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A gauge invariant field theory of the bosonic string is formulated following Siegel, Banks and 
Peskin, and Feigin and Fuks. The free field action is constructed from the Virasoro operators 
assuming only locality. The propagator is very regular at short distance, The natural jointing-split- 
ting interaction is described abstractly and a method of construction is sketched. A way is 
conjectured of reformulating the theory to be independent of the vacuum geometry. 

1. Introduction 

String theory provides self-consistent quantizat ions of  gravity, but  there is no field 
theory  of  strings which is independent  of  the vacuum geometry [1]. This paper  is an 

a t t empt  in that  direction. First a free field theory is constructed f rom the Virasoro 

opera tors  and  the assumptions of  locality and gauge invariance. The joining-split t ing 

in teract ion is described and a method of  construct ion is sketched. The elements of 

the cons t ruc t ion  which depend on the vacuum geometry are isolated and there is 
some speculat ion on how to eliminate this dependence.  

The  basic steps were taken by  Siegel [2], who wrote the gauge-fixed Lorentz  

covar iant  field theory of  the bosonic string in the BRST formalism. The string field 

~ ( x  ) is a scalar funct ion of parametr ized strings x~(s). I t  is represented as a state q, 

in the Hilbert  space of a single parametrized string. The free field action, omitt ing 
the ghost  fields, is 

S(q,)  = ep*(H - 1)q~. (1) 

H = L 0 is the middle Virasoro operator,  the hamit tonian of  the first-quantized 
string. The  gauge transformations are generated by the raising operators  of  the 
Virasoro algebra:  

8gO = ~ L _ , e , .  (2) 
n=l 

* This work was supported in part by US Department of Energy grant DE-FG02-84ER-45144 and the 
Alfred P. Sloan Foundation. 

0550-3213/86/$03.50,~,Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



1), Friedan / StringfieM theo O' 541 

Banks and Peskin [3] explained how to construct the gauge invariant free field 
theory using the algebra of Virasoro operators. The natural transverse gauge slice is 
the subspace orthogonal to the gauge variations. Since L,, = L*.~, the transverse 
gauge slice consists of the subspace of fields ep which are annihilated by the lowering 
operators: 

L + , , +  = o. (3) 

The Banks-Peskin free field action is 

S(qb) = qbtPtr(H -- 1) PtrO, (4) 

where Pt~ is the projection onto the transverse gauge slice. 
Banks and Peskin carried out the construction of Pt~ level-by-level for a number 

of levels in the representations of the Virasoro algebra which occur in the space of 
string fields*. They found that Ptr, constructed from the Virasoro operators, was a 
singular function of H. Singularity in H is equivalent to nonlocality, since H 
depends on the total spacetime momentum p"  of the string in the form H = 5P~P~ f' 
+ Hin t, where H~n t is the energy of the string vibrations. The nonlocality in S(~) was 
removable, at least on the lower levels, by adding unphysical Stiickelberg fields to 
the theory, which disappear from the action in a unitary gauge. 

Following Banks and Peskin, our first step is to construct the free string field 
using the Virasoro operators and the principle of locality. This is done in the 
simplest setting, the open bosonic string in its critical dimension D = 26. For the 
open string the gauge algebra acts as a single Virasoro algebra. For the closed string 
the gauge algebra acts as two commuting Virasoro algebras. For the supersymmetric 
string the critical dimension is 10 and the gauge algebra is the Ramond-Neveu- 
Schwarz algebra. The propagator is given for each of these cases. It would of course 
be interesting to construct the propagators below the critical dimension. 

2. The free string field 

The space of parametrized open strings is the space of functions x ' ( s )  from the 
interval [0, ~r] into spacetime, The space of physical strings is the quotient of 
the space of parametrized strings by the group Diff[0, ~r] of reparametrizations of 
the interval [0, ~r ]. 

The field ~5 is a state in the Hilbert space of the conformally invariant, 1 + 1 
dimensional, D component free scalar quantum field x~(s,  t): 

O,x ~ = 0 at s = O, ~r. (5) 

* After this paper was written it was learned from M. Peskin that their construction of Ptr w a s  
completed. 



542 D. Friedan / String field theo~' 

The total spacetime momentum is 

fo~ ds 
P~=  Jr - - x  " (6) 0 27r 

The Virasoro operators are the Fourier coefficients of the traceless stress-energy 
tensor 

T++(t,s)=½:O+x"O+x~: (O+= ½(a,+ O,)) 

= E ein(t+S)Ln • (7) 
?/= "'00 

The Virasoro operators satisfy 

L .=L*. ,  

[L, . ,  Lo] = (m - n)Lm+,, + ,~c ( , . '  - m)<,+n,  o , 

c = D = 26. (8) 

The hamiltonian is 

The energy is lowered by the L+ .  and raised by the L n: 

I n ,  Ln] = - n L  n. (10) 

The hamiltonian of the internal excitations, Him, has only integer eigenvalues. 
We look for a gauge invariant free field action 

8 ( ¢ )  = •*Ktr ¢ . ( 11 )  

