , 

Sa(Z)gl~(W ) (Z W)-3/4 /z-- - y , , / ~ 0 ~ ,  + • • • , (59) 

which shows that the ~ ' s  act as generalized 3' matrices in the R sector and are 
indeed double-valued with respect to the spin fields. The first of (59) may be seen 
from (58) and j ~  cc ~ ;  the second equation is a consequence of spinor algebra 
and the dimension h = ~ of S~, None of the operator relations (59) is single-valued 
in the z-plane, so string vertices will contain other fields in combination with S, 
such that the correlation functions of them together are local. 

The above relations are all group theoretic and independent of the relation (54), 
which is just a particular way of writing the currents in terms of the conformal fields 
of the vector representation. In fact, below we will make use of a different 
representation of the current algebra obtained by bosonization of the Wick rotated 
SO(10) currents. 

SO(10) current algebra may also be realized on a set of five free bosons H i which 
parametrize the maximal torus of SO(10) [57]. This representation is obtained by 
choosing a maximal set of commuting generators-  say J2i,2i+l, i =  0. . .4 .  These 
currents are then bosonized in the standard fashion [58] 

J2i,2i+l = OBJ. 
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Since OH i are the momenta conjugate to H i, the Hi's parametrize the maximal torus 
of SO(10) generated by these U(1)'s. The remaining 40 currents are realized 

nonlinearly as the exponentials 

e i ~ ' q  = • e-+- i ( t f , + G ) :  c + i + :  , i 4 = j ,  

of conformal weight 1. The operators c + i + j generate a two-cocycle in commutation 
relations such that the algebra (55) is realized [57]. The vectors a denote the U(1) 
charges of the generators and are called the root vectors of the algebra. In fact the 

entire lattice of points 

Aso(10) = {nie i l  all n i ~ Z  ora l l  n i ~  Z +  ~,1 ei .  e~ = 3i/} 

is the weight lattice of SO(IO), such that e i~n  with a ~ A so(10) lies in an SO(IO) 
representation. For instance, 

q.,2j + 4,2j 1 = e + ,H,, 

4 
S,~ = I-[ e ± i,,,/2 (60) 

: = o 

are the dimension-½ vector representation and dimension-~ spinor representation 
conformal fields. Here the 32 spinor components are displayed in a helicity basis [59] 
specifying their spin projections on the five two-dimensional planes e2i ® e2i+x; the 
Yl~ helicity eigenvalue of a spinor is given by the product of all five signs in the 
exponent. Note that the product of two spinors indeed reproduces the currents (54). 
The advantage of the representation is that all correlation functions and operator 
products are given in terms of free field expressions such as (21). This "vertex 
representation" provides an explicit solution to the differential equation (57) in 
terms of the Koba-Nielsen amplitude (20). Moreover in contrast to the fermionic 
representation in terms of the ~,"'s we have a convenient way of handling the spin 
fields S,~. Lastly, the projection F =  1 removes the ground state and one of the 
spinor representations as well as any state reached from these by the tensor product 
of an even number of vectors, or from the remaining spinor by an odd number of 

vectors. 
This completes our introduction to the spacetime fields of the fermionic string; the 

construction of string emission vertices and correlation functions will be undertaken 
once we have discussed the quantization of the Faddeev-Popov ghosts of the 
superconformal gauge (50). We shall see that the ghosts enter intrinsically into the 
fermion emission vertex and supersymmetry algebra. The operators needed to 
complete (59) to a local set of operator products will come from this sector. 
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5. Superconformal ghosts and the fermion vertex 

5.1. (;HOST FIELD THEORY AND SUPERCONFORMAL BRST FORMALISM 

As in the bosonic string, the Faddeev-Popov (super)determinant compensates for 
fixing the intrinsic supermetric on the world surface of the fermionic string. This 
superdeterminant is the jacobian for the change of variables 

~X.-= V'= ~Je (plus c.c. equations) (61) 

used to factor out the super-reparametrization group [60]. The determinant of the 
differential operators in (61) may be represented by a path integral over a conjugate 
pair of dimension - 1, 3 ghost superfields 

C: = c= + 07 °, Bzo = fizo + Ob.= , (62) 

whose action is 

Sghost ~--" f d2z d20 Bze D C : .  

We recognize b, c as the reparametrization ghosts; the new feature is 13 and ~,, the 
commuting spinor ghosts of local supersymmetry. The spinor ghost system 13, ~, is a 
first order lagrangian for Bose fields, hence its spectrum is unbounded below and 
one expects a catastrophe. We defer a discussion of the associated difficulties until 
the next subsection. 

The equations of motion 

T)B=o = DC z = 0 

again show that the ghost fields are analytic superfunctions, with z-plane propagator 

(B(zl,01)C(z2,02))- 012 
(63) 

Z12 

In components we find that both b, c and fi, ~, have Dirac propagators (z I - z2) 1 
The super stress-energy tensor is most easily constructed in components, using (27) 
to obtain the stress-energy tensor and then converting the expression to superfields 
to find 

Tgh( Z,O ) = - C ( D 2 B )  + ½( D C ) (  D B )  - 3( D 2 C ) B  

- -  - -  1 3 ~ . = - c O f l + ~ , b  ~ ( 3 c ) f l + O [ c O b + 2 ( O c ) b  ~ y O f l - ~ (  Y)B] (64) 
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The conformal properties of the ghost system are contained in 

1 012 
r~h(z~ ,O~)C(z~ ,O2) - ( -1 ) .Ox2c(z~ ,O~)+±D2C+ O~C 

2.12 Z12 2"12 

3 012B(z2 ' 02) + ~ D2B + 02B, 
Tgh(Zl, O1)B(z2, 02) - -~ Zl 2 z12 z12 

1 a 3 012 _}_~_ 012 
T~h( 2.1, Oa) ~h( z2, O2) - ( - 1 0 )  "--+----T(z2,02) D2T+ - -  02T. 

z12 2 z12 2"12 Z12 
(65) 

The last of these shows that the anomaly of the ghost + matter system is ~ = d -  10 
which vanishes in d--10;  the combined super conformal invariance of the ghost- 
matter system allows a proof of spurious state decoupling in string interactions [32]. 

We might remark at this point that the supersymmetric ghost system actually has 
a larger symmetry than might be expected a priori on the basis of the action (49) - a 
hidden N = 2 superconformai invariance. In mode operators, the N = 2 superconfor- 
mal algebra is 

[Lm, Ln] = (m - n)Lm+,+ ~ ( m  3 -  m) ~m,-n, 

[Lm,G +] =(~m-n)G++, ,  

[G+,G+]+=O=[G..,G2]+, 

[G +,G~-] += Lm+ . + ~ ( m -  n)Hm+ . + 1~(m2-¼) 6 . . . .  

[Hm G. +-] + + , = G ~ + n ,  

[/-/m' / t , ]  = ½am ~m, , .  (66) 

These relations show that H(z) is a U(1) current (not to be confused with the 
SO(10) currents of the previous section) which rotates the two supercurrents Tv+(Z). 
The N =  1 supercurrent of eq. (40) is TF(Z ) = T~(z)+ T~(z); the other linear 
combination combines with H(z)  to form a dimension-one superfield 

j ( z ,  o) = I4(z) + o ( r~ ( z )  - r~ ( z ) ) .  

For the ghost system, the N = 2 algebra is generated by (64) together with 

j(z,O) = 2(DB)C+ 3B(DC), 
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which one readily verifies as satisfying (66). The significance of this observation has 
yet to be determined. 

The super-BRST operator is once again given by the line integral of the current 

JBRST ---- C~'(rmatter( z, O) + 12 Tgh(Z , O) )  -- ~D(C(DC)B),  

£dzdO 
QBRST = ~.) ~ J B R s T  

where 

_C~ dz dO 
- -  r - ~ Z ~ i  ( CTmat te ,  - 6 C  " B ) , 

8C= C OC- ¼( DC)( DC). 

(67) 

From the two-point functions (52) and (63), as well as the operator products (53) 
and (65), we may determine the BRST transformation properties of all the NS 
superfields: 

[ eQBRsr, C] = e SC, 

[eQBRs r, B] = - ~?Tmatter , 

[EOBRsT, I~matter] = [(eC)ct+½D(eC)D+hO(eC)]Omatter, (68) 

where e is an anticommuting parameter and ¢~matter is a dimension-h superconformal 
field of the string coordinates. The superconformal algebra of the stress tensors (51) 
plus (64) translates into the BRST relation (for d--- 10 only) 

2 
Q~RST = O. 

The physical vertices of both NS and R sectors must satisfy 

[I~QBRsT, gphys] = 0. (69) 

Of course an identical statement applies to the BRST charge ~)BRSX of the antiana- 
lyric conformal algebra. In the NS sector, vertex operators which are highest weight 
vectors of the X, ~b superconformal algebras generated by Tmatter (z, 0), Tmatter(Z, 0) 
satisfy (69) (and of course the corresponding statement with QBRST)" We see that the 
integrals of such operators over superspace will be BRST invariant if they carry 
conformal weight h = (½, z).2 - 
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For example, from the highest weight superfield 

V B = D X t ~ e i k X ( z ,  O) (71) 

we can build the massless vertices for emission of gravitons, dilatons, and antisym- 
metric tensors 

Vmass,es~( k, ~) = f d2z d20 f ,~(k)  DX~'I)X" e '' '  x, 

w i t h  h h i 2 1 1 u _ = = 5  k + 5 = 5 ,  and k ' f . ~ = k  ~ ' . . - 0  in order that the operator is a 
highest weight vector. The spin and symmetry of the polarization tensor ~'~. de- 
termines which type of particle is emitted from the string. Note that these vertices 
commute with /" = ( - )v and P = ( - )P separately. On the other hand the tachyon 
vertex 

glachyon = f d2zd20e ikx, k ? = 1, 

has  Fgtachyon F ~---- gtachyon since F anticommutes with 0. Thus the tachyon is 
projected out upon passing to the superstring, as it must be - there is no scalar 
supermultiplet in d = 10. For the heterotic string, similar considerations apply, but 
the antianalytic supersymmetry is a b s e n t -  0 is absent, and D is replaced by 0. 
There are of course other massless string vertices associated with vector gauge 
bosons. 

The vertices (70) together with those obtained by factorization using operator 
products (i.e. all the other BRST-invariant states), provide a complete description of 
the bosonic (NS) sector of the superstring. To complete the picture we would like to 
find the fermion (R) vertex operators. The analysis simplifies if we separate QB•ST 
into three component field pieces characterized by their spinor ghost charges: 

Q B R S T  = Q0 + Q1 + Q2, 

. d z (  
Q0 = ~ ) ~ /  cT . (X ,+ '~8 ,  y ) - b c O c ) ,  

dz 1 
Q1 = ~ 2 ~r-~ -2 "t ~p " O X ~ ' 

~) dz l y 2 b  (72) 
Q 2  = 2 ~ r i  " 

Here iEB(X, ~; /~, 7) is the combined stress tensor of all the fields mentioned; thus Q0 
is the bosonic string BRST operator (cf. eq. (29)), as if fl and y were extra matter 
fields. QI is the world-sheet supersymmetry generator of the string coordinates 
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multiplied by the corresponding (commuting) ghost parameter of local supersymme- 
try. Q2 is needed for closure of the algebra; its source is the ghost supercurrent. 

