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We present an elementary derivation of the Atlyah-Slnger formula for the index of the Dlrac 
operator Tins index is the space-time integral of the trace of the chlral anomaly We calculate the 
full charal anomaly using the supersymmetnc path integral for a spmmng particle moving through 
space-time 

1. Introduction 

The Atiyah-Singer index theorem [1] equates the index of a partial differential 
operator on a manifold to a topological invariant, relating local information about 
the solutions of a partial differential equation to global properties of the manifold. 
All of the indices of operators which arise in geometry (and physics) are specializa- 
tions of the index of the Dirac operator [1]. 

The index of the Dirac operator plays a role in quantum field theory because it 
can be interpreted as the space-time integral of the U(1) anomaly [2] for a fermlon 
interacting with classical gauge and gravitational fields. The U(1) anomaly is a chiral 
anomaly: the anomalous divergence of a classically conserved chiral current in the 
presence of gauge and gravitational fields. The Adler-Bardeen anomaly, which can 
block the gauging of chiral fermions, is also a chiral anomaly [3]. 

In this paper we derive the general chiral anomaly, and thus the index formula, for 
arbitrary gauge and gravitational fields. The calculation is based on a proper t~me 
representation of the Dirac propagator in terms of the supersymmetric quantum 
mechanics of a spinning particle moving through space-time. 
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The supersymmetry generator Q of the spinning particle is the Dirac operator 0 in 
space-time. The wave functions which Q = ~ act on are the spinor fields on 
space-time. The hamlltonian is H = Q*Q. The particle moves along paths in space- 
time which are parametrized by proper time r and its anticommuting partner ÷. The 
quantum-mechanical amplitude for the spinning particle to move between the 
space-time points x and y in "euclidean" super-time r, ÷ is 

KT .~(X, Y) = e-rn-+QS(x, y).  (1.1) 

We will call this amplitude the super heat kernel. The Dirac propagator is the 
integral of the super heat kernel over the super proper time: 

SF(x,y)=fo°~drfd÷K~,+(x,y), (1.2) 

exactly as in the proper time representation for the bosonic propagator. The 
anomaly will be determined by the standard calculation from the short distance 
properties of the Dirac propagator. 

The strategy is as follows. In sect. 2 we point out that the Dirac operator ~,  acting 
on the Hilbert space of spinor fields, can be thought of abstractly as the generator Q 
of a quantum supersymmetry. The analytic index of ~ then becomes the index 
Tr( - 1) F of Witten [4] for the supersymmetric quantum system with Q = ~. In sect. 
3 we wnte down the chiral anomaly, recall the relation between the U(1) anomaly 
and the index of the Dirac operator, and express the Adler-Bardeen anomaly in 
terms of the chiral anomaly. 

In sect. 4 we realize the abstract supersymmetric system Q = D as a spinnmg 
particle in space-time. The super heat kernel K~, ~(x, y) is given by a supersymmetrlc 
path integral whose action contains the background gauge and gravitational fields. 
In sect. 5, we calculate the short time expansion of K~,o(X, x) which gives the 
formula for the anomaly and the index. 

In sect. 6 we sketch how the general index formula is specialized to give the Euler 
number and the Hirzebruch signature [5]. In sect. 7, we consider the situation in 
which the global topology of space-time does not allow a consistent definition of 
spinors [6], making it impossible to construct the Hilbert space for the spinning 
partmle. We point out that this obstruction is equivalent to an inconsistency in the 
supersymmetric path integral, precisely analogous to Witten's SU(2) anomaly m 
four-dimensional gauge theory [7]. 

This work was reported by one of us (PW) at the XXIII Cracow School of 
Theoretical Physics in June, 19983 [8]. Similar methods have been used indepen- 
dently by Alvarez-Gaum6 [9] to calculate the index and by Alvarez-Gaum6 and 
Wltten [10] in the calculation of the gravitational anomaly. 
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2. Supersymmetry and the index 

In this section we will review some general facts about Witten's index [4] for a 
supersymmetric theory and then draw the parallel between it and the analytic index 
of the Dirac operator. 