The inverse propagator Ktr is assumed to be generated by the Virasoro operators. 
This represents the least possible dependence on the vacuum geometry. Unitarity 
implies Ktr should be selfadjoint. Ktr commutes with H, or can be made to do so by 
averaging: 

1 
--+ ~ fo2~d0 ei°'Ktr e- 'ou.  (12) Ktr 

The gauge invariance conditions are 

KtrL , , e  n = 0. (13) 
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Feigin and Fuks [41 have given a technique for studying the locality of operators 
like Ktr. Write Ktr in the normal ordered form 

Ktrm-K(H) "k 2 2 I,J L_zK. (H)Lj. (14) 
n~l II[,IJl=n 

In the natural transverse gauge the propagator is K(H)  -1, The sum is over 
multi-indices I, 

I = 11, 12 . . . . .  Ik, 

III = I t + 1 2 +  . . .  + lk ,  

L 1=LhLt2... Lq, 

(15) 

Locality requires that the functions K(H) and K, t" ~(H) be nonsingular in H. We 
will see in the next section that the K~'J(H) are completely determined by K(H) 
and the commutation relations of the Virasoro algebra. Then we will find that 
locality is precisely equivalent to the condition 

K(h.) = 0 ,  h . = ~ ( 2 5 -  n2), n = 0 , 1 , 2  . . . . .  (16) 

The minimal inverse propagator has only the zeros required by locality: 

K,.i .(H ) = 2~4-H- 25 sinh(~rv~-4~/t- 25 ). (17) 

The pole in the propagator at H = 1 is physical; the remaining poles presumably 
correspond to the Stfickelberg fields needed in the treatment of Banks and Peskin 
and can be gauged away. The propagator of the string ought to be the minimal 
propagator, since the excitations associated with unnecessary additional poles would 
probably not decouple. 

Siegel [2] has remarked that the ultraviolet properties of the string should be 
evident in a gauge invariant theory. The minimal propagator is in fact quite regular 
at large momentum: 

K~in(H) -1 - p - l e - ' ~ a e .  (18) 
p2~m 
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Both the projection Ptr and the nonlocal inverse propagator Ptr(H - 1)Ptr can be 
derived from Ktr .  For the projection, change variables to ~' = K ( H ) - 1 / % :  

<,'(H) 
Ptr=l+ Z E L-IK'n~ +H)  LJ" (19) 

n = l  LIl, IJl=n 

For the nonlocal inverse propagator change variables to if" = ~-H - 1 ) / K ( H )  ~: 

P t r ( H - 1 ) P t r = ( H - 1 ) +  ~., ~_, L , ( n + H - 1 ) K I ' J ( H )  
n = l  t]l, IJl=" - K(n +H) Lj. (20 )  

3.  Cons truc t ion  o f  Kt~ 

The argument follows Feigin and Fuks with two modifications. They construct 
operators analytic in both H and c, while we work at a fixed value of c. They 
construct operators which commute with the Virasoro algebra, while we construct 
gauge invariant, transverse operators. 

First we show by induction in n that the Virasoro algebra determines the 
functions K I ' J ( H )  as linear functionals of K(H). From the Kac [5] determinant 
formula for the Virasoro algebra it follows that the nonsingularity of all i J K,," (H) is 
equivalent to the linear conditions K(hn)= O. 

The construction of Ktr depends only on some general properties of the space of 
fields as a representation of the Virasoro algebra. First, every string field is 
annihilated by all L 1 for [II large enough, because H is bounded below. Second, for 
any nonzero field ¢ the fields L x~ are all linearly independent. Third, all 
eigenvalues H =  h occur, since p2 can take all values, and the corresponding 
eigenspaces vary smoothly with h. 

The strategy is to approximate the space of fields by the Verma modules, which 
consist of the transverse fields and their descendent fields. The transverse fields are 
the fields q, in the transverse gauge slice L+ n~ = 0. The descendent fields of ~ are all 
the linear combinations of the L I~, I I I >  0. ~ and its descendents are linearly 
independent and span the Verma module V(+) generated by ~. We say ~ is an 
ancestor of its descendents. The n th level of the Verma module consists of all linear 
combinations of the fields L I~, 111 = n. In the mathematics literature the trans- 
verse fields are called highest weight vectors. Transverse fields occur with all 
eigenvalues of H, since p2 can take all values. 