We are now prepared to investigate the requirements to be met by physical 
fermion vertices. Because these operators will create Ramond states from the 
Neveu-Schwarz vacuum they will be constructed out of spin fields, not superfields. 
The reparametrization constraint implied by Q0 is again that the integral f d 2z V(z, ~) 
of the vertex operator over the world sheet be conformally invariant, which is 
guaranteed if the operator is dimension (1,1). In addition, the operator product (59) 
shows that +" acts on the spin fields as a generalized Dirac matrix. Thus Q1 acts on 
fermion vertices as a generalized Dirac operator (the Dirac-Ramond operator [19]), 
so the fermion vertices must satisfy the Dirac equation. The above considerations 
dictate that the analytic part of the vertex for massless fermion emission must have 
the general structure u~(k) .ZS~e ~kx, with k 2= ku = 0; Z is some dimension- ~ 
operator whose presence is needed because S~ only has dimension ~. It is also 
needed to make the operator algebra local. Our survey of SO(9,1) current algebra 
yielded no operators of that dimension, so we must look elsewhere. Goddard and 
Olive suggested that such an operator might come from the ghost sector of the 
theory. The line of reasoning is as follows: the original action (49) couples the 
gravitino X, to the spinor ~b~, thus X, (and also the parameter e of local supersym- 
metry variations) must obey the same boundary conditions as ~b~ in order that the 
action is well-defined and locally supersymmetric. In the neighborhood of a spin 
field, ~ is double-valued and consequently so are X, and e. 

The Faddeev-Popov ghost system which represents the gauge-fixing determinant 
will not completely decouple from the theory because the variational operator (61) 
has its boundary conditions changed at the location of the spin field S,~, i.e., the 
ghost fields/3, y reflect the boundary conditions of X~, e. The required operator Z is 
just the spin operator of the spinor ghost system. In the case of the spacetime fields 
the properties of the spin fields were discovered through their operator products 
under SO(9, 1) current algebra. We will see that the ghost spin field 27 is similarly 
determined its properties under the algebra of the ghost current Jgh = --/33'. Thus we 
turn away from our development of string vertex operators to discuss in detail first 
order field theories such as (62), their currents, zero modes, stress tensors, and vacua. 

5.2. FIRST-ORDER LAGRANGIANS IN 2d FIELD THEORY 

Consider the action 

1 
S = - - f d 2 :  (b ~c),  (73) 

where b and c denote general conjugate fields of dimension X and 1 - X  respec- 
tively; they can be either Bose or Fermi fields - we treat both cases in parallel. The 
ghosts b, c and /3, 3' of previous sections are just special cases. The b, e operator 
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product is 
1 

c(z)b(w) - - -  
Z - - W  

E 
b ( z ) c ( w ) - - - .  

Z - - W  

Here and in the sequel, e = + 1 for Fermi statistics and ~ = - 1  for Bose statistics. 
The fields have the mode expansions and hermiticity properties 

c ( z ) =  E z - "  "-~'c,,, c~=c  ,,, 
t l  

n(z )  = E z - " - ~ b ° ,  0.* = ~b , ,  
n 

and the operator product determines the (anti) commutation relations 

c.,b., + ebnc m = ~ m , - n "  

There are NS and R sectors of the theory, specified by 

NS: b n, n~T ]  - ) t ,  

c . ,  n ~ 7 + X ,  

R: b,,, n ~ ½ + Z - ? t ,  

c,,, n ~ ½ + Z + ? t .  

The stress tensor (cf. (64)) and reparametrization algebra are 

T =  - ) t b  Oc+ (1 - X)(Ob)c 

= ~ [ ( O b ) c -  b o g  + (~ - x )O(bc) ,  (74) 

X 1 
T(z)b(w) ( z -  w) £b(w) + --z-w Owb' 

1 - X  1 
T(z)c(w) - - c ( w )  + - -  OwC, 

(z  - ~)~ ~ - w  

- e (6X  2 -  6X + 1) 
T ( z ) T ( w )  - + . . .  

( z - w )  ~ 

c = -2e (6X  2 -  6X + 1) = t(1 - 3Q2),  (75) 

Q = e(1 - 2 x ) .  
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Special cases are the reparametrization ghost algebra with ~ = 1, ~ = 2, Q = - 3 and 

c = - 26; and the local supersymmetry ghost algebra with e = - 1, ~ = 3, Q = 2 and 
c = 1 1 .  

Another  aspect of the linear system will be important to us: it has a U(1) number 
current 

j=  - bc= E z - "  1],,, 
t] 

-b(w) 
Z - - W  

c(w) 
j ( z ) c ( w )  z - w '  

j ( z ) j ( w )  - ( z -  w) ~' 

whose charge operator J0 counts c = + 1, b = - 1  charge. The conformal properties 
of the current depend on the vacuum chosen. In the SL 2 invariant vacuum sector 
(c (z )b(w))  = 1/(z  - w) and there are no finite corrections to the singularity (26); 
then the proper  relation is 

Q j ( z )  
T ( z ) j ( w )  - -  + 

( z - w )  3 ( z - w )  2' 

[ Lm, L] = -nJm+, + ½Qm(m + 1)6m,_n, (76) 

so that j ( z )  is scale and translation covariant (m = 0 , -  1) but not conformally 
covariant  (m = + 1). Rather, we find 

[ LI, j_I] =jo + Q, 

[ t l ,  j 1] t = [L  t,  J1] = --Jo, 

which shows the charge asymmetry of the system: j0 t = - ( J 0  + Q). Consequently 
operator  expectation values of charge neutral operators will vanish since 

[j0, O] =qO, 

<OlJoOlO) = -Q(OlOlO> = q ( O l O l O ) .  

Only operators  which cancel the background charge Q survive; this feature was 
encountered in our discussion of the reparametrization ghosts (cf. eq. (37)) where we 
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had  to i n t roduce  ghost  opera to r s  in ampl i tudes  to soak up the three zero modes  

(Q = - 3 )  of  c. In  general  there is an index (cf. eq. (35)) 

zero modes  of c - g¢ zero modes  of  b = - ½eQx, (77) 

where  X = 2(1 - g )  for a surface with g handles .  

The  n u m b e r  current  may  be used to bu i ld  a stress energy tensor  [61] that  

r e p roduces  the  re la t ion (76): 

= i s ( z ) 2 -  a=jz), 

Q j ( z )  
T j ( z ) j ( w )  - -  + 

(z-w) 

T s ( z ) j ( w )  
½(1 - 3cQ 2) 

Z --  W )  4 

Thus  the new stress tensor  has CJ = 1 - 3eQ2; the or iginal  b, c stress tensor  had  

c = CJ' e = + 1 ( F e r m i ) ,  

c = c j -  2,  e = - 1 (Bose) ,  

Since in the first case there is no " l e f tove r"  stress-energy,  the current  j and  its stress 

t ensor  Tj comple t e ly  character ize  the Fe rmi  theory.  This is why, for instance,  the 

space t ime  fields +~ can be descr ibed  solely on  the basis  of SO(9,1) current  algebra.  

F o r  Bose systems,  however,  there  is a res idual  e = - 2  stress tensor  T 2 which 

c o m m u t e s  wi th  j and  Tj, such that  

T =  ~ . +  T 2 . 

F r o m  our  f o rmu la  (75) we see that  such a system may  be represented  in terms of  an 

aux i l i a ry  l inear  Fe rmi  system with X 2 = 1, Q - 2  = - 1 ,  composed  of  a d imension-1 

f ield ~/(z) a n d  a d imension-0  field ~(z) .  Us ing  this auxi l iary  system and the current  

j we can  rewri te  the Bose b, c field theory.  

As  in the  case of  group current  algebra,  it  is convenient  to bosonize  j by  def in ing 

j ( z ) = e Oz¢~, 

 ln(z- w). 
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The exponentials of the line integral of the current e qq'(z) transform as 

131 

T (  z )e  qq~(w) - 
1] 

½eq( q + Q) + _ _  Owe q~'~) 
( z _ w )  z - w  

q 
j(z)eq~,(w) - _ _ e q ~ , ( ~ ) ,  

2 - - W  

[ jo, eq~(w) ] = q eq~,(w) , (78) 

so e u'~ shifts the charge by q and has conformal weight ½eq(q + Q). The action 

se= 

describes the bosonized current; indeed the equation of motion 

O: O~ = ~eQv@R 

precisely reproduces the current anomaly (76), (34). In terms of our new variable(s) 
(and 7, ~ for Bose systems) we may write b and c as 

c ( z )  = e +<:) , b ( z )  = e -+<~'~ (Fermi) ,  

c ( z )  = b ( z )  = e a (z) (Bose) ,  (79) 

The solitons e + ~ are always fermions, thus r/, ~ must be used to make b and e in the 

Bose case. A useful exercise is to verify (74) by inserting the representative (79) into 
the 1.h.s. and using OPE's to generate the r.h.s. This gives a complete description of 

the b, e field theory; in particular this bosonized form conveniently represents the 
spin fields 2 = e -+ ~/2 which interpolate between the NS and R sectors (cf. (60)). It is 
curious and essential for future developments that the zero mode ~0 never appears in 
the b, e algebra of Bose systems; only derivatives of ~ are needed. This means the 
irreducible representation of b and e is built out of ~, ~/, and p = O~; inclusion of ~0 
makes the representation reducible. Then every state in the system [~) would have a 
degenerate par tner  ~0Iq~) with exactly the same properties under the current j (z) .  

We must discuss one final point before returning to strings. In some of the 
foregoing analysis we assumed that the vacuum 10) was SL 2 invariant. However the 
spectrum is unbounded above and below, so the choice of vacuum state is somewhat 
arbitrary. This point is familiar in the case of Fermi statistics, where a Fermi 
sea-level must  be specified; likewise, for Bose statistics we must state the energy level 
below which all the levels are filled. If we were describing an interacting field theory, 
there could be transitions between levels, leading to a collapse of the vacuum; but 
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since we are dealing with a free field theory, this prescription causes no catastrophe. 

We will call this the Bose sea-level. Therefore we define the different vacua [q) by 

b, lq) = 0 ,  n > e q - X ,  

c, lq) = 0, n~ - e q + X ,  (S0) 

where for the NS sector q ~ ½ + ;v and in the R sector q ~ 7/. The adjoint of the 

q-vacuum is a state ( - q -  Q[ such that ( - q -  QIq) = 1. The propagator is no 

longer a simple pole in this vacuum; it receives finite corrections from the vacuum 

charge: 

~¢(z)b(w))q = ~ ~ - q -  QIc,~b,[q)z-m-(a-X)w , -x  
m,n  

= ~ (q-QL[c ,,b,]~lq)z "-(t X)w-n-x, 
n<~e q - X  

c' (z) 

The conformal properties of the current and stress-energy tensor are modified as a 

result 

Q 1 q 
{T(z)j(w)) 

( z -  ~)3 ( z -  ~)2 z 

q 
j(w) =:  A w ) : + - ,  

W 

~c eq(q+ Q) 1 
(T(z)T(w))  + 

(z-~)4 (z-~)2 z~ 
1 

T(z) = T ( z ) : +  ~q(q + Q ) ~ .  