Consider a theory with supersymmetry charge Q, hamiltonian H and fermion 
parity ( -  1)F: 

H = QtQ, 

Qt  = _ Q,  

Q ( - 1 ) F + ( - 1 ) F Q = o .  (2.1) 

It follows immediately from these defining properties that: (1) the energy is always 
zero or positive; (2) the zero energy states are exactly the supersymmetric states, i.e. 
the states annihilated by Q; and (3) each energy eigenvalue El ~ 0 is associated with 
a pair of eigenstates, one It, B) bosonic and one [i, F )  fermionic, which satisfy: 

B) = I,, B ) ,  Q]t, B) = v/~,lt, F) ,  

(--1)V[', F )  = - I t ,  F ) ,  QIi, F ) =  - ~ 7 ,  lt, B ) .  (2.2) 

Witten pointed out that the number of bosonlc zero energy states minus the 
number of fermionic zero energy states, 

I = Tr ( -  1) F, (2.3) 
H = 0  

is topologically invariant. States can only reach or leave zero energy in pairs, one 
fermionic state for each bosonic one, making no change in the index, because states 
at any nonzero energy, however small, are always paired. There must be at least III 
zero energy states to produce the index, so a nonzero index implies that the 
supersymmetry cannot be broken. A useful formula for the index is 

I = Tr( - 1) Fe-~n, (2.4) 

which holds for any ~" > 0, since only zero energy states contribute to the trace, the 
contribution of nonzero energy states cancelling because of the pairing (2.2). 

The analytic index of the Dirac operator is developed in exactly parallel fashion. 
Let D be the covariant Dirac operator on some even dimensional, oriented, compact 
manifold without boundary. On even dimensional oriented manifolds, the spinor 
fields can be divided into spaces of positive and negative chirality, eigenspaces of the 
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chirality operator "Ys. The Dirac operator anticommutes with 75, so we can write the 
two operators in block form: 

I 1 o=[0 o] 
"/5= 0 - ' 0+  0 ' 

with D_ = -Dt+. Note that Jp+ takes positive chlrality spinor fields to negative 
chlrality fields, and 0 _  does the reverse. 

The analytic index [1] is defined to be 

Ind(D)  = dim ker O + - dim ker ~*+, (2.6) 

1.e. the number of positive chirality spinor fields annihilated by a9 minus the number 
of negative chirality spinor fields annihilated by O. The null space of ~9+ is the same 
as the null space of the laplacian Jpt__O+, and the null space of ~9_ is the same as that 
of 0+agt+. All nonzero eigenvalues of the two laplacians are exactly the same, 
because if Ot._~9+ u = ?~u then ~9+~gt+(Jp+ u) = ?,(Jp+u). This allows us to write 

Ind(O)  = Tr ~,se -~0.~. (2.7) 

The contributions from nonzero elgenvalues of O*JP cancel in the trace. 
When we make the following indentificatlons, we see that the two indices are 

exactly equivalent: 

Q=O, 

( - - 1 ) F =  1,5, 

H=~9* 0 .  (2.8) 

3. The chiral anomaly and the index 

In this section we write the definition of the chiral anomaly for fermions in 
background gauge and gravitational fields, to make it clear that this is the general 
chiral anomaly we point out that it includes as special cases the U(1) anomaly [2] 
and also the Adler-Bardeen anomaly which can block the gauging of chiral fermions 
[3]. We recall that the index of the Dirac operator is the space-time integral of the 
U(1) anomaly. Then we explain the representation of the chiral anomaly as a matrix 
dement  in supersymmetric quantum mechanics. 