Verma modules which have transverse descendents are called degenerate, because 
a transverse descendent and all its descendents are orthogonal to the entire Verma 
module. A Verma module which contains a transverse field ep, on level n > 0 is said 
to be degenerate on level n. We will see later that the Verma modules are dense in 
the space of fields. 
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We calculate K~' J by induction in n. Suppose that for all m < n the matrix of 
I ]  H functions K,; ( ) has been given explicitly as a linear functional, meromorphic in 

H, of the single function K(H). This is true for n = 1. 
Now let Ktr act on a field on the nth level of a Verma module V(~). Since ~ is 

transverse, KtrdP = K(H)~, and 

l 
O, 

L , L _ , $ =  M " J ( H ) 6 '  

t E AK(H)L-KO, 
k tKi=IJI -I11 

[II > IJI 

III = IJI 

l l I <  IJt .  
(21) 

The matrix M~'S(H) is polynomial in H (and c). As long as M, is invertible, the 
Verma module is nondegenerate on the n th level. Write 

K t r t _ i @  = ( K .  _+  K,)L t~ , 

K., _= K(H) + 
n- I 

E E L " , "  jK,. (H)LK, 
m = l  IJI,  I K I =  m 

K,,._L_t~= ~ L K ]'~cr1"~2 - J  n , - \ * ~ ' J W ,  
IJl=n 

K,= ~., L jKJ.'K(H)L K, 
IJblKl=n 

K,,L_,~= Y'~ L K]'KEH)MK'I(H)~. (22) -Y  n \ 
]J], ]K] = n 

By gauge invariance KtrL_,~ = 0. Therefore 

K " ' ( H ]  + E KJ'K(H)Mff't(H) = 0. (23) 
n , - - \  l 

[ K l = n  

[, J .  which determines K . .  

K~'J(H) = -  E K~:K-(H)(M:I)K'J(H) . 
IKl=n 

(24) 

For example, the first use of this argument gives 

K ( H +  1) 
/ l ' l ( o )  = 2H (25) 
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K t J H  By hypothesis the matrix ,2 ( ) is given as a linear functional of K(H), so now 
the matrix Kt,'J(H) is also. Since Mt,'J(H) is polynomial in H, K~,'J(H) is 
meromorphic in H. This completes the induction argument. 

If K~t, 'J is nonsingular for m < n then the possibility of a singularity in K~'J(H) 
arises only when the matrix M~,J(H) becomes noninvertible. Kac [5] has given a 
formula for the determinant of M~'J(H). Up to a positive multiplicative constant, 

d e t ( M . ( H ) )  = ]-I (H-  hl,,q) e('-pq), 
P,q 

[ ( m +  1)p -mq]  2 -  1 

hp 'q= 4m(m - 1) 

6 
c = 1  

m ( m +  1) ' 

e( , , )  = E 1, (26) 
tll=n 

where the product  is over positive integers p, q with pq <~ n. For c = 26, 

m =  - 5 ,  hp,q = 1~(25- (3p + 2q)2). (27) 

All of the properties of Verma modules can be deduced from the determinant 
formula. 

Suppose ~ is an eigenvector of H. If H~ 4= he, q~ for all p, q then the Verma 
module generated by ep is nondegenerate. On the other hand, if H~ = hp, q~ then on 
level pq of the Verma module there is a transverse field ~p,q. This will be 
demonstrated in the next section. Since q,p, q is both a transverse and a descendent 
field, Ktr@p" q is equal to both K(H)~e, q and 0. Therefore it is a necessary condition 
for locality that K(hp, q +pq)= 0, where 

he. q + pq= ~(25  - (3p - 2q)2).  (28) 

This collection of numbers is exactly the set ( h , )  listed in eq. (16). In the next 
section we will see that K(hn) = 0, n > 0 is also a sufficient condition for locality. 

It must be checked that gtr  , constructed to act transversely on Verma modules, 
acts transversely on the whole space of fields. By construction Ktr satisfies the 
transversality condition K t r L , e  = 0 for any field e which belongs to a Verma 
module. But the Verma modules are dense in the space of fields, because fields can 
occur outside Verma modules only when there is a degenerate Verma module. For 
almost all eigenvalues of H there are no degenerate Verma modules. Since any gauge 
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transformation e can be approximated by e' in a Verma module, and if Ktr is local, 

then KtrL_ n e can be approximated by KtrL_ he' = 0. Therefore K t r L  n e = 0 for all 
e, and the gauge invariance of Ktr is proved. 

In summary, there is a one-to-one correspondence between gauge invariant 
quadratic forms Ktr and operators K ( H )  on transverse fields. Ktr is local if and 
only if K ( H )  is a nonsingular function of H and K ( h , )  = 0 for all hn. 

4. Technical arguments 

We first need to show that if H~ = hp, q~, then there exists a nonzero transverse 
vector ~,p, q on level pq of the Verma module generated by ~. If pq = n there is a 
simple zero of de t (M,)(H,  c) at H = hp, q(C). Let vZ(c) be the vector annihilated by 

Mn(hp, q): 

E Mtn'J(hp,q)VJ(c) "=0. (29) 
IJl=n 

The corresponding field on level n is 

@p,q~--" E uJL-J@ • (30) 
IJl=n 

By the transversality of ~, Lzdpp, q = O, for all I, ]I I > n. By the definition of M] 's, 
Lz~p, q = 0, for all I, [I[ = n. Now allow c to vary slightly from 26. Then MtmJ(hp, q) 
is nonsingular for all m < n. It follows that Ll~p ,  q ~- 0 for all I, ]I] < n, i.e. q~p,q is a 
transverse descendent of ~ on level pq. 