These relations give the charge and energy of the q-vacuum as 

Jolq) = qlq), 

L0[q) = eq(q+ Q)lq) 

and it is a simple exercise to check that L_ 1 annihilates only the state 10), the SL 2 
invariant vacuum. A crucial distinction between the Bose and Fermi cases is that for 
Fermi systems (e = + 1) the sea-level is shifted by the action of b and e whereas for 
Bose systems the q-vacua generate inequivalent representations of the b, e algebra - a 
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finite number of field operators cannot fill a state. However, from (78) we see that 
the coherent state operators :eq~: interpolate between the various Bose sea-levels, 
shifting the vacuum charge by q since 

I q )  = eq<S>'~°>lO) - ( 8 1 )  

From this we may derive (80) via the operator product expansion of e q* with (79); 
then expanding b(z), c(z) in modes we see that the terms singular as z--* 0 must 
multiply annihilation operators. A final note: the auxiliary f, ~ system has two 

degenerate vacua 10), ~10), such that ~01~10) = 1. Upon reducing to the irreducible 
b, c representation in terms of 7, 0f = P, the auxiliary field vacuum is unique: 
{010) = 1 since the ~ zero mode is absent. 

5.3. T H E  C O V A R I A N T  F E R M I O N  VERTEX 

Having acquired all the technology of linear field theories, let us explore the 
applications in string theory. Our original reason for launching into the above 
discourse was to find the spin operators for the spinor ghosts 13, % Through 
bosonizing the ghost number current in the manner of current algebras, we obtained 
a scalar field q~ whose exponentials e q'~ of dimension - ½q(q + 2) shift the spinor 
ghost vacuum charge by q. In particular, the exponentials e ~/2 of dimension { and 
e ~/2 of dimension - ~ alter the vacuum by a half unit of charge and interpolate 
between the NS and R ground states, and are therefore potential spin fields Z. Our 
first candidate covariant fermion vertex is 

V1/2(u,  k, z) = u~(k)e O(:)/2S~(z)eikX(:), 

t b /  = k 2 = 0 .  (82) 

It is straightforward to verify that the operator products of V 1/2 with both j~I~{ST 
and JBRSTi(2) are nonsingular and hence fV_ 1/2 commutes with QBRST = Qo + Q1 + Q2. 
This is, however, not sufficient to describe fermion scattering because V 1/2 has 
spinor ghost charge of - ½, and only the four-point amplitude would cancel the 
spinor ghost background charge Q = 2. Thus we need a second version of the 
fermion vertex, 1/1/2, with opposite spinor ghost charge. The obvious candidate 
ghost operator is e e°/2 of dimension - ~, however, its operator product with ;ca) is JBRST 
more singular than e -*/2. In fact, the only operators which commute with QBRST 
with positive ghost charge are of the form [QBRsT, O]. These are all spurious, with 
the exception of 

V;hys= [O,RST. I83) 

which is not spurious because ~ is not part of the irreducible algebra of the spinor 
ghosts t3 and y. Recall that our irreducible current algebra representation involves q~, 
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4, and O = 0~ but not ( itself. Hence ~Vphy S is not in the irreducible vertex operator 

algebra, and consequently [QBRsT, ~Vphys] is not spurious or null in this algebra. In 
fact, the inclusion of the ~ zero-mode renders the vacuum non-invariant under the 
BRST algebra. To see this, let us examine the SL 2 invariant vacuum 10), for which 

b,,[O) = 0 ,  n>~ - 1 ,  

c,10 ) = 0, n >~ 2, 

1 fl. lO) = 0 ,  n>~ 2 '  

v.10) =0,  

It follows from these properties that 

(84) 

system: 

C ~ e ° , 

7 = e*4 = e * -x ,  B = e  * 0 ~ = e  * o = e - ~ + × 0 X ,  

( X ( z ) x ( w ) )  = ( o ( z ) o ( w ) )  = - ( q , ( z ) , # ( w ) )  = l n ( z -  w).  

In the 4, O algebra, the conjugate of the state I 0) is e 3°- 24(0)10 ), and 

QBRST e3° 2~(0)10 ) = 0 .  

Hence vacuum expectation values of physical vertex operators 

A N -  (0[e 3° 2*Vphys(1)... Vphys(N)10) 

will be BRST-invariant. On the other hand, in the 4, ~ algebra the conjugate of 10) 
is e 3° 20+×(0)10 ) because of the ~ zero-mode; one readily verifies that 

QBRSTe3°-2¢+×(0)I0) 4: 0, 

so that vacuum expectation values in the reducible representation of the ghost 
algebra are not manifestly BRST-invariant. Nevertheless it is often convenient to 
pass back and forth between these two algebras by including or removing the ~ zero 
mode integration in the path integral. For instance, although Vphy s in (83) exists in 
both algebras, its representation in intermediate steps of a calculation as a BRST- 
commutator  in the reducible algebra is quite useful, as we shall see. 

QBNSTI0) = O. 

TO calculate, it is convenient to bosonize all the ghosts, including the auxiliary ~, 4 
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Returning to our search for fermion vertex operators, we find that 

V1/2 (u  , k ,  z )  = [Q,RsT,Z~V 1/2] 

= [QI+ Q2,2 v_1/2] 

= u"(k  ) {ee°/2 [ OX ~' + l i (k  .~) ~b"] V,,BS~ + ½e3~/27bS,~ }e i kx  (851 

is the physical vertex operator of spinor ghost charge opposite to V 1/2. We have 
ignored a total derivative which will not contribute when the vertex is integrated 
over the world sheet. The fact that the product of V 1/2 and V1/2 factorizes on the 
NS vector vertex (71) demonstrates that this is indeed the correct procedure. This 
product is most easily evaluated by writing Iii1/2 as a BRST-commutator as in eq. 
(RS~ 

V x / 2 ( u , k , z ) V , / z ( v , p , w ) =  V 1/2(z)[01,2~V 1/2(w1] 

= -2[Q1,  V , /2(z)~V 1/2(w)]. 

We can ignore the second piece of V1/2 because it cannot contribute to expectation 
values involving V_ 1/2 due to b-charge conservation. The product 

V l/2(u, k, z )V  1/2(v, p ,w)  - (z - w) l+kP(uyt~o)e +~/uei(P+k)X(w) (86) 

is now substituted on the right-hand side and evaluated as 

v_1/2(., k, z)V /2(v, p, w) 

(Z W) l+p'k I" dz '  _ _ ( f iy"v)J)~ie%l+.  OX(z')e-*~b"ei<p+*'X(w) 

-- (Z -- W)-I+p'k(H'~'UU)[ OXP'Av i( p + k ) .  ~b@')e i(p+k) x] 

-- (Z -- W) -1 +P'kVB(~I~ = blVP'U, p -1"- k ,  w ) . (87)  

Note again that, though we worked in the enlarged 7, ~ algebra in intermediate 
steps, the end result does not involve ~ and is consequently valid in the 7, P 
subalgebra as well. The desired fermion vertex thus has (so far) two versions 

VF(/ / ,  k ,  z )  = V 1/2 or I/1/2. 

We should mention that, although S ~ in V~/2 has the opposite chirality compared to 
SI~ in V 1/2, I11/2 carries one more unit of spinor ghost charge which contributes to 
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make the overall value of ( - ) F  identical. To calculate a fermion scattering process 

we just put together charge neutral combinations of V_I/2 and V1/2. 
It is fortunate that operators of the form (83) are not spurious, else no sensible 

fermion vertex would exist. Instead we now have an embarassment of riches, for not 

only does V_ 1/2V1/2 factorize on physical NS vertices, but so do V 1/2 V 1/2 and 
V1/zV1/2 ! For instance, (86) is a second physical NS vector vertex, in addition to 
(71). Any expectation value with the vertices occurring in the (time) order 

( . . .  v _  1 / 2 v , / 2 v _  1 / 2 V l / 2  . . . ) (88) 

will necessarily contain the unwanted orderings in crossed channels, by duality. 
These operator products factorize the amplitude on different Bose sea-levels (cf. eq. 
(81)) than that of the canonical SL 2 invariant vacuum because of the nonzero 
q~-charge of the operators. All is well if we can show that all these different sea levels 
are equivalent. To do so, consider any correlation function of fermion vertices V v. It 
is a correlation function containing an equal number of V 1/2 and V1/2 vertices by 
q~-charge conservation. If we can prove that 

( . . .  W 1/2(Ul, kl,  z1)..-I71/2(u2, k2, z2)--- ) 

=(. . .V1/2(ux,kl ,  Z1)...V 1/2(u2,k2, z2) . . . ) ,  (89) 

then by a succession of such operations we can arrange the vertices in the canonical 
order (88); intermediate states of different Bose sea levels are equivalent descriptions 
with the same physical content, and we can always choose to work in the canonical 

NS and R sectors. 
The proof of (89) involves passing back and forth between the "big" (7, ~) and 

"small"  (7/, p) algebras in the functional integral, as in the steps leading to the 
demonstrat ion (87) of factorization. Begin with two vertices V 1/2 at z 1 and V1/2 at 

z 2 in a correlation function in the small algebra (see fig. 2a). Now move to the large 
algebra; this means merely that we include in the path integral an integration over 
the ~ zero-mode, together with a factor ~(z) in the amplitude to absorb the 
Grassmann integration. So far we have done nothing. Note that the location of the 
extra ~(z) on the world sheet is irrelevant since only the constant part contributes; 
therefore, choose z = z 1. In the large algebra we may now write 171/2 = 
[QBRsT, ~g 1/2] in terms of the contour integral of the current JBRST about z 2 (see 
fig. 2b): 

dw 
V1/2( z2) = ~ ~iJBRsT( W )~( z2) V_ I/2( Z2) . 

Recall that in the large algebra, QBRST~I0) =/= 0 and so the calculation is no longer 
manifestly BRST invariant; otherwise eq. (85) would imply that V1/2 decouples, 
being a BRST commutator, and all fermion amplitudes would vanish. 
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a) , V--~(zl) 

c) 

,V l  (z 2) 
2 

,¢v_-(z2) 

b) "~'V- l-(z I ) 
2 

d) 
• V±(z  t) 

2 

• V-½(z2) 

Fig. 2. Steps leading to the demonstration of Bose sea equivalence. 

Now we may deform the contour by pulling it off the back of the sphere. In 
general there will be other physical vertices in the correlation function but because 
QBRST (anti)commutes with them the contour integral passes through without 
generating new terms. The contour now surrounds z 1 instead of z 2 (see fig. 2c); the 
orientation is as shown due to the Fermi statistics of the Grassmann ~ integral. 
Using eq. (85) we see that we have successfully interchanged the two types of 
vertices, and integrating out the ~ zero-mode we transfer back to the small algebra 
(fig. 2d). Thus the identity (89) is proved. Since ( has dimension 0, there is always a 
single constant zero mode of ~ for any world-sheet topology, and the preceding 
argument generalizes. The JBRST contour integral passes through handles by splitting 
and rejoining. Zero modes of b, c, and the other ghosts do not vitiate the argument; 
as explained in sect. 2, the reparametrization ghost zero-mode insertions do not 
affect BRST contour deformations, and similar considerations show no difficulties 
with the spinor ghosts either (see sect. 7). World surfaces which have boundaries or 
are nonorientable can be treated similarly; one should find a problem with BRST 
invariance unless the gauge group is SO(32). 

This ~-manipulation exposes a remarkable redundancy in the representation of the 
fermion scattering amplitudes. Because the vertices V 1/2 and V1/2 carry spinor 
ghost charge, intermediate states factorize on differing Bose sea-levels of the/3, y 
system; thus the Hilbert space must be extended to include all the inequivalent 
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representations of this algebra corresponding to the different vacuum sectors. 
Nevertheless, any physical state has a representative in each sector connected to all 
its relatives by the f-manipulation, so all the Bose sea-levels are equivalent under the 
algebra generated by the vertex operators. The fermion vertex generates a closed 
subalgebra of this hugely overextended matter-ghost system. 