We will be considering a compact n-dimensional manifold M, which could be the 
(compactified) space-time of a euclidean quantum field theory. This space-time is 
equipped with a gravitational field g~,~(x) and a gauge field A~(x). The gauge field 
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is a matrix in a definite representation space. The representation is arbitrary. In 
particular, it might be reducible. For example, the gauge field might be the SU(3) 
color field, with representation space the fundamental representation of color 
tensored with a flavor space. Another example would have the representation space 
being the space-time tangent vectors themselves, so that the Dirac operator would be 
acting on fermions of spin higher than ½. In that case A, would be the metric 
connection for g,~ in the appropriate representation. We will call the representation 
space of the gauge field the internal space, and indices a, b . . . .  will be called internal 
indices, even though the last example shows that this language is not always 
appropriate. 

We assume that M is even dimensional and orientable, which means that we can 
choose a completely antisymmetric tensor e~ ~, compatible with the metric: 
n! = e~ ~.o~.. .g~"~"e~ ~. We assume there is a spin structure, so that at each 
point there are Dirac matrices 7~ = "t~, X7~'r~ = 0 which satisfy the standard anti-com- 
mutation relations: 

7/1'~ + "1'~7¢ = 2g, , .  (3.1) 

Using the orientation of M, we define 

1 
75 = l - n / 2 n !  ~1  ~,~ " ' ' 1  ' (3 . 2 )  

which, since M is even dimensional, satisfies 

75 = 75*, 752 = 1. (3.3) 

The Dirac operator on spinors with internal indices is 

0=v"(0.+%+A.), 

% =  I(  Oogj, o + e~O~,e;)[7 °, 7°], (3.4) 

r r r where the vielbein e~ satisfies e~e~ = g~. 
Now suppose ~I'"a(x) is a free massless fermion field, ~/'~b the conjugate field. The 

chiral current is 

J~ff ( X ) = - ~ b 7 5 7 " ~ t a (  X ) o (3.5) 

We suppress indices when the meaning is clear. The covariant divergence of the 
chiral current is 

u m 

= g'750'/" - 0' / '75g'.  (3.6) 



400 D. Fnedan, P Wmdey / Attyah-Smger mdex 

By the equation of motion D'/' = 0, only the vacuum expectation value contributes 
to the divergence. This is the chiral anomaly. Using 

SF(X, y ) =  ( ~ ( x ) ~ ( y ) ) ,  

DSF(X, y)=6(x, y), (3.7) 

we have 

V~,J#(X) = 2 tr [ysDSF(X, Y)]lx=y 
spm 

= 2  tr [y56(x ,x) ] .  (3.8) 
span 

This needs to be regulated, but as the regularization is removed there will be a finite 
limit independent of the method of regularization, as long as locality and gauge 
invanance are respected. One standard choice of regularizatlon is the heat kernel 
method 

V~js~(x)=lim2 tr [~5e-'OtOS(x,y)] . (3.9) 
r ~ O  span x=y 

The relation between the U(1) anomaly and the index is now straightforward. The 
tracej~ 'a is the U(1) current. The right hand side of (3.9), traced over internal indices, 
is the U(1) anomaly. Integrating over space-time and comparing with formula (2.7) 
for the index, we get 

_ _  n 1 p,a I - f  d x~O.jso(x). (3.10) 

The relation between the general chiral anomaly and the gauging of chiral 
fermions is more delicate. Suppose we have some collection of fermlon fields to be 
coupled to a gauge field, consisting of positive chlrality fields g'~.(x) and negative 
chirality fields g'a_(x). The current to be coupled to a gauge field is 

E =JL+JL, 

j~'+ = , / , + y  X k '/% 

j~'_ = ~P_ y"X~- ' / '_,  (3.11) 

where the X~, ~t~ are the generators of the gauge group in the positive and negatwe 
chirality sectors respectively. It is essential, for a gauge invariant coupling, thatj~ be 
covariantly conserved. 
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In order to find out if the covariant divergence of j~ is in fact zero we employ a 
device. We double the fermion content, adding for each fermion field a mirror image 
of the opposite chirality, but the same gauge representation. The result is a left-right 
symmetric theory of Dirac fermions q,a. In terms of the Dirac field ,/,a, the original 
currents are 