We second need to show that if K ( h , )  = 0 for all h ,  then Ktr is nonsingular. By 
eq. (24), K,t,'J(H) is possibly singular in H only at H =  hp, q where the matrix 

l,J MA ( H )  becomes noninvertible. For K~ 'J (H)  to be regular at H =  hp, q the matrix 
K 1,J,,, -.--.(H'~ must annihilate the same vectors that M~,J(H) annihilates at H = hp, q to 
at least the same order in H -  hp, q. 

Assume that K ( H )  has at least a simple zero at each h..  Suppose that ~ is a 
transverse field with H~ = h~. Suppose that q~. = Eq~/L_zq~ is a field on the nth 
level of the V e r s a  module generated by ~. We will show that Ktr is regular on ~., 
by induction in n. 

There are two cases to consider. First suppose that ~ is the only transverse field in 
the V e r s a  module which is an ancestor of ~.. There are two subcases. If ~n is not 
itself transverse then E(M~-I)z'J~. J is nonsingular and Ktr~n is regular. If q~n is 
transverse then n =pq  with h--hp.q.  MZn'J(H)dOn has a simple zero at H = h p ,  q. 
But the transversality of ~. implies that K ,  .q~. = K(  H + n )q~. = K( hp, q + pq)~.  = O. 
So the zero of K ( H )  at H = hp, q +pq is precisely what is needed to make the 
solution of eq. (22) nonsingular. 
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In the second case ~. has transverse ancestors besides ~ in V(~). Let ~m be such a 
transverse ancestor of ~., on level m > 0, chosen so that ~,~ has no transverse 
descendent which is also an ancestor of q~.. Regard ~. as a descendent of d) m on level 
n - m. If if,, is not transverse then M~ vanishes on ft. to the same order that M,,, 
vanishes on ~,,. If ~. is transverse then M~ vanishes on ~. to one order more. 
Exactly the same holds for K. ._  and Kin, _, by the previous paragraph. Since m < n 
we can argue by induction that K._  vanishes at least as strongly as M. on ~.. This 
completes the argument that K ( h . )  = 0 for all h~ is necessary and sufficient for Ktr 
to be local. 

5. The dosed string propagator 

The reparametrization group of the closed string is the group Diff(S 1) of diffeo- 
morphisms of the circle. Its generators are the R n = L , -  Z ~, Rt,, = R _ n .  The 

l i n t  --int rotation generator is R = R o. The hamiltonian is H = L o + Lo =P~- + ~o + Lo • 
The transversality conditions are 

L~n~=  L+~q~= 0, 

Rq~ = 0. (31) 

The gauge invariant inverse propagator is 

Ktr = K(H)SR + E L-zL-TKZLJY(H)SRLjLj • (32) 
l , l ,J ,  ff 

The locality condition is K(2h~) = 0, n >/0. The minimal inverse propagator is 

Kmin(H ) = ~ 25 sinh(er~/12H- 25 ) .  (33) 

6. The fermionic string propagator 

The fields form the even G-parity sector of the Ramond-Neveu-Schwarz model. 
The gauge operators are Lt. = L . ,  G~ = G .. The algebra is 

[Lm, Lnl  = ( m  - Fl)Lrn+n + ~ ( m  3 -- m ) S m +  . , 

[Gm, an] + = 2Lm+ n + ~ O ( m :  - ¼)6m+. ,  

[Lm, G.l=(½m-n)Gm+ .. (34) 

The critical dimension is D = ~ = 10. In the bosonic (Neveu-Schwarz) sector the G. 
are indexed by half-integers, in the fermionic (Ramond) sector by integers. The 
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hamiltonian is H = L 0. In the fermionic sector the two-dimensional supersymmetry 

generator is QF = Go, H = Q~ + ~6~. 
The string field has two components ~B and q~v- The free field action for 

transverse fields is 

S(ffB, ffF) = ~ K u ( H ) e 0 B  + ~FKF(QF)~F . (35) 

From the determinant formula for the Ramond-Neveu-Schwarz algebra [5,6, 7] 
K B ( H  ) must have zeros at H = ]t,, 

h~= ~ ( 9 -  n2),  n >/0 (36) 

and Kv(QF ) must have zeros at Qv = %, 

qn = i¼n. (37) 

The minimal inverse propagator is 

Kv.mi n = sinh(4~rQF ) . (38) 

The spacetime supersymmetry is not obvious. 

7. The structure of the representations of the c = 26 Virasoro algebra 

It is useful to know in exactly what patterns Verma modules are included in other 
Verma modules. This information was obtained by Feigin and Fuks [8], Rocha, 
Caridi and Wallach [9] for c = 26 and by Feigin and Fuks [8] for general c. For 
c = 26 the possible patterns of inclusion are the towers diagrammed in fig. l a -c .  V, 
is the Verma module generated by a transverse field ~,, with H~n = h ,~n- An arrow 
V,, ~ I~ means that V m is always included in V,. Inclusion, of course, is transitive. If 
V~ occurs among the string fields then so do all the V,, included in V,,,. 