The f-manipulation that generates 1/1/2 from V 1/2 may also be used to generate 
further vertices (which we label by their Bose sea charges) 

and so on. Similarly, we may find the vertex V_3/2 such that V t/z = 
[QBRsT, iV  3/2]" e 3~'/2S'~eikx is the BRST invariant vertex with Bose sea charge 

- ~- which produces the highest weight NS vector vertex in its operator product with 
V~/2 and has V a/2 as its successor under a Bose sea shift. Proceeding in this way we 
may produce a version of any vertex operator that interpolates between any two 
Bose sea-levels of opposite grading (NS and R). Similarly, there is also an infinite 
tower of NS vertices, of which V ~ is the "canonical" highest weight vector vertex, 
and the superfield V 0 = V B (eq. (87)) is its successor. The rearrangement lemma 
implies that we need only choose one representative charge-neutral collection of 
vertices in correlation functions since any other configuration is equivalent. Pre- 
liminary investigation indicates that the f-manipulation is invertible in the space of 
physical states, although we have no general proof. 

In fact, a glimmer of this redundancy was discovered in the early days of the NS 
theory. From (84) we see that the SL 2 invariant vacuum is not annihilated by either 
of the ghost modes c I or ~'1/2; not all the positive frequency mode operators 
propagate forward in time. In other words, although ]0) is a highest weight state of 
the super-Virasoro algebra, it is not a highest weight state of the ghost algebra. For 
the reparametrization ghosts, we saw in sect. 2 that the situation could be remedied 
by changing the Fermi sea-level of the b, c system. 

c(O)lO> = e°(°)lO> 

is the highest weight vacuum state of energy - 1, corresponding to the conventional 
tachyon ground state of the bosonic string. Similarly, the highest weight vacuum of 

the combined ghost system is 

c(O)e #(°~10 ) . 

This state has energy - ½  and fermion parity F =  - 1 ;  it is the canonical NS 
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tachyon ground state. Converting between this Bose sea level and 10) can be 
accomplished via the ~-manipulation and was known in past times as "changing 
pictures" [62]; the procedure used then was to write the initial and final vertices of a 

scattering process as commutators with G+ 1/2: 

(01 v(BN) .. .  Vn(t)lO} = (Ole~,N.xg.¥., CGI/2V(N 1) " " .  V(2)Gn -~/2~, " e  ¢ e '* '  XlO } . 

Then moving G 1 / 2  off to the left, one generates a new representation of the 
amplitude where the ground state has energy - ½ instead of - 1 .  We may now 
understand this rather obscure operation as a ~-manipulation; by writing 

V . ( f , k , z ) = [ Q n R s T , ~ e  ~ ' f ( k ) . qJe ' kX(x ) ] ,  

we have (recall that (0le-a~+3°]0) = 1) 

@[e-2q~+3°vB(N)... VR(1)I 0 ) 

= (01e-2++3°~vB(N)... V~2'[Q,Rsx,~e +fl 'g,  ei*"x][0) 

= (Ole- ~ + 3°~N" qJ e ik'~ Xv(BN ') . . .  V(B2)e q)~ l "  t~ X e ik~ x I0) 

and we we that the "picture changing" operation of the old formalism has a very 
natural interpretation as a rewriting of the theory in a different ghost vacuum! 

5.4. SAMPLE CALCULATIONS 

To illustrate the use of all these formal procedures in a practical calculation, 
consider the example of two-fermion-two-boson scattering (see fig. 3a). The matrix 
element to be calculated is 

GxF2B(1 . . . 4 )  = (e  2dp+3°~4. (ON-l-ik4.~b~,)eik,X(z4)~3 • ( OX + ik 3 • ~b~b)eik~X(z3) 

× u~S,g */2e'k2 X(z2)u{~y;,S" [OX" + ¼ik,. ¢+"]e~/2e '*" X(z,)) .  

Only the parts of the fermion vertex V1/2 which contribute to the correlation 
function have been written we consistently drop terms which don't  conserve ghost 
charge. A ~-manipulation simplifies the calculation - go to the "large" algebra and 

move both ~(z) and e -z*(:) to z 4. Now write V1/? = [QBRsT,  ~V-1/?] as a BRST 
contour  integral and deform the contour o n t o  ~e2~'VB(Z4). The relevant operator 
product  gives 

~e* OX. + ( w ) ~ e  24'~" 4 ' (OX~-ik 4 "l~l~)eik4"X(z4) 

(Z x l + 2  2 __4~ e,k.. (terms cc or ~ + . - w) e S4"~ X(z4) + k 2 . k )  finite 
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o) 30-- 2 (~ 
x e 

V-±(z z) 
• 2 

VL(z t ) 
• 2 

Vo(Z 4 ) Vo (Z3) 

b) 
.cV_L(I) 

2 

~:V_l (oo) "Vo(z3) 

.cV_{(O) 

Fig. 3. Vertex conf igura t ions  for the two-fe rmion- two-boson  scat ter ing ampl i tude  (a) original conf igura-  
tion, and  (b) after a Bose sea shift. 

Thus V B ( Z 4 )  is converted into a "picture-changed" NS vertex (fig. 3b). In addition 
we can fix the location of vertices 1, 2, and 4 as in sect. 2 by attaching c = e ~ to 
them and dropping the Koba-Nielsen integration. We have 

G2F2B = /~"4" ~ e-O+"e ik~ X(Z4)~"  3 " ( a X - I -  i k  3 • ~ p ~ p ) e i k ~ ' X ( z 3 )  

X u~S,~e-~'/2+Oe'k~" x( z2)u~S#e-~,/2 +odk 1 . x(2.1) ) .  

Now evaluate each of the component field correlations. The ghost contributions are 
trivial: 

(eO~Z,)eO~Z2)eO~Zl)) = ( z  4 - z 2 ) ( z  2 - z 1 ) ( z  I - z 4 )  , 

( e  ea(Z4)e-O/2(Z2)e ,k/2(z,)) = ( z  4 _ z2  ) - 1 / 2 ( z  4 _ z 1 ) - l / 2 ( z 2  _ z 1 ) l / 4 .  

The two possible contributions of X" are also easy: 

(90) 

x - ki.k j (e~""e '*~Xe'~"e ~ ~ )  = l - [ (z~-  ~,) , 
i<j 

Xi( ~'3"k4 ~'3"k2 ~3"kl ) - - + _ _ +  _ _ _ _  . 

Z 3 - -  Z 4 Z 3 - -  2 2 -7 3 --  Z 1 

At first sight the calculation of the fermion correlations might appear formidable, 
but this is not the case. They are determined solely by their SO(9,1) and conformal 
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properties. We require that the correlation functions transform in the appropriate 
representation with the correct conformal weight at each point. For instance, this 
uniquely specifies 

<@p.(z4)Sa(z2)Si3(z1)> = ( z 4 _ z 2 ) - 1 / 2 ( z 4 _ z 1 ) - 1 / 2 ( z 2 _  Z1 ) - 3 / 4  # I / a f t ,  

such that the singularities in each pair ( z , -  z j) match the operator products (59) 
[13]. The other correlation function we shall need is just the insertion of the Lorentz 
current j , x  = q/+x into the above; its effect is to produce rotations of the fields [35] 
(cf. eq. (58)) 

( j~x(z3) ~ ~( z4 ) Sa ( z2)Sfl( ZI)> 

Mi ~x 
E --<~;~(z4)Sa(z2)Sfl(ZI)> 
i~3 Z3 -- Zi 

m i  vx y ' - - .  
i~3 Z3 -- Zi 

y~fl(Z4 __ Z2 ) 1 / 2 ( Z  4 - -  Z1 ) 1 / 2 ( Z  2 - -  Z1 ) 3 / 4 ,  ( 9 1 )  

where M] '~ is the Lorentz generator acting on the index at z i. Combining (90)-(91), 
we find 

G2F2B(1 . . .4)  = l--I(Zi--Z;)i<, < ' L ×  { 
~3" k4 ~3" k2 ~'3" kl ] 

- -  _{_ - -  _{_ . . . .  ] b/2~4b/1 
Z 3 - -  Z 4 Z 3 - -  Z 2 Z 3 - -  Z 1 

+ I 
Z 3 -- Z 4 

(~"4 " k 3 L /  - -  2~/ul - ~4"  ~'3L/2/f3Ul ) 

+ 
Z 3 -- Z 2 

+ 
Z 3 - -  Z 1 

To produce the full amplitude, we must combine this result with an appropriate 
correlation function in 5 and integrate z3, 53 over the complex plane. For instance, 
in the heterotic string the 5 correlations are those of the bosonic string (19). The 
quantum numbers of Yang-Mills particles are carried by left-moving currents jy  or 
other conformal fields of Spin(32)/Z 2 or E 8 × E 8 current algebra; alternatively (or 
in addition) the 5-dependent part of the vertex may carry Lorentz indices. The 
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relevant correlation for a four-point gauge particle ampli tude is 

G 2 F 2 B ( ]  • • • 4 )  

e e jo , ( za )e  ja,(Z3)ee jo~(52)e%i&xj~(51)) ( ~ ik4X" - ik3X.  - ~ ik2X" 

= I-[  (~j - L)<kJ{[ (51  - 52)(51 - 54)(~3 - 52)(53 - ~4)] ltr(T.,T~2T~T~,) 
i < j  

+ [(51 - 52)(5~ - 53)(54 - 52)(54 - 53)] -ltr(T.,T~f~4T~,) 

+ [(Sa - 53)(5~ - 54)(52 - 53)(52 - 54)] l tr(T~f~,T~f~4) 

- '1"-(51 - -  5 2 ) - 2 ( 5 3  - -  54) -  2tr(T. T . : ) t r (T .y~ . )  

+ (51 - 53)-2(52 - 54) 2tr(T~,T~,)tr(T.~T~.) 

+ ( 5 1 - 5 4 ) - 2 ( 5 2  - 53) 2tr(T~,T~.)tr(T.2T~,3)} 

× (5 .  - 52)(52 - 51)(51 - 5~). 

The integral of  G.  G over z 3, 53 is then the desired four-string s-matrix element. The 
integrat ion yields a combinat ion of F-functions, kinematic factors and group traces: 

) [tr(1234) 2 2t 2 A = 'rr(u2g" ~'4Y" (k3 + kl)Y" ~'3Ul -t- t r ( 1 2 4 3 ) - -  + t r ( 1 3 2 4 ) -  
to t  SU IA 

2 ,  2 ,  2] 
+ tr(12)tr(34) s(s + 2~ + tr(13)tr(24) u(u + 2~ + tr(14)tr(23) 

2 2 2s 
+Tr(u2~'. f3~'" (k3 + k2)Y" ~4ul) tr(1234) t + t r ( 1 2 4 3 ) -  + tr(1324) 

U tU 

2 -2s  
+ tr(12)tr(34) - + tr(13)tr(24) - -  s u(u + 2) 

r ( -  ½ u ) r ( -  ½ t ) r ( -  ½s) 

× r(½u)r(9)r(~s)  

- 2 s  
+ tr(14)tr(23) ~ ] 

The ratio of three F-functions approaches one in the limit a '  ~ 0; away from this it 
reveals the poles associated with massive string state resonances. The explicit poles 
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appearing with the group traces (which are taken in the adjoint representation with 
an implicit factor of ~0) represent the massless particle poles, which receive contribu- 
tions from all states carrying the relevant quantum numbers. 