S~+ = ~1(1  + ys) 7"X~- g ", S#_ = ~½(1 - ys) y"X~- q ". (3.12) 

We can calculate the divergence of the original current in terms of the divergence of 
the chiral current: 

(3.13) 

since the vector currents in (3.12) are conserved by gauge invariance of the left-right 
symmetric theory. Therefore we can tell from the divergence of the chiral current 
when a chiral anomaly prevents the gauging of fermions. 

4. The supersymmetric spinning particle 

In this section we will build path integral representations for the Dirac propagator 
SF(X,  y) ,  the chiral anomaly and the index. We will proceed in the following steps: 

(i) review the supersymmetric quantum mechanical theory of the spinning particle 
in flat space [11]; 

(ii) go to a superfield formulation in which it is easy to implement general 
covariance and gauge invariance; 

(iii) express the proper time representation of the Dirac propagator in terms of 
the path integral for the spinning particle. 

The dynamical variables which describe the spinning particle are the position 
operator x~'(t) and its super-partner tp~(t). The lagrangian is 

L = ¼~.2 ~' + ¼ffJ'~'. (4.1) 

The coefficient ¼ is introduced to simplify subsequent formulae. The lagrangian (4.1) 
is invariant under the supersymmetry transformation 

ax ~' = e~P ", 8q," = - e.~ ~'. (4.2) 

The canonical (anti-)commutation relations are 

v ] +  = (4.3) 
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In "euclidean" time, 
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The supersymmetry generator is 

tp~ = - ½2. .  (4 .4 )  

Q = qJ"(tp,). (4.5) 

These (anti-)commutation relations are represented on wave functions which are 
space-time spinor fields u~(x). ~ is represented by -/~ and lp~ by 0,. The generator 

is Q = y~O~ = D. 
Our object is to construct the super heat kernel e -'H-~Q. The path integral with 

lagrangian (4.1) will give the ordinary heat kernel e -~M. But Q commutes with H, so 
we need only add to the action a term proportional to ÷Q: 

7 1 ^ 
(4.6) 

Next, we want to introduce internal degrees of freedom, but for the moment 
without couphng to a gauge field. The wave functions are to acquire internal indices 
without any effect on the dynamics. Let ~b and 71" be canonically conjugate fermion 
operators: 

[~/b, ~/~] + = 6~. (4.7) 

If the lagrangian is modified by addition of the term ~/i/, then the new variables are 
constant in time. The modified lagrangian remains supersymmetnc. The internal 
operators are represented in a Fock space: 71 as creation operator and ~ as 
destrucUon operator. The wave functions can be written as functions u~(x, 71) of the 
creation operators: 

u (x, = u S ( x )  + + + . . .  (4.8) 

These wave functions contain antisymmetrlc tensors of all ranks in the internal 
space, but we will eventually want amplitudes between states with only a smgle 
internal index. A systematic way to isolate these states would be to use the number 
operator Nn = ~/~. The k-elgenspace of Nn contains the spinor fields with k internal 
indices. N~ commutes with Q and H, so we can introduce a term (ta/~')N~ in the 
lagranglan to give a modified heat kernel 

K= e -'tt-~a tetNn. (4.9) 

The index would be a generating function 

I(a) = E l k e  ,,k, (4.10) 
k 
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where I~ is the index of the Dirac operator acting on antlsymmetric k-tensors in the 
internal space. We will actually proceed without this complication and directly 
compute I I, which was the index we were originally interested in, and only quote the 
result for I(a) .  