The diagrams are constructed by the following rules. Draw an arrow V,, --, V,, if 
h,, = hp, q and h m = hp, q + pq. Then erase the arrows which are redundant by the 
transitivity of inclusion. The basis for the rules is that det(Mpq(H)) vanishes to first 
order at H =  hp.q, and, for n >pq, det(Mn(H))  vanishes to the lowest possible 
order, P(n - p q ) ,  given that det(Mpq(H)) vanishes to first order. 

At the tops of the towers are the Verma modules V, for n = 0,1, 2, 3, 4, 6. These are 
the Verma modules which are included within other Verma modules but do not 
themselves include any other Verma modules. They correspond to the numbers h ,  
(eq. (16)) which are not of the form hp, q (eq. (27)). Every Verma module which 
contains another Verma module contains also exactly one of these six. 
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n/6 : 5 nil 2 : 0 

VI Vo 

v5 V7 Vm 

Vll Vt 3 
I ,  

J, J, 
• . Vt2k 
: : 

. 

Vn Vn +2 Vn 

n/12 : 6 

V6 

1 
VI8 

; 
V12k+6 

1 

V. 
(b) 

n/12:2,10 n/12:5,9 n/12= 4,8 
V2 V3 V4 

Vl0 V9 V8 

V~4 V~5 Vm 

V2 2 V2 i V2 0 

Vn Vn Vn 
(c) 

Fig. l (a)-(c) ,  Verma module nesting diagrams for the ~ = 26 Virasoro algebra, h~ = 14(25 - nZ). 

The patterns of inclusion for the Neveu-Schwarz algebra are in fig. 2a, b and for 
the Ramond algebra in fig. 3a, b. They are again derived from the determinant 
formula. For the Neveu-Schwarz Verma modules the G-parity of each tower is 
uniform except the tower headed by V 1 where the pattern of alternating G-parity is 
shown explicitly. Each Ramond Verma module splits evenly into even and odd 
G-parity subspaces except V 0 which has definite G-parity. The number of Verma 
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modules Vo, counted by G-parity, is the index of QF as a supersymmetry generator. 
For  even G-parity there are evident similarities between the inclusion diagrams of 
the Ramond and Neveu-Schwarz algebras, although the spacetime supersymmetry 
remains obscure. 

8. Invariant operators and transverse quadratic forms 

The construction of Ktr is patterned after the argument that Feigin and Fuks [4] 
used to find local operators Fin v which commute with the Virasoro algebra, except 
that Feigin and Fuks construct operators analytic in both H and c, while we work at 

a fixed value of c. 
The Feigin-Fuks operators are written 

Fin  v = F(H) + E L ,Ft'J(H)Ls, 
l , J  

[L,, F ~ ]  = 0. (39) 

For  fixed c, if V m -~ Vn then the invariance of Fin v implies F(hm) = F(h,). By the 
argument used in the construction of Ktr this is the necessary and sufficient 
condition that all the FI'J(H) be nonsingular. That is, for each of the towers in fig. 
l a - c  there is a constant which is the value of F(H) on all of the Verma modules in 
the tower. These constants determine F(H) up to functions which vanish on all 
the h, .  

The invariant operators of the physical string are generalizations of the Feigin-Fuks 
operators: 

rinv = Ftr+ EL_IFtr (MnI ) t ' J (H)L j ,  
I , J  

[L , ,  Finv] = 0. (40) 

Ftr transverse, [H, Ftr] = 0. Ftr is determined on descendent fields by its action on 
the transverse fields. On transverse fields Fin v =Ftr  = F. If V,, ~ V n then the value of 
F on V m completely determines the value on V,,. The values of F on all degenerate 
Verma modules are determined by its values on the six nondegenerate Verma 

25 7 2 __  1 l  modules at the tops of the towers: h 0 ~ ,  h 1 1, h~ g, h 3 3, h4 = -~, h 6 
The degenerate modules are thus not observable, but there remain five unphysical 
poles associated with the V n at the tops of the single towers in fig. lb,  c. 

9. The siring field 

In the SchriSdinger picture the string field q~ is a wave function on the space of 
parametrized strings. 
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A concrete picture of the wave function is given by the elementary quantum 
mechanics of the harmonic oscillator. Let the canonical position be Q and the 
canonical momentum P. Define the destruction operator A = ( ~ ( P  + iEQ), satisfy- 
ing [A, A*] = E. Write the hamiltonian H = A t A .  In the Schr~Sdinger picture the 
ground state wave function ~o(Q) can be calculated by writing A~P0 = 0 and using 
P = iO/OQ: 

0 + E Q ] + o ( Q )  = O, ] 

J/o ( Q ) = ( E/~r )a/%E& /2. (41) 

An orthogonal basis of wave functions is obtained by applying powers of the 
creation operator A t to the ground state wave function. 

The degrees of freedom of the open string consist of the average position q" and 
the normal modes of vibration x2(s) = q~,sin( ks ), k>~ 1. The q~ are coordinates of a 
collection of independent harmonic oscillators of energy E k = k. The string field 
~ (x )  is a wave function of q" and of the internal coordinates q~,. 