Conformal techniques may of course also be used to calculate multifermion 
scattering processes, although the algebra is more involved. In particular, the 
four-fermion amplitude [52a] has been recomputed [53]. Starting with the configura- 
tion 

G.F= IV l/eVillY 

one can again use a ~-manipulation to turn all four vertices into V t/2's. The ghost 
correlation function 

e ¢<:)/2 e [ z 0 - z ) ]  -1 /4  

reproduces in a simple way (using only free field theory) the part of the scattering 
amplitude that required a computer to discover in the previous formulation of the 
fermion vertex [56]. The four-S~ correlation can be worked out by a variety of 
methods, with the answer [53] 

( S ~ ( o o ) S , ( 1 ) S y ( z ) S ~ ( O ) )  = [ z ( 1 - z ) ]  3 / 4 ( ( 1 - z ) 7 , ~ y r ~ - z  .,~.,~' 

The computation of the amplitude using the appropriate 5 correlation function 
proceeds as before. 

If one is willing to forego the manifest symmetries of the SO(9,1) and group 
currents, the calculations are simplified by working in the bosonic representation 
described in sect. 4 (see also refs. [57,12]); for instance, V 1/2 becomes 

Vl(u ,  k ,  z )  = u ( k ) e  q~/2eia'Heik'X 

The Lorentz algebra is somewhat ugly due to the explicit choice of basis for the 
Dirac algebra and the grouping of Lorentz indices in pairs, but this is more than 
compensated by the fact that all the correlations are just those of free fields! The 
bosonized form is also convenient for the analysis of multiloop diagrams, where the 
construction of the free field Neumann function on a general two-dimensional 
surface is a classical problem solved in the last century. We will give an outline of 
this analysis in sect. 7. 

6. Supersymmetry 

We have given a prescription for the determination of all the operators of the 
fermionic string theory using BRST invariance. In particular the vertices for massless 
states have been exhibited, and a few sample correlation functions calculated. In this 
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section, we will investigate the supersymmetry of the fermionic string theory in the 
covariant quantization. We will construct the covariant supersymmetry charge, thus 
proving supersymmetry to all orders in string perturbation theory (modulo anoma- 
lies), and show that supersymmetry guarantees the vanishing of tadpole diagrams 
and mass shifts of massless particles. We conjecture a relationship between the NSR 
and other approaches to covariant quantization of fermionic strings [23, 24]. 

The supersymmetry charge should be a BRST invariant operator which inter- 
changes the NS-boson and R-fermion sectors of the string Hilbert space, relating 
states of the same mass. The natural candidate is the line integral of the fermion 
vertex at zero momentum 

From the operator product relation (87), we find that Q~ converts a massless 
fermion emission vertex into a massless boson emission vertex: 

The converse is readily demonstrated as well: 

The BRST invariance of V v guarantees that of Q~. Generally we may write any 
fermion (boson) vertex as the contour integral of V~ about its boson (fermion) 
vertex partner, i.e. as a commutator with Q~ (see fig. 4). On a multiply-handled 
Riemann surface, this demonstrates the vanishing of tadpole diagrams. Upon writing 
the vertex as a supersymmetry commutator, the analytic contour integral may be 
pulled off the back of the surface; since in the process no singularities are 
encountered, the diagram vanishes. This argument is specific to the theory projected 
onto even chirality F =  1. Before this projection there are square root cuts in 
correlation functions and phase ambiguities in transporting an operator around a 
handle. Upon  projecting onto F = 1 we have a local field theory on the world sheet 
and no global phase ambiguities in the remaining operators (this property is largely 

~V a < > ~V F 
Fig. 4. Rewr i t i ng  a b o s o n  vertex inser t ion  as a s u p e r s y m m e t r y  c o m m u t a t o r .  
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Fig. 5. Supersymmetry contour deformation relating boson and fermion two-point functions. 
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a result of modular invariance). The same contour manipulation on a two-point 
function relates boson and fermion propagator corrections since this time the 
deformed supersymmetry contour circles the second vertex (see fig. 5). Chirality 
thereby protects against mass renormalizations of massless bosons. 

The vector and spinor vertices at zero momentum 

p " (  z ) - a z X " ,  

Q~(z) - e +/2S~(z) or e+/Zs#y#~ O:X ~ (93) 

(and their images in other pictures) are like a supersymmetry "current algebra"; 
more precisely their line integrals are a set of conserved charges obeying 

[P~', P~] = [P~,Q~] = 0 ,  

[Q~, Q#] = 2~,~#P**. 

The currents themselves don't quite form a closed algebra, since for example 

1 
P~(z)Q~(w) (z - w) 2e~'/2S#y#~(w)" (94) 

Because of relations like (94), the current would-be current algebra does not close 
on a finite number of Bose sea-levels. To obtain a closed algebra would require 
working in all the different pictures simultaneously; this may be required for string 
field theory. Nevertheless the form (93) is rather suggestive. One would like to 
interpret e'~/2S~(z) as 0 O(z), the dimension-zero supersymmetry partner of X ", with 
e~'/2S~ its charge conjugate 8/80~(z). Eqs. (93)-(94) look vaguely like Siegel's 
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relations [24] 
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P ~ ( z ) P ~ ( w )  
2 - -  W )  2 ' 

D,~(z)D~(w) - -  y~P~ ' ( z )  D,~ 0 
z - w  80 ~ ' 

1 
P~'(z)D,~(w) - - -  O.OBy~ 

Z - - W  

and one may show that the natural candiate for a 0 ~ stress-energy tensor 

8 
3.0"80----g = 1 6 [ ½ ( 0 . ~ )  g, ~] + 4[½(Ozff) 2 + 32q,] 

is a linear combination of the Lorentz and ghost current stress-energy tensors. If one 
could find an appropriate interpretation of 0", perhaps a lagrangian could be 
written which quantizes the superstring variables directly much as Green and 
Schwarz have done on the light cone [63]. One would then have a 2d field theory 
which directly quantizes the spin model, and supersymmetry would be manifest. A 
geometrical classical action has been written for X ~ and 0 ~ [23], but only recently 
has the full algebra of first-class constraints been discovered [24]. If this program 
succeeds, one will have another quantization of superstrings in terms of X ", 0 ~, and 
the Faddeev-Popov ghosts for fixing the local symmetries of the action. This should 
not yield a new string theory, rather we expect that there will exist at the quantum 
level a change of variables relating the two (BRST quantized) theories in much the 
same way that a triality rotation in SO(8) relates the light-cone NSR and Green- 
Schwarz theories [64]. The covariant 0 ~ should look something like our candiate 0"; 
the Faddeev-Popov ghost for the local fermionic symmetries [23, 24] of the Green- 
Schwarz-Siegel (GSS) action (generated by the dimension-2 "current" pD)  is a 
dimension - 1  field, probably ~e3~/2S~-~.  Then the part of the GSS BRST 
operator xpD,  which serves to restrict to the physical half of the components of 0" 
in the GSS theory, would reproduce ~,P. ~b in the NSR theory which also restricts to 
physical fermion polarizations. Proceeding in this way one should be able to make a 
complete correspondence between the string variables plus ghosts of the two 
quantizations. The symmetry algebra of the GSS action is rather complicated [24], so 
we see that the NSR variables provide an extremely compact embodiment of the 
on-shell physics. It is unclear whether the supersymmetry charge (92) will generate 
full off-shell supersymmetry. Q~ shifts the Bose sea-charge by some amount; to get a 
closed off-shell algebra, one would have to work in a Hilbert space which is the 
direct sum of all the different Bose sea Hilbert spaces since the Bose sea equivalence 
given by the ~-manipulation is only valid on-shell. It is possible that all the auxiliary 
fields needed for off-shell supersymmetry in ten dimensions could arise from the 
various vertex operators in different Bose seas, but it is not clear how. Since the 
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first-quantized formalism is gauge-fixed, presumably one would be working in some 

particular (covariant) supersymmetry gauge [65]. 

7. String perturbation theory 

The study of string loop perturbation theory is just in its infancy. Loop "graphs" 
correspond to path integrals over Riemann surfaces S with some number of handles 
and can be thought of as being obtained by "sewing together" tree diagrams [66] 
with a sum over states in the Hilbert space of the sewn external legs. In practice, this 
procedure boils down to a brute force construction of the path integral on a 
higher-genus Riemann surface, we will begin by describing the construction of such 
surfaces (including the moduli) and then give a prescription for evaluating the path 
integral. In the process we will encounter some elegant classical mathematics, and 
conformal technology will prove its worth once again [67]. 

In the mathematical literature, a Riemann surface S is usually described in terms 
of its universal covering space S, such that S is S modulo some infinite discrete 
subgroup F of SL(2,R) which acts on ~ without fixed points; F is in fact Hi(o% ). 
These parametrizations of $ have an extensive mathematical literature [68] and are 
closely tied to the metric of the surface and differential geometry. Another approach 
uses a different parametrization of the surface. Investigations during the previous 
incarnation of string theory produced this parametrization [45] in the course of 
treating loop diagrams as the unitarization of the tree-level S-matrix. The group 
SL(2, C) maps the plane C onto itself. An element "y E SL(2, C) 

a z +  b 
"y( z ) - cz + d ' a d -  b c =  l 

(a,  b, c, d complex) may be rewritten 

y ( z )  ~ K 

in terms of the fixed points ~, ~ = (1 /2c ) (a  - d + ~(a  + d )2 _ 4 ) and the multiplier 
K +  K -1 = a + d -  2. Without loss of generality we may choose IKI < 1, so that ~/is 
repulsive and ~ is attractive. The rate of traversal from one to the other governed by 
K. y maps the circle G= (z: [cz + d[ = 1} into the circle (~' = {z: [cz - al = 1}, 
known as the isometric circles of y. The identification of (~ under y generates a 
torus, i.e., if we cut holes in the sphere along C and C' and glue the boundaries 
together we build a handle (see fig. 6). For the torus, ,/ may be chosen to be a 
dilatation y ( z ) =  ¢0z; it is sometimes convenient to use the parametrization 5 = 
(ln z ) / 2 7 r i  (and thus T = ( l n~ ) /2~ i ) .  Surfaces of higher-genus g > 1 are obtained 
by considering the group F generated by g elements 3'i ~ SL(2, C), i = 1 . . . . .  g. The 
Yi must be such that no isometric circle separates any two other isometric 
circles - then the group would not generate a surface. Since ~'i maps C i into G;, the 
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5 

Fig. 6. Identification of two circles in the complex plane under an SL(2, C) transformation 3' generates a 
handle. The dotted circles are the images of c under powers of 3,. ~ and 77 are the fixed points of the 

transformation. 

region exterior to all the C i, C~ (i = 1 . . .  g) is a fundamental domain such that any 
y ~ F maps a point inside this region to a point outside, and so identification under 

the action of F yields the g-torus. F is known as a Schottky group [69]. The circles 