It will be easiest to introduce background fields into the superfield version of this 
theory. The super-field associated with x ~ is 

X" = x" + 0+". (4.11) 

The variables 71 and ~ are contained in superfields 

N a = ~/" + 0O", Nb = ~/b + 0q~b, (4.12) 

where q~ and ~ will play the role of auxiliary fields. Note that N and N are fermionic 
superfields. The superlagrangian is 

L = ¼ ( I +  20~)DX"O,X"-_NDN, (4.13) 

where D = 0O t - 0 0, D 2 = - 0 r The action is 

s = f (  dt f dO L. (4.14) 

The component lagranglan is reproduced by using the equations of motion ~ = ~ = 0 
to eliminate the auxiliary fields. The supersymmetry transformation of a field is its 
commutator with eQ = e(OO t + 0o). 

If we rescale t ~ r t ,  0 ~ r l / 2 0 ,  d 0 ~ r  1/2d0, D ~ r - 1 / 2 D ,  + ~ r  x/z+, ep 
r-I/2q~, ~ ~ r-112 ~?, and define 

g = rl/2 _ 0÷, (4.15) 

the action takes the compact form 

.-- So' °, s.o [ +, .,,, ..,, + .o.,]. (4.16) 

The parameter g plays the role of a metric in one-dimensional superspace. The 
action (4.16) can be thought of as a gauge-fixed version of a more general 
reparametrization invariant action. 

To take account of a background metric and gauge field we contract space-time 
indices with g~,~(X) = g~,~(x) + O+°O,,g~,~(x) and we replace DN with the correspond- 
ing covariant superderivative 

DAN= ( D + DX~A~,( X ) ) N ,  (4.17) 
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giving 
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, :So',,s,o (4.18) 

DX and 0 t X are already covariant. 
We now have a manifestly covariant, manifestly supersymmetric lagrangian whose 

supersymmetry generator in the flat space limit is the Dirac operator. We want to 
show that in the covariant theory the supersymmetry generator ~s the covariant 
Dirac operator 

D = ~90 + 7"~A,~/, (4.19) 

where D0 is the Dirac operator on ordinary spinors. Recall that ~/ and 7/ are 
respectively creation and destruction operators acting on the wave functions (4.8). 

Taking any point as origin, we can choose coordinates and a basis in the internal 
space, so that A,(0) = 0 and Oog~,,(O) = 0. Then, from the flat space result, both D 
and Q are equal to 7"0~ at the origin of coordinates. Since the origin of coordinates 
is arbitrary, it follows that Q = ~ everywhere. The effectiveness of this argument 
depends on the fact that Q and D are first order in tp, and 0~ respectively. 

To see in a more concrete way that Q = D for the covanant theory, we can 
re-express the action in component notation and eliminate the auxiliary fields using 
their equations of motion. The result is 

where 

= a ,#  ; + 

Vt,7= ( Ot + 

G .  = a , .A.  - , L A .  + [ A . .  A . ]  , 

F~.= ½g""( Oogo. + Oogo,- O,go.). (4.21) 

The verification that Q = O is now a straightforward application of the canonical 
formalism. The only subtle point is that e ~ "  is the correct canonical variable. The 
term involving the vielbein in eq. (3.4) for the covariant Dirac operator comes from 

r g r v g v . p  r r rewriting the kinetic term for ~k: g~,~k"J/= (e,q,)0,(e,~k ) +  ~k ~ x (e,0pe,). 
The super heat kernel K(x, y) = e-'m-*O6(x, y) satisfies the differential equation 

('?0,~ - O~.)K(x, y) = OK(x,  y ) .  (4.22) 
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The Heisenberg operator X(r, ÷) is 

= 

= e'H+*Qx(o, O)e -~H-*Q, (4.23) 

where X(0, 0) = x. The supertime dependence of N and N is expressed similarly. The 
diagonal of the super heat kernel is given by 

(X, N(~', ÷)IX, N(0,0))  = (X, Nle-'tt-~Qlx, N),  (4.24) 

where the IX, N)  form a Dirac basis of states. In terms of the functional integral, 

<Xo, No(~, ÷)lXo, No) =fD[XID[NID[N]e -s 

x6( Xt=o- Xo)6( Nt=o- No)6( Nt=o- No), (4.25) 

where the path integral is over fields periodic in time, and the delta function of a 
superfield is 

6(X) = 6"(x)1e~,l ~,qJ~'~...~b ~'o. (4.26) 

The expression (4.25) will be interpreted explicitly in the next section as the diagonal 
part of the super heat kernel. 