In the internal coordinates @ looks like a gaussian function multiplying a sum of 
products of Hermite polynomials. But q~ cannot actually be a function, because the 
infinite number of normal modes would cause the product of normalizing factors 
(E/~')  t/4 to  diverge. What does make sense is the infinite product of factors of the 
form +(Q)(dQ) 1/2, which defines a half-density on configuration space. The prod- 
uct of two square-integrable half-densities is an integrable density. The natural inner 
product on half-densities is 

q~]q~ 2 -- f ( d Q  )1/2~b 1 ( Q )*(dQ )1/2~ 2 ( Q )- (42) 

The distinction between function and half-density is uninteresting when there are 
only a finite number of degrees of freedom, but when the number of degrees of 
freedom is infinite it no longer makes sense to regard the wave function as an 
ordinary function, since on infinite-dimensional configuration space there is no 
analog of Lebesgue measure. Without an analog of Lebesgue measure there is no 
way to square integrate an ordinary function. Half-densities are by definition square 
integrable. 

The Hilbert space of the 1 + 1 dimensional conformal field theory is a space of 
half-densities on parametrized strings. The hamiltonian H is a self-adjoint operator 
on half-densities. 

The physical string configurations are the equivalence classes of parametrized 
strings under reparametrization. A string field in the transverse gauge is precisely a 
quantum wave function on physical string space. 
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The generators of reparametrization of the interval [0, ~r] are the operators 

R k =  L k - L _  k , 

R _ k  = - R ~  = R*~, 

[Rj, Rk] = ( j -   )Rj+k -- ( J  +  )Rj k. (43) 

R k generates the reparametrization s -~ s + sin(ks). For the closed string the infini- 
tesimal reparametrizations form the algebra of vector fields on the circle. The 
generators then are the R ,  = L ,  - L ,,, - oo < n < oo. 

The generators R k do not commute with the hamiltonian or even span a subspace 
closed under time translation. The closure is the algebra of Virasoro operators 
H, R k, [H, Rk]. The linear combinations L + ,  = ([H, Rn] _+ n R , ) / 2 n  are analogous 
to P +_ i E Q  for the harmonic oscillator. The transversality conditions L+n~ = 0 are 
analogous to the condition A+0 which forces +0(Q) to be a multiple of the ground 
state wave function. L+,~ = 0 forces ~(x)  to behave as a modified gaussian in the 
directions of reparametrization. The degrees of freedom which remain form a 
half-density ~(2)  on the space of physical strings. The constraints are in one-to-one 
correspondence with the generators of reparametrizatiom so transversality precisely 
specifies the variation of the wave function in the directions of reparametrization. 

The linear gauge invariance of the free field theory" ensures that it describes the 
same field theory on physical strings whatever the choice of conformal coordinate on 
the world surface of the string. The choice of conformal coordinate is equivalent to 
choice of hamiltonian among all operators conjugate to L 0 in the Virasoro algebra. 
A coordinate must be chosen in order to write the theory in terms of q)(x), while in 
terms of the ~(.~) there are no arbitrary choices. The gauge invariance plays a 
different structural role in the string field theory than in ordinary gauge field theory. 
It is natural to write the gauge invariant gauge field theory, but there is no natural 
choice of gauge until a representative gauge field is chosen in the gauge equivalence 
class of the vacuum. In the string theory the gauge invariant formulation requires a 
choice among all possible equivalent hamiltonians H, but once that choice is made 
and the gauge invariant theory written, there is a natural choice of gauge, and the 
resulting field theory on physical string space is independent of the manner of 
writing the gauge invariant theory, independent of the choice of H, because of the 
gauge invariance [3]. Moreover, the space of fields on physical string space is a finear 
space. These considerations suggest that the string field theory should be formulated 
in terms of the gauge invariant variables, half-density fields,on physical string space. 

The correspondence between half-densities on physical strings and transverse 
half-densities on parametrized strings can also be seen by using the expectation 
values associated with a wave function to characterize it, up to a phase. The 
operators F of the parametrized string are the functions of x " ( s )  and 2"(s). The 
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operators P of the physical string are generated by the hamiltonian and by the 
operators of the parametrized string which commute with the Virasoro operators. A 
field q, on the parametrized strings is determined up to a phase by its expectation 
values F ~ q~*F~. Define the wave function ~ on physical strings by the expectation 
values 

~tf( H)k~=q~f(  H)F4~, (44) 

for F which commutes with the Virasoro operators. This gives a map from wave 
functions on parametrized strings to density matrices on unparametrized strings. The 
transverse gauge slice is a subspace of wave functions on parametrized strings which 
is mapped to the pure states of the unparametrized string. 