E i, (~ joined by 3'i correspond to a cutting of the surface g along the g cycles c2i_ 1 
of a canonical homology basis of $ (see fig. 7). The generating elements 3'~ comprise 
6g parameters,  of which 6 may be fixed by an overall conjugation by an element of 
SL(2, C), leaving 6g - 6 free parameters as moduli of the surface g. Note that such a 
conjugation cannot alter the trace of a matrix, hence the single complex modulus 

remaining in the torus case. 
Given the surface S in terms of the group F, one of the important tasks is to 

construct a basis for holomorphic one-forms, f ( z ) d z .  Such a basis is given by the 
so-called abelian differentials of the first kind dc0~, i =  1 . . .  g [45]. These act like 

holomorphic  coordinate differentials for transport around a given handle. The 
integrals of these holomorphic one-forms are the first abelian integrals and are 
defined by their periodicity properties along the cycles generating HI (S  ), the first 
homology group. One may always choose a canonical set of cycles q . . . c 2 g  as 
depicted in fig. 7. The basis dw, is then determined by the "period matrix" of 

intersections 

2i  1 

~ d~oj = 2~ri • ~rij. (95) 
2i 

C 4 • • e ~  C2g 

C I C3 C2g_ I 

Fig. 7. Standard homology basis for the surface. 
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The first equation is a set of normalization conditions. The matrix %j and the d~0 i 
are related to the group F as we shall see in a moment. Indeed one may take any 
3g - 3 of the ~g(g + 1) complex entries of %7 as a set of local moduli, but they are 
less directly related to construction of the surface and the Neumann function, and 
no fixed set of 3 g -  3 periods are valid global coordinates on moduli space. The 
exception is the torus, where d~0 = dz, the standard coordinate differential; and 
the relations (95) give the distances 1 and r around the two noncontractable loops. 
The Poincar6 theta series 

d y ( z )  dz 1 
O(z,a)dz= ~_. y ~ a  ~-" 

(%z + 4 )  2 v ( z ) - a  

is an automorphic form (i.e., a function covariant with respect to the group F) such 
that 

d~, = O(z, a) dz - O(z, 3',(a)) dz (96) 

are our set of first abelian differentials. That is, O(z, a) is holomorphic except for the 
pole at z = a; the difference (96) subtracts the pole to leave a holomorphic function 
which is covariant unde r / ' .  Moreover, the so-called " third abelian differential" 

d~%b=O(z,a)-O(z,b), 

is such that its integral 

log[ y ( z ) - a  y( Zo) - b ] 
 oh(Z)-  o (z0) = - E / 

u J 

has the correct singularity structure to be the Green function on the surface S. The 
poles of d%b in other fundamental regions are the image charges used to build up 
the correct Green function. The addition of a linear combination of first abelian 
integrals % ( z ) -  ~0i(z0)= fjod% will not change the singularity structure but does 
alter the integral of a function around a cycle; the appropriate definition of the 
Green function turns out to be 

V(z, , ,  z,,; a, b ) =  Re [%,,h(Zm)- %,,h(a)] 

g 

+ ~_. [Re(~i(z..)-oa,(a))](Imrr).jl[Re(%(z~)-~oj(b))] 
i = l  
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The extra piece is chosen so that V is single-valued on the surface 

~ d V =  0, i =  1 . . . . .  2g.  
t 

Since we have seen that all of the operators of the fermionic and bosonic string 
theories have realizations in terms of free scalar fields, this is sufficient to evaluate 

all correlation functions. One works in the bosonic representation of the Lorentz 
current algebra j ~  (and group currents j~ for heterotic strings) and also of the 

ghost fields b, c, fl, y. The oscillator modes of the bosons X ~, H i, a, ~, and X 
generate the third abelian integral contribution to the two-point function V; the 
zero-mode loop integrations (or lattice sums as the case may be) yield the holomor- 

phic first abelian integral terms [45]. The two-cocycles associated with each of the 

lattices should keep track of minus signs in spacetime fermion loops. 
One of the difficulties of previous attempts to construct multiloop amplitudes was 

an ambiguity as to the measure of integration. The vertex operator contribution to 
the ampli tude is simply given by the set of free field contractions using the two-point 

function V; the measure is more subtle. First, one needs to construct the vacuum 
energy contribution to the diagram. As we saw in sect. 2, the ghosts enter in an 
essential way in order to cancel the propagation of spurious states, a mechanism not 
available in the days of dual models. The second derivative a= O w V(z, w)]= _~ ~ gives 
the derivative of the vacuum energy in terms of the stress tensor of all the bosons as 
in sect. 2. Given the variation of the metric in terms of our parametrization of the 
surface, we can integrate with respect to the moduli as in (36) to obtain the partition 
function. In the case of the fermionic string, these factors conspire to cancel at 

one-loop due to fermion zero modes [70]. For fermionic string multiloop diagrams, 
spacetime fermion and boson contributions to the partition function to continue to 
cancel in the vacuum energy [67]. Another approach to the calculation of the 
relevant functional determinants is pursued in ref. [45], where loop diagrams are 
calculated by sewing tree diagrams as mentioned above. The missing component  in 
this work was the ghost partition function. One obtains the determinants of the 

relevant laplacians in terms of the multipliers of the group F: 

d e t Z l , = i - [ , f i (  1 ~ 2 - K v ) . ( 9 7 )  
y n = l  

The prime on the 1.h.s indicates the omission of the zero-mode contribution, and on 
the r.h.s denotes a product over elements which are not powers of other elements. In 
the case of X" the zero modes just contribute factors of det(ImTru) to the measure; 
for the other (bosonized) fields the zero-mode momenta  lie on a lattice and there will 

be finite corrections. 
In addition to the dependence of the vacuum partition function on the moduli, 

which we discussed in sect. 2, in the fermionic string there are "supermoduli"  [60]. 
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The Riemann-Roch theorem (77) tells us there are 2 ( g -  1) complex gravitino zero 
modes for g > 1 (also: on the sphere G + 1/2, (7+ 1/2 act as the four conformal Killing 
spinors, and on the torus there are two supermoduli and two conformal Killing 
spinors Go, Go, depending on the spin structure). Of course, for the heterotic string 
we keep only the holomorphic part of this superstructure. The supermoduli are the 
modes of the gravitino field which cannot be gauged away in choosing the supercon- 
formal gauge (50). Integration over the supermoduli will bring factors of T F ( Z ,  O) 

down from the action (49), folded in with the appropriate zero-mode wave functions. 
The ghosts will also reflect these zero modes. In the bosonized representation, there 
will be a background charge coupled to the bosonized current j = 0~). The counting 
of the background charge is the same as for the gravitino zero modes. BRST 
invariance of the measure provides a unique prescription for incorporating the 
effects of the supermoduli and the background q~-charge. The combination 

[QBRs'r, ~1+= -- ~e*P.~b- ¼ 07 e2+b- ¼0(7 e2'~b) + c O~ 

joins the background charge operator e ~ of the spinor ghosts with the T F produced 
by the gravitino zero modes (both have the same counting - two for each handle) in 
a BRST invariant way. Note that the combination has (--)V = 1 and is therefore a 
good spin model operator; the separate components have odd fermion parity. The 7 
zero modes (cf. (77)) may be treated by the method used for b. BRST contour 
integrals pass through all these extra zero modes painlessly. 

The volume element and domain of integration of the moduli are determined by 
i nvariance under the group of global diffeomorphisms mod(S) (the modular group), 
and also by the requirement that longitudinal modes decouple by the BRST contour 
deformation argument. In the case of the torus rood(S) is given by 

a ~ + b  
I ' (  "r ) - a ,  b ,  c ,  d ~ Z " a d  - bc  = l . (98) 

c ' r + d  ' 

The integration measure invariant under this group is d2~-/(Im T) 2 and a fundamen- 
tal domain is shown in fig. 8. The universal covering space T(S) of the moduli space 
(in this case the upper half-plane H )  contains the dangerous point ~-=0; the 
two-point function V has an essential singularity as •--* 0 because all the image 
charges on ~ pile up at the same point. The transformation ~(r)  = - 1 / r  sends this 
"ultraviolet" limit to the "infrared" point ~" = ioo (think of Im ~- as the proper 
distance around the time direction of the torus). It is the restriction to the 
fundamental region R ( S ) =  T(S) /mod($ )  of fig. 8, allowed by the absence of 
global diffeomorphism anomalies [47,70,12,52], which guarantees the one-loop 
finiteness of fermionic strings [70, 12] -  the singularity is outside the integration 
region (other domains which have ~-= 0 as a limit point have vanishing measure 
there). For higher-genus surfaces, the technical proof of ultraviolet finiteness works 
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Fig. 8. Fundamental  domain for the modulus  of the torus. 

the same way.* Infrared divergences associated with massless particles are absent 
due to supersymmetry, at least for the one- and two-point functions, due to the 
contour argument of sect. 6. Hence it seems that string perturbation theory should 
be f i n i t e -  there are no ultraviolet divergences by modular invariance, and no 
infrared singularities by supersymmetry. 

8. Background fields 

We have seen that the conformal invariance of strings propagating in flat 
Minkowski space plays an important role in the structure of the theory. One of the 
reasons to explore conformal field theory is that this structure generalizes in a 
straightforward manner to a theory of strings propagating in nontrivial backgrounds 
[25, 26, 27]. In a nontrivial background, the tree-level string theory is an interacting 
2d quantum field theory. Although the stress tensor is still (anti)analytic, conformal 
fields no longer factorize into products of analytic and antianalytic fields. Our 
arguments about BRST invariance, supersymmetry, etc. have been tailored not to 
depend on the special features of flat space string theory. Rather, they require only 
that the relevant charge is the line integral of a world sheet current, i.e. a dimension 
(1,0) or (0,1) operator. Eventually one must understand whatever nonlinear invari- 
ance underlies string theory. Conformal invariance is a kind of criterion for splitting 
the string between on-shell classical background and quantum fluctuation. It is a 
remarkable fact that, in contrast to first-quantized particle theories, demanding 
conformal invariance in first-quantized string theories provides the equations de- 

* Physically, one expects all along that string theories are ultraviolet finite. In the days of hadronic dual 
models, one difficulty was that the form factor for deep inelastic scattering decreased like a gaussian 
instead of a power law because there was nothing "hard"  inside a string to scatter off of. Now we 
regard this as desirable; strings are floppy on the scale ~ ,  and there are no short distance 
divergences because there is nothing small enough in the theory to probe those distance scales. Of 
course, infrared problems associated with tachyons and dilatons [71] are another story, see [67]. 



D. Friedan et al. / String theory 153 

termining the environment in which they live - a necessary criterion for the string to 
yield a unified theory. The language of conformal field theory allows us to express 
various features of string compactification and "phenomenology" in terms of 
properties of scale invariant two-dimensional field theory. In particular, this ap- 
proach may be useful for studying the properties of the two-dimensional theory 
regardless of whether the string fluctuations are strongly coupled to the background; 
by studying the conformal algebra and its consequences, one may even be able to 
find strong coupling solutions if enough inputs can be found. 

For the moment, however, let us consider the bosonic string in a weakly coupled 
background. Physically this means that the typical size of a string, 6 ,  is small 
compared to the radius of the manifold, so the "spin-wave" approximation is valid. 
Interactions with the background are introduced as in first-quantized particle 
theory; there, in the path representation of a particle propagator [72] 

A(x,x'):S®x@gexp[iSo'vigk2dT ] (99) 

an interaction with a background gauge field is introduced through a coupling fA • k 
in the action, and a background spacetime metric changes the inner product 
contracting the x" in (99). The choice of gauge g = const is the analogue of the 
conformal gauge; it also leaves a residual invariance under constant shifts in ~- 
generated by the particle hamiltonian 

H :  ( p ~ - A " ) G , ~ ( p ~ - A : ) .  

This symmetry must be imposed as a constraint on the particle Hilbert space after 
quantization 

t/I ~ph.} = O. (100) 

Since the configuration space of classical field theory is just the first-quantized 
Hilbert space, eq. (100) is just the equation of motion ~72~(x) = 0. 