The Dirac states IX) deserve some comment. They reflect Cartan's treatment of 
spinors [12]. Each point x" in space-time is associated with a Dirac state IX(0, 0)) = 
Ix). This represents a particular spinor at the space-time point x ~. Certain linear 
combinations of the operators ~" (which are just the 3' matrices) will annihilate the 
state Ix). These operators we write U. They must all anti-commute since the square 
of a 7 matrix is a pure number, and (U)Z lx )=  0 = ( U +  ~ s ) 2 [ X )  • There must be 
n/2 operators, U, and we can always make a change of basis such that 

½ ( + r + , + r + , / 2 ) .  (4.27) 

The complementary collection of operators 

~r = l ( ~ r -  l~r+n/2) (4.28) 

also anti-commute among themselves. ~ and ~ have canonical anti-commutation 
relations 

[~r, ~s] + = 8r •" (4.29) 
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The term ¼q~ in the lagrangian can be rewritten as ~ .  It has the same form as the 
term 7/i/for the internal degrees of freedom. 

The space of spinors at x, which has dimension 2 "/2, is the Fock space generated 
by the ½n i-operators acting as creation operators on the state Jx). A spinor wave 
function uS(x) can be regarded as a function u(x, ~) of the creation operators ~. The 
wave function u"(x) corresponds to the state f d"x d n/2~ U(X, ~)[x). 

The states I X) form a Dirac basis in the sense that (X[ Y ) =  6 ( X -  Y). The 
projections [X0)(X0[ , which we use to extract the diagonal part of the super heat 
kernel, satisfy 

IXo>< Xol I Yo><Yol = ~( Xo - Yo)IXo)< Xo[ . (4.30) 

As operators they are written 

IXo)(Xol = 8 ( x -  Xo). (4.31) 

5. Calculation of the heat kernel 

The most straightforward way to calculate the anomaly and the index from the 
short t~me behaviour of the heat kernel would be to go back to the component field 
formulation, expand around the minima of the action (4.20), and keep only the 
leading term in the limit z --, 0. The calculation becomes a simple evaluation of three 
determinants. This is described in detail in [8]. 

We prefer to adopt a different and more formal route using superfields, because 
we believe it sheds some light on how supersymmetry singles out only the relevant 
terms in the full expansion of the super heat kernel. 

We want to evaluate the diagonal matrix element (4.25). Let's first see what the 
structure of the answer is in absence of internal degrees of freedom. We have to 
evaluate 

g ( ' r ,  ÷, go) = (Sol e-~'" *QIXo) 

= f D [ X ] e - S , ~ ( X ~ = o  - X o ) ,  (5.1) 

where the path integral is over periodic paths Xt= 1 = Xt= O. We perform the path 
integral by writing X(t)= X o + 6X(t) and integrating over the fluctuations which 
obey 6X(O) = 8X(1) -- 0. The result will be expanded in the form 

K('r ,  ÷, Xo) = (4~"r) ,,/2 ~ K~,I ~p('r, ÷, Xo)~p~...4,~p, (5.2) 
p=0 
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are anti-symmetric tensors. The normalization factor (4rr~')-'/2 Is where the K~, ~p 
introduced for later convenience. The perturbation series for the path integral (5.1) 
begins at order gO, ignoring the overall normalization. Therefore the K,1 ~p(~-, ÷, x0) 
have expansions in r which begin at order "r °. 