Write the projection from wave functions on parametrized strings to wave 
functions on physical strings abstractly as 

~(~c) = fDifqO,~ldgl~(g)q~(xg), (45) 

where x g is the string x reparametrized by g and (dg)t/21~(g) is a half-density on 
the reparametrization group Diff[0, ~r]. As a function of g, 4(xg) is actually a 
twisted half-density. The twist appears as the central charge c = D of the Virasoro 
algebra./~(g) is also a twisted half-density, with c =~ -26 .  This is a re-interpretation 
of the trace anomaly of the Faddeev-Popov ghosts of the string [10]. In the critical 
dimension D = 26 the twists cancel, the integrand of eq. (45) becomes a density in g 
and the integral defining ~ becomes meaningful. Presumably there is an equivalent 
difficulty fixing the phase of the wave function on physical strings knowing its 
expectation values. 

The natural variables of the string field theory are the fields on physical strings. 
The inner product of two wave functions on physical strings is natural, so the 
vacuum geometry appears in the free field action only through H. The gauge 
invariance seems to serve only to give meaning to locality in string space. The 
inverse propagator K(H) picks out the smooth wave functions on string space, just 
as on ordinary space the laplacian specifies what is a differentiable function. 
Through K(H) the vacuum geometry gives a differentiable structure to physical 
string space. 

10. The interaction 

We will attempt to describe the interacting string field as a wave function ~(~)  on 
physical strings ~. There is always a natural inner product on half-density wave 
functions: 

f (46) 
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Wave functions on string space also possess a natural trilinear form associated with 
the contact delta-function, the overlap integral [1, 2] 

f d£ d ) d 2  ~()~)t8()2, ~. 2)~,(~)4,(~),  (47) 

z(s)  = I y( ~rs/st ) ' 0 .%< s <~ s t (48) y-  
z(~(s-~, ) / (~-s , ) ) ,  ~ , ~ s ~ .  

The free field action is 

,~*K(D)& = fd~d~,~(~)*,~(~, p)K(Dv)~(.;), (49) 

where/4 = H is the hamiltonian on the physical fields. The interaction is the contact 
delta-function tempered by a form factor: 

~d(,~.~,)= f d~d)d~,(~c)~a(fc ,  ) . £ ) I ( s t ,  f t , , ,g}, , f t~)~,(p)~,(2).  (50) 

The interaction does not depend on how the join is parametrized. 
To see that the contact delta-function is independent of the vacuum geometry, 

rewrite it as 

~ , t ( ~ . ~ ) = f d ~ x d ~ : d p d ~ ( £ ~ , ~ ) t S ( ~ , , ) ) 6 ( ~ 2 , 2 ) ~ ( ) ) ~ ( 2 ) ,  (51) 

where 

~ ( s )  = ~(s~'t/~), 

~ 2 ( s )  = ~ ( s t  + s ( ~  - s t ) / ~ ) ,  

+(~) =+(~1,~2). (52) 

For each of the four integrals in eq. (51) the integrand is a quadratic expression in 
half-densities and therefore is an integrable density. Thus the contact delta-function 
is independent of the geometry, except possibly at the interaction point s t. In any 
sensible string theory the interaction point should not introduce any difficulties. 
since it represents only one of the infinite number of degrees of freedom of the 
string. Still, a careful treatment of the interaction point is needed. 

In the interacting field theory, as in the free theory, the only dependence on the 
vacuum geometry is through the physical hamiltonian /4. The interaction form 
factor I(s I, kI~, H,., kI:) should be determined by attempting to extend the interac- 
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tion to be local and gauge invariant on the space of parametrized strings. Write the 
interaction on parametrized string space in general normal ordered form 

= f dxl dxzdydza(x 1, y)8(x  2, z) 

X4,(x)* ~. L~_fl*'J'K(s,, H x, Hy, t t ~ ) L f L ~ ( y ) ~ ( z ) .  (53) 
[,J,K 

The L~ are given in terms of the L;~ and L~ by the joining relation (48). The form 
factors I t 'J'x are then determined from the physical form factor i= i0 ,o ,0  by 
evaluating the interaction (53) level by level in an arbitrary Verma module, and 
requiring it to vanish on the descendent fields. We are again interested in finding the 
conditions that the physical form factor must satisfy in order that I t r  be local. 

11, On general eovarianee 

Dependence on the vacuum geometry is now presumably isolated in the physical 
hamiltonian of the 1 + 1 dimensional conformal field theory*. But the vacuum 
should be some particular value of the field. Therefore it is necessary to represent the 
vacuum as both a hamiltonian and a wave function on physical strings. The obvious 
wave function to associate with the hamiltonian is the ground state q,0(2) of the 
conformal field theory. It satisfies the transversality conditions, so it is a wave 
function on physical strings. The character of the correspondence between solutions 
of the string field equations and hamiltonians on physical strings is not obvious, but 
it seems reasonable to try to extend the relationship to the general field on physical 
strings. The equations of motion would be the conditions for representing the 
hamiltonian as the middle operator in the Virasoro algebra. The simplest relation- 
ship between wave function and operator is linear. A linear map from wave 
functions to operators on wave functions is a trilinear form on wave functions. The 
natural choice is the contact delta-function. 