The sum over surfaces in the two-dimensional nonlinear sigma model gives a 
first-quantized string propagator in a curved background. Reparametrization invari- 
ance is again the key to consistency. String has the additional property that it 
contains gravity, so the equations of motion derived from reparametrization invari- 
ance must also determine the background in which string fluctuations propagate. 
The first-quantized description of particles is not suitable for the description of 
self-interactions, but the geometrical nature of string interactions may enable us to 
find the full nonlinear invariance of string in this framework. This is our motivation 
for probing the general properties of reparametrization invariant 2d quantum field 
theory. The most general reparametrization invariant action involving only operators 
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of dimension two or less is 

S-4qra' d2z[v/ggaboaX Obx Guv(x)+eabaaXUOt XVBtzv(x) 

×a'v/gR'2'~(x) + v/gf(x)]. (101) 

Gu,, B,~, ~, and f are the background metric, antisymmetric tensor, dilaton and 
tachyon field expectation values, respectively. We again choose conformal gauge 
vrg g ~h = V/~ ~, ~h ( =  8 ~h locally). The spacetime metric is still of indefinite signature, 
so we still need the residual conformal invariance to ensure the decoupling of 
negative-norm states. In an interacting theory such as (101) this only holds if the 
stress-energy tensor is traceless. The general form of the trace is 

B ~ ,  = f i f (x)v / -g  + f l ~ ( x ) ~ l g R  (2) + f l ~ ( x )  8 :X~ 'D,X  ~ + f l ~ ( x )  O:X u 8 , X " .  

Polyakov [8] consider the special case where a string propagates in a flat space of less 
than 26 dimensions and showed that the anomaly f i e =  ( 2 6 -  d)/48~r 2= t~c gener- 
ates an effective dynamics for the scale part of the metric e °. One thus has a 
conformally invariant theory in which the local scale is coupled. In principle such a 
dynamics could restore the local scale invariance of the 2d quantum field theory 
even in the general background (101), but in practice no acceptable quantization of 
the resulting Liouville-type theory has been found in the required range 1 < c < 25, 
despite many attempts [73]. Consequently we shall ask that the scale of the metric 
completely decouples, leaving a Weyl-invariant two-dimensional theory. (We dis- 
tinguish Weyl transformations G~b ~ A ( z ,  Z) • g~b from conformal changes of coor- 
dinate z - -+ f ( z ) . )  This is desirable in any event since the scale factor acts as a 
longitudinal coordinate of the string and shifts the ground state energy, so that in 
general the graviton would be massive, leading to a breakdown of general covariance 
in the target space M. Weyl invariance requires that each of the different coefficient 
functions fl~ etc., must vanish. Let us ignore for the moment the tachyon coupling 
/~f. If we then calculate Tz~ as a power series in the loop coupling constant a', to 
leading order we find [27] 

1 d - 2 6  

or' 4 8 r r  2 
1 [ 4 ( g 7 2 ~ ) 2 - 4 ( g r 2 ~ ) - R +  112H2] + O ( a ' ) ,  

- -  + 16~r ~ 

-IHX°~ O(a'), f l~=R~,~ a ~ "'~xo+2V~,V'. ~ +  

VrxH~, - 2(V'a~b) " ~  + ). (102) 

These are precisely the equations of motion of Einstein gravity coupled to an 
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antisymmetric tensor gauge field (H~,,, x = 3~[~B~xl) and dilaton. Higher-loop terms 
give higher derivative corrections to the equations of motion, scaled by the ap- 
propriate power of a'. A solution to all orders is a conformal field theory. The value 
of the Schwinger term in the Virasoro algebra is c = 24~rZfl~; the connection to eq. 
(9) is provided by the conservation law ~7;T.: = V,zT~z, which when varied with 

respect to g yields 

- 8  

V'(T=Lw) = 8g~w  [tl%R +-..] 

= - w )  + . . .  

1 
= 613~Vr, ' + - . . .  (103) 

°(z w) 4 

The other terms in the trace also appear on the r.h.s, of (103), so calculating the 
closure of the Virasoro algebra is an alternative route to deriving the equations (102). 
There are solutions to these equations, such as group manifolds with a Wess-Zumino 
coupling [74, 35], for which 13 4 receives corrections to all orders. Since c is the more 
fundamental  parameter of string theory, the fact that the dimension of the manifold 
must differ from 26 for such solutions is not necessarily of concern - all that matters 

is that ('total = 0 .  

Given a solution to (102), we may calculate the traceless part of the stress tensor 

and similarly for T.e. These generate the Virasoro algebra, from which we may 
calculate the spectrum of anomalous dimensions of fields and tensors; to lowest 
order, the anomalous dimension operator is just the covariant laplacian on the target 
manifold [75] 

hF(x) = 172F(x) - (174 , ) -v 'F+  o ( a ' ) .  (lO4) 

(Tensor fields gain the appropriate covariantization of this equation.) 
The above analysis demonstrates that the imposition of conformal invariance 

generates the correct equations of motion for the massless fields. We might therefore 
hope that conformal invariance is the principle governing the dynamics of all the 
excitations of the string. An elementary example is the tachyon coupling f (x) .  In 
order that the scale factor decouples from this term, f ( x )  must have an anomalous 
dimension (cf. eq. (104)) h = (1, 1) and so we find an equation of motion 

(-1 +.'v')S(x)=o((.')2). 
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Thus by arranging for the anomalous contributions to an operator's scaling dimen- 
sion to compensate the canonical dimension, a coupling which naively cannot occur 
in a scale-invariant theory is tolerable. One problem with this idea is that, since f ( x )  

is a relevant operator, it cannot contribute to the metric equation of motion in 
standard renormalization schemes. A similar case can be made for the massive 
tensor fields of the string, although here the introduction of a single tensor field 
coupling induces all the others (subject to symmetry considerations) since the 
massive fields correspond to "nonrenormalizable" terms in the action. Still, each 
tensor field T~ . . . . .  ~... 8 X  ~ 8X~ . . .  3 X  ~ OXI~... generates a contribution to the trace 
of the stress-energy tensor whose leading term (m2+ a'V'2)T = O((a') 2) is the 
appropriate equation of motion; in Minkowski space T~ ....... can have a negative 
anomalous dimension (e.g. eik x in flat space can have k2<  0) which cancels the 
positive conformal weight of all the derivatives. In this way it is possible to view 
conformal invariance as the dynamical principle which yields covariant classical 
equations of motion for all components of the string background. Again we may in 
principle compute to all orders the spectrum of highest weight states of the 
conformal algebra. Those with h = (1, 1) will be vertex operators for emitting string 
fluctuations about the given background. There are two ways to see that conformal 
invariance implies the equations of motion for the background. First, the SL 2 
invariance of correlation functions on the sphere guarantees that the background is 
classically stable against string emission into the vacuum; vertex one-point functions 
vanish by scale invariance [26]. Second, conformal invariance guarantees the unitar- 
ity of the tree-level S-matrix; unitarity implies the absence of transitions to the 
vacuum. Multipoint correlations are given in terms of sums over the operator 
product coefficients C/~ (el. eq. (14)). Just as in flat space, the conformal field theory 
on a sphere defines a conformal field theory on higher genus surfaces. Working on 
the covering space S, the operators in a correlation function may be copied into each 
fundamental region by the action of the group F. This o~-point correlation is then 
calculated using a suitable summation prescription as in the free field case. This 
generalization of the image method gives a route to calculating string perturbation 
theory in an arbitrary background. Of course, it would be simpler if we had an exact, 
rather than perturbative, solution to the theory on the sphere. Such a solution might 
be provided by bootstrap techniques, where the crossing symmetry relation (14) 
provides a set of nonlinear equations for the exact anomalous dimensions and 
operator product coefficients. The bootstrap procedure does not in any way lean on 
perturbation theory in a', so strongly coupled sigma models might be analyzed in 
this manner. 

Generically, the string perturbation expansion about a background will be diver- 
gent due to vacuum instabilities: tachyon emission, one-loop dilaton tadpoles, etc. 
[71]. These might be cured if we knew how to shift the vacuum, but because the 
first-quantized theory is restricted to be on-shell, and the off-shell continuation 
remains unknown, we don't yet have the technology to proceed along these lines. 
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The spacetime supersymmetry of superstrings provides a way out. The argument 
given in sect. 6 is certainly generalizable to curved backgrounds provided they admit 
a conserved supersymmetry charge. Thus, until supersymmetry is broken, the 
background-field fermionic string theory is free of fatal diseases. Therefore let us 
generalize our discussion to the case of heterotic strings in a curved background (the 
type II superstring theories are just as straightforward). The structure will be that of 
a conformal field theory in 2, and a superconformal field theory in z. A conformal 
gauge action for massless backgrounds is [27, 25] 

S =  1__1_[ [d2zdO([G~ ( x )  + B, ,(X)] DX ~3~X ~ 
4 r r a '  [ J " 

+ a'g~-R(2)O(X) + A~(X) DX"j~) 

+ f d2z (qJ~( X)V2 ~ i)~X ~' + ~,:( X)V~j;  +a'x" ( X)VF~o~ 2~ ) ] .  

Here G~,,, B,~, and q) are the bosonic components of the d = 10, N = 1 supergravity 
multiplet, with g'~ and X ~ their fermionic partners; and A~,, ~ from an N = 1, 
Ea × Es or SO(32) Yang-Mills multiplet, j j  is the corresponding chiral world sheet 
affine algebra current, ~0~ 2) is the world-sheet spin connection, and V f represents the 
fermion vertex, with the spacetime dependence u~(k)e ~kx replaced by the corre- 
sponding background field. A term effecting the quantization of the current algebra 

f f  must also be included. All the terms (apart from the dilaton) are couplings to 
gauge and super-Poincar6 currents (modulo the caveats of sect. 6). Note that the 
action contains only terms with even fermion parity F = 1. The traceless (super) 
stress-energy tensors are 

~ = - ~ O~X" ?zX"G,,( X) + a' Off)(X) + O~X~ f fA , , (  X) +Y~9"~", 

h== ]G,(x)  + 

Consider first the case where the fermion couplings '/'7, ~'~, and X ~ are absent; the 
action describes a standard nonlinear sigma model, and again consistency forces the 
trace of the stress-energy tensor to vanish. A perturbative calculation [27, 25] again 
yields (102) with H--* H = H + A A F -  ~0 A R, the modification being due to a 
contribution to the Wess-Zumino coupling Bu~ from the sheet fermion chiral 
anomaly [76, 27, 25]. There is in addition a new counterterm 6 ~ :  = flA OX, f f  +ssym 
completion which yields the gauge field equation of motion 

= v %  - + F. I42 + 
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I _ t FxE" and a contribution -7 t~  ~ rx~ to the Einstein/dilaton equation /3 °, and so on. 
Thus an all orders solution to /3c  = 138 =/3~ = / 3 ,  = 0 would again be a conformal 
field theory appropriate for the heterotic string. Given a sigma model, one must 
compute the spectrum of anomalous dimensions and the set of operator product 
coefficients. Highest weight vectors of (super) Virasoro with h = (1,1) are vertex 

operators. 
Now let us consider the inclusion of the fermion backgrounds. These involve the 

use of spin fields in the action and are thus not written in terms of the more 
conventional superfields. However, we project onto the spin model F = 1 to obtain 
the fermionic string theory, and since only such terms have been written in (101), the 
action describes a local field theory. Of course the fermion vertex involves an infinite 
set of different copies of the same operator in different sea levels. Our rules for 
manipulating the fermion vertex dictate that in graphs one chooses just one 
representative configuration out of all the possible combinations of fermion vertices. 
Although we have not carried out explicit calculations in the presence of spacetime 
fermion backgrounds, we are confident that no difficulties will arise - one is merely 
perturbing a local scale invariant field theory by a marginal operator, the fermion 
vertex. The only novelty is that the spin model does not (yet) have a lagrangian 
formulation, which makes the analysis somewhat awkward. Because it necessarily 
includes ghost spin fields, the proper condition for consistency of the sigma model 

will be 

(Q~RsT) = 0. 