Recall that the diagonal part of the super heat kernel, K~,,(x, x),  is a matrix on 
spmors at each point in space-time, and that any matrix on spinors can be 
decomposed into a linear combination of antisymmetrlc products of 33 matrices. Eq. 
(5.2) provides this decomposition for K,, ~(x, x). Each antisymmetric product of the 
grassmann variables ~k~ in (5.2) is interpreted as the corresponding antisymmetric 
product of 33 matrices (scaled by ~/2):  

K,.¢(Xo, Xo) = (4Ir) -"/2 ~ .r(P-")/2K~,, ~p('r, ÷, Xo)33"x...33~. 
p=O 

(5.3) 

We can fix the normalization of the super heat kernel by reference to its flat space 
value K~, ~(x, x ) =  (41r,r)-'/2. Because of the overall normalization m (5.2-5.3), the 
scalar p = 0 term K(~, ÷, x0) ---) 1 in the limit g ~ 0. 

Each term K~I ~p(~, ÷, x o) has an expansion in powers of • beginning at order ~.0 
so the leading term of the rankp tensor will go as ,r(p-,)/2. Now it is easy to see how 
the term of O(~ -°) is singled out in the computation of the anomaly. Remember we 
wanted to calculate trspm335e-'nr(x, x). But the trace of Y5 with every antisymmetric 
tensor of rank p in the 33-matrices is zero but for the highest one p = n, which 
contains the product of all of the -/-matrices. Only the rank n term will contribute to 
the trace over spin and its leading behavior as ~- ~ 0 is O(~-°). So this leading part is 
all we need to calculate to get the formula for the anomaly and the index. 

The last result will not be modified by the introduction of internal degrees of 
freedom. The coefficients of the expansion of the super heat kernel simply become 
matrices in the internal space. 

The actual calculation is done as follows. For small g, the X field fluctuates 
around mimma X 0 of the action. The fluctuations 8X are of order gl/2. The minima 
satisfy the equation of motion 

gOF(g-XOtxlz) = 0 ,  (5.4) 

where D r is the covariant superderivaUve 

Dry~ = D y .  + DX°F~o( X ) Y  ~ . (5.5) 

Eq. (5.4) is the super geodesic equation. For g - 0 only the absolute minima of the 
action contribute. These are the constants X~= x~+ 0~b~, OtX~= O. Note that 
DX~ = - q ~ .  Since we have no present need of the ÷ dependence we now set ÷ = 0, 
and treat g as an ordinary number. 
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The contribution from the 71 integral can be determined to lowest order in g 
directly from the Heisenberg equation of motion 

i /+  [~_F~, 71] = 0, (5.6) 

where 

This gives 

F =  1]~' ,Lp-,Lv (5.7) 
- -  g *  t~v '~ '0 ' t "  0 • 

7/(1) = e-  rT-Fn 7/(0) e ~-Fn , 

(rt(1)N) = (rtle'-FnlgD. (5.8) 

Thus, in the leading order, the diagonal of the super heat kernel acts as the matrix 
e ~-Fn on the internal space. On wave functions with exactly one internal index this is 
sxmply e -F. 

For the remaining spin dependence it is necessary to do the gausslan integral over 
the fluctuations in X(t). We expand the action to second order in the fluctuations, 
using gz.(X) = g..(Xo)+ 8X°Oog..(Xo), and writing/-'0 = F(X0): 

S= fol dt f dO + g ~ (  Xo)6X~(-DroOt)SX ~ . (5.9) 

The integral xs over fluctuations 8X which are penodic and vanish at t = 0. It is 
possible to express the result in terms of the superdeterminant of (Dr0)2, but it is 
just as simple to calculate from the component form of (5.9), or directly from (4.20), 
if we simplify the calculatmn by choosing special coordinates with x 0 as origin such 
that F(0) = 0 and 

r S ( x )  - ' - ""  (5.1o) 2 1 ,  O~V-'~ • 

The quadratic part of the action is 

S = £1 dt ~x( - 0 t + R_) Ofix + qJO?p, 

where 

R~ - ~_,f,~,f,t~o~ 
__ -- 2~O,.i~Oa,~vafl. 

This gives, up to a normahzauon, 

(5.11) 

(5.12) 

f Dt X]e S = deto 1/2( 0 t - R ) ,  (5.13) 
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where det o is the determinant leaving out the constant modes. 
Up to a normalization, 

detol/2( Ot-- R ) = det-I/2 [ k~i,o( R - 2erik ) ] 

= det- 1/2 [ (½R)- lsinh½_R] . (5.14) 

Putting together (5.8), (5.14) and the flat space normalization we get the leading part 
of the diagonal of the super heat kernel 

K,,o(Xo, Xo)-(4~r,r)-"/2e£det-X/2[(½R)-lsinh½R]. (5.15) 

R and _F are given by (5.7) and (5.12). Antisymmetric products of the q~ are to he 
replaced in (5.15) by the corresponding antisymmetric products of rl/27". 

The chiral anomaly is 

½ V'~j~ = tr 75K,,o(X, x) .  (5.16) 
spm 

The trace with Y5 selects the coefficient of 71... 7" in KT,0(x, x), times a factor i n/2 

from the definition (3.2) of 75 and a factor 2 "/2 which comes from the trace of the 
identity matrix on spinors. A simple way to write the result is 

( i )"/2e_edet_l/2[(½R)-lsinh½Rll,;,_dx~. (5.17) d"x ½ V'~,J# = ~ _ _ _ 

On the right-hand side of (5.17) only the term proportional to d"x should be kept. 
The formula for the Atiyah-Singer index is obtained by taking the trace in the 
internal indices and integrating over x: 

i ) n/2 I=f(~--d~ tr(ee)det-1/2 [(18)-~sinh½R], ( 5 . 1 8 )  

where now 

_F= ½F~dx"dx ~ , 

R ~ = I  /~ ~ v _ ~R~,~dx d x .  (5.19) 

For the sake of completeness we record the index formula for all the antisymmetric 
tensor products of the internal space: 

, ( a )  = E I k e  - , ~  
k 

r (  ' I "/2 =j\~---~} det(1 +ee-'~)det-'/z[(½_R)-lsinh(½_R)]. (5.20) 
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This follows from the formula 

tre ~(-F-'")n = det(1 + e-F-'~), (5.21) 

Much in turn follows from the fact that both sides of (5.21) are equal to the periodic 
fermionic path integral which gives det( O t - _F + m). 

We illustrate the index formula (5.18) by two familiar examples. The winding 
number of a two-dimensional abelian gauge field is [13] 

(5.22) 

The Pontryagln number of a 4-dimensional non-abehan gauge field is [13] 

t 21  
dx dx dx dxa 

_ - 1  
32rr 2 f d4x # ~ a t r (  F~F~a).  (5.23) 

As an example of the chiral anomaly, let us take the non-abelian gauge field in 
n = 4 dimensions, with gauge group generators ~ -  on the positive chirality spinors 
and ~ -  on the negative chirality spinors, and F~ = k + F~,(~ k + ~ ) .  Following the 
discussion of sect. 3, 

V~j~ = tr[(~,~ - h;)½0,j~] 

- 1  t r (hkh  t Am - - ~vafl l m - + + + - A k A t h m ) e  F~F2~ 
327r 2 

(5.24) 

The condxtlon that the current j~' be covanantly conserved lS the well known 
condition that the sums of the cubes of the charges should be the same for each 
chirality. 

6. Euler number and Hirzebruch signature 

We will sketch in this section how to specialize the general index formula to get 
the Euler number and the Hirzebruch signature. A more complete version of this 
material can be found in ref. [5]. The point we wish to emphasize is that the Dirac 
operator becomes an operator on