The string field ~(2)  should now be interpreteA as the fluctuation of the true 
string field ~ from its vacuum value +0: 

= 4'o + ~' = ~bo + Z ( H ) ~ .  (54) 

The action, if it is to be completely independent of the vacuum geometry, must be 

s = VAP + V2(V,. 40. (55) 

* The idea of representing the classical string state as a two-dimensional conformal field theory, that is, 
as the general nonlinear sigma model describing propagation of the string in a background geometry, 
has occurred to a number  of people, The idea is implicit in ref. [10], especially in conjunction with 
those in ref. [11]. 
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The quadratic term in the action is the natural inner product on densities. The 
trilinear term is the natural contact delta-function. 

The equation of motion for the string field is 

(56) 

The hamiltonian /~ is determined by 

t̂{ o2s )  tz(m q; 

The interaction is simply @(~. ~). Once the interaction form factor is constructed 
explicitly it can be checked whether this description of the vacuum is consistent with 
the actual interaction. 

The contact relationship provides a map between string fields and some class of 
quantum hamiltonians on physical string space. A solution of the field theory 
equations of motion should correspond to a hamiltonian which can be lifted to the 
space of parametrized strings and there generate the Virasoro algebra from the 
reparametrization algebra. Then solutions of the field theory equations of motion 
would correspond to 1 + 1 dimensional conformal field theories describing the 
parametrized world surface of the string. This would explain the equivalence 
between the classical equations of motion of the string and the equation for zero 
fl-function in the nonlinear sigma models which describe self-consistent interactions 
of string and background geometry [11]. It might even be possible to interpret the 
equation of motion (56) for the string field g, as the fixed point equation of a 
renormalization group transformation on 1 + 1 dimensional reparametrization in- 
variant quantum field theories. 

If the string theory can be written in the form of eq. (55) then the theory has a 
very large invariance group, the group of maps of string space to itself which 
preserve the contact relationship. Green [12] has suggested this group as the 
underlying invariance group of string theory. 

Even if a string field theory can be written which is free of dependence on the 
vacuum geometry, there remains dependence on the vacuum topology of string 
space. Some abstraction of the string field should exist in terms of which the field 
equations are purely algebraic. Such an abstraction might be found by treating the 
space of wave functions as an abstract separable Hilbert space. The contact 
interaction of a string space is some trilinear functional on Hilbert space which gives 
a multiplication rule turning Hilbert space into an algebra. This algebra is not 
necessarily associative, but duality requires that the interaction satisfy some quadratic 
identity. This is the same quadratic identity satisfied by the operator product 
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coefficients of conformal field theories [13]. If this identity can be written in a form 
independent of the vacuum geometry, and if enough physical conditions can be put 
on the interaction it might be possible to show that all interactions are unitarily 
equivalent. Then the ground state of the string field would determine both the 
geometry and the topology of spacetime. 

12. Conclusions 

There are more problems than conclusions. The most urgent is checking whether 
the gauge invariance can be linear by constructing the interaction assuming linear 
gauge invariance and locality. It must be checked that these conditions can be 
satisfied, that the unphysical poles decouple to leave the Veneziano model, and that 
the vacuum geometry appears in the action only through the hamiltonian of the 
reparametrization invariant 1 + 1 dimensional conformal field theory. If the con- 
struction of the interaction succeeds then the conjectures of the previous section can 
be tested. Another obvious problem is to find a manifestly supersymmetric field 
theory of the supersymmetric string. So far, the covariant theory of the supersym- 
metric string has been expressed in the first-quantized BRST formalism [14]. It 
should be possible to find more applications for the structure diagrams of the Verma 
modules. In particular there is a fascinating duality between the representations of 
the Virasoro algebra at c, h and the representations at 26 - c, 1 - h [8, 9]. For the 
superconformal algebras the analogous duality takes 8 to 1 0 -  8, and h to ½ - h  
(Neveu-Schwarz) or ~ - h (Ramond). Finally, it is intriguing to think of this string 
field theory, if it makes sense, as a kind of nonlinear Schrrdinger model and to 
wonder if the rich structure, in particular the correspondence of field and hamilto- 
nian, might provide means to solve it exactly. 

It seems remarkable that gauge invariance and locality should have so much 
power in string field theory. Perhaps the power of the bootstrap method in this 
formulation of string theory is compensation for the lack of a striking geometric 
interpretation. 

This work was inspired by T. Banks' talk at the Argonne-Chicago Conference on 
Anomalies and Strings, March 28-30, 1985. I thank him for interesting conversa- 
tions. I am grateful to A.B. Zamolodchikov for introducing me to the degenerate 
representations of the Virasoro algebra, and to him and S.H. Shenker for many 
discussions of the Virasoro algebra, conformal field theory and string theory. I thank 
J. Cohn, M. Green, C. Hull, V. Kac, A.M. Polyakov, Z. Qiu, A. Rocha-Caridi, W. 
Siegel, I. Singer, P. Windey and E. Witten for helpful and enlightening conversa- 
tions. 
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