The BRST current contains among other things the traceless stress tensor, so via 
(103) we again reproduce the bosonic equations (102). The fermion contributions to 
these equations come from sigma model loop graphs with some (even) number of 
fermion vertex insertions. The equations of motion for the fermions themselves 
follow from the fact that ~0 (eq. (51)) acts on spin fields as the Dirac or 
Rarita-Schwinger operator. For instance, in order that the "classical" action (101) is 
BRST invariant to lowest order, the part r~o) = ~,/°T~0 of the BRST charge must ~BaSX 
commute with the lagrangian density. Using (72) and (82) we find schematically 

t[r~°~ BRSX, ?~ ~ ( x ) e - *  /2S, J f l  ] - "Y~,~ ~7~,?~ ( x ) ~ e'~ /2S~JJ + " '"  

and similarly for the other fermion backgrounds. If our identification of the 
Faddeev-Popov ghost x is correct, this is equivalent to demanding invariance under 

the local fermionic symmetries of the GSS action. 
The sigma model thus gives an elegant covariant approach to the study of 

solutions of the string equations. Of particular interest are solutions with the 
topology M 4 × 6j3 for some compact six-manifold @, which could be the starting 
point for phenomenology. Ricci-flat K~ihler six-manifolds of SU(3) holonomy (which 
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have been dubbed Calabi-Yau spaces [77,26]) are believed to yield conformally 
invariant sigma models [78] with N = 2 world-sheet supersymmetry. These spaces 
have a rather beautiful geometrical structure which profoundly influences physics 
below the compactification scale. We would like to see this structure emerge from 
the sigma model, and indeed it does. Massless particles in Kaluza-Klein field theory 
correspond to zero-modes of the kinetic operator on #~. In the Ramond sector of the 
corresponding sigma model, the string generalization of the kinetic operator is the 
Dirac-Ramond operator G 0 = fP. ~ which also generates global supersymmetry on 
the cylinder. The supersymmetry index tr(F) thus counts the difference in the 
number  of left- versus right-handed massless fermion states (i.e. conformal spin 

fields with Go= h - ~ 6 ~ =  0). In his original paper on the index, Witten [51] 
demonstrated that 

t r (F)  = X (J~),  

i.e. the index is just the Euler number of !~. In the Calabi-Yau case, anomaly 
cancellation requires embedding the spin connection in the gauge group, which 
breaks E s X E~ ~ E 6 X E~. The gauge fermions of E s then transform as 248 
(8, 1 ) +  (3, 27 )+  (3 ,27)+ (2,78) under Es x SU(3), and the index tells us there are 
therefore at least X ( ~ )  families of 27's of E 6 (or 27's, depending on the sign of X). 

The complex K~hler structure of Calabi-Yau spaces has been used to expand the 
information available from index theorems. The de Rham complex (i.e. the collec- 
tion of operators relevant to the Dirac index) splits up into pieces classified by the 
U(1) charge defined by the complex structure. This refinement of cohomology 
(Dolbeault  cohomology) allows one to count the number of families and antifamilies 
separately [26]. Correspondingly, whenever the sigma model manifold admits a 
global symmetry such as the U(1) of the complex structure, one may compute a 
refinement of the supersymmetry index - the character valued index t r (Fe i~H) [79]. 
The relevant U(1) charge is the global component of the current (J,,,,,(Y) is the 
complex structure on ~ )  

h = J.,,,(Y) q~-'+", H =  ~ h ,  

which is the lowest component of the N = 2 stress tensor multiplet (cf. eq. (66)). The 
character valued index allows us to count separately the zero modes in each charge 
sector, which is exactly the Dolbeault refinement of de Rham cohomology. 

The sigma model index theorems are valid in the Ramond sector; in the NS sector 
there are no zero modes on which to base the index theorem and so the index 
typically does not apply. On the other hand, in special cases such as Calabi-Yau 
there may be h = (1, 0) spin fields whose line integral is a conserved supersymmetry 
charge. The commutator  of this charge with the massless fermion vertices will then 
generate vertices for massless bosons. 
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Vertex operators in the sigma model factorize into the form V(4)(X") • V(6)(Y 'n) 
where X ~ and Y"' parametrize M 4 and ~ respectively; vertices for massless 
particles come from conformal fields on ~ with h, t /=  0 or 1. For example, the 
dilaton which controls the radius of 633 corresponds to the vertex (G,,, is the metric 

on ~:1~) 

Vail.~ ~ = eik XGm,(Y) 3z Ym O~Y n + ssym completion. 

Each zero-mode of the Lichnerowicz operator on c3) gives rise to a massless four 
dimensional gravitational scalar in this way. K~ihler sigma models also have instan- 
tons; the K~ihler form is a source of antisymmetric tensors Bin, , which are closed but 
not exact, and the B,, n coupling in the action is precisely the instanton density. The 

vertex 

Vaxio n = eik" XBm,,( Y ) O z Ym 8zY" 

thus emits four-dimensional axions since B~ couples to Fi ~ through the Chern- 
Simons term (with gravitational strength because the fields originate in the ten- 
dimensional gravitational multiplet). In general, the whole range of massless fields is 
determined by index theorems for suitable families of operators on c~. The fermion- 
indices decompose under SU(3) as 16 --+ 3 + 3 + 3 + 3 + 4 singlets. The singlets form 
a four-dimensional massless spinor for each of the families, whose vertex operator is 

Vmat te r  = eik" X~kaa( Y, k )  v F j ;  

with the a, a indices reflecting the above considerations. Similar analysis yields the 
remaining four-dimension gravitino vertex and the unbroken SU(3) singlet super- 
symmetry charges Q~. The vertices for the scalar partners of these matter fermions 
are then obtained from the operator product of the supersymmetry current with 
the fermion vertices. Supersymmetry (or for that matter any Killing vector of the 
compact  space) is a nongeneric property of the nonlinear model. It requires the 
existence of an h = (1, 0) spin field (a current). On the other hand, massless particles 
are somewhat more generic, requiring only the existence of h = (1,1) operators. 

Recently it has been discovered in a field theoretic analysis that the Yukawa 
couplings of the massless fields are also topologically determined as intersection 
matrices of differential forms [79a]. If this is indeed a property of the full string 
theory and not just an approximation, then conformal field theory has an even 
deeper structure to it. Yukawa couplings of the low-energy field theory are the 
overlaps of products of three string wave functions - they are precisely the operator 
product  coefficients of the massless matter vertices. It is a rather remarkable and 
perhaps deep property of two-dimensional field theory that it encodes so much 
information about geometry in its algebraic structure. Perhaps enough information 
can be obtained from topology to determine a solution (or a family of solutions) to 
the sigma model boostrap. Then the entire tree-level structure of the effective theory 
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at the compactification scale would be known - masses, mixings, coupling constants, 
etc.! Certain special cases already lend themselves to analysis. In a certain (orbifold) 
limit [80], some Calabi-Yau space sigma models are exactly soluble. The spacetime 
manifold is essentially a "twisted" torus, i.e. the quotient of a torus by a group of 
transformations (twists) which has fixed points. At the fixed point the periodic 
identification under the group generates conical-like singularities, loosely speaking. 
In addition to the states created by the standard conformal fields on the torus, there 
are states which are pinned to the fixed points of the twisting operation. These states 
are created by conformal fields that are called twist operators. Like the spin operator 
of the fermionic string, these operators have a nonlocal operator product with the 
string coordinates parametrizing the torus, thus changing their mode expansion. The 
operator product coefficients of the twist operators for these spaces can be de- 
termined using the conformal algebra and differential equation techniques [81]. The 
rich structure of the conformal algebra (and in particular its N = 2 supersymmetric 
extension) is just beginning to be tapped in the search for string compactifications. 

Finally, we mention in passing that there is one other known class of conformally 
invariant sigma models on which the fermionic string may be compactified - group 
manifolds with a Wess-Zumino interaction [82]. The resulting supersymmetric 
current algebra may be analyzed using the conformal and group structures; unfor- 
tunately one finds [83] that there are no h = ~6~ spin fields, i.e., supersymmetry is 
broken in the Ramond sector. This is not too surprising because group manifolds 
have zero Euler number, so the index tr(F) vanishes. Thus all fermions acquire a 
mass of order the compactification scale, which is phenomenologically unacceptable. 

9. Conclusions 

Conformal field theory provides an impressive tool with which to probe the 
structure of string theory. We have reworked and completed the covariance quanti- 
zation of fermionic string theories, relying heavily on conformal methods. These 
methods express the dynamics of string in terms of the local properties of scale 
invariant 2d quantum field theory. The fermion vertex operator, a rather opaque 
object in previous formulations, acquires a certain simplicity when its current 
algebraic properties are exploited. The full (on-shell) supersymmetry of the theory 
has become more manifest and manageable, with the supersymmetry charge ex- 
pressed as the line integral of a dimension (1, 0) conformal field on the string world 
sheet. Deformations of the contour along which this and other currents are in- 
tegrated reveals a number of interesting results: vanishing of massless particle 
tadpoles and mass renormalizations, decoupling of spurious states from scattering 
amplitudes, and the equivalence of the various vertices in different ghost Bose seas. 
String-loop perturbation theory is relatively straightforward, requiring only minor 
modifications of previous formulations. Barring some unforeseen catastrophe, finite- 
ness is a rather simple consequence of modular invariance the nonrenormalization 
theorems just mentioned. 
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O n e  of  the a t t rac t ive  features of the conformal  a p p r o a c h  is its universal  appl icabi l -  

i ty.  Even tua l ly  we will need to unde r s t and  the proper t ies  of str ing in re la t ion to 

space t ime  geome t ry  and gauge symmetr ies .  In  the presence of nontr iv ia l  ba c kg round  

f ield conf igura t ions ,  one canno t  use a rguments  which rely on proper t ies  pecul ia r  to 

f lat  space  s t r ing theory,  such as s imple mode  expansions,  decoupl ing  of  the z and  

dependence ,  and  so on. Tha t  is why we have t r ied to presen t  the analysis  in terms of  

gener ic  p rope r t i e s  - the con tour  de fo rma t ion  arguments ,  for instance,  require  only  

tha t  there  exist  a d imens ion  (1, 0) field whose line integral  is conserved and can be  

a p p l i e d  to any  symmet ry  which gives rise to such a field. As a conceptua l  f rame- 

work,  c o n f o r m a l  field theory provides  an arena  for str ing dynamics  which needs  to 

be  exp lo red ;  it  has a l ready  yie lded some results  in par t i cu la r ly  s imple  cases (group 

m a n i f o l d s  and  orbifolds) .  We  believe the work  presented  here has laid a solid 

f o u n d a t i o n  for these further  invest igat ions.  

W e  are gra teful  to T. Banks,  C. Cal lan,  J. Cohn,  V. Dotsenko,  P. G o d d a r d ,  D. 

Olive,  M. Perry,  Z. Qiu, R. Rohm,  W. Siegel, and  E. Wi t t en  for helpful  discussions.  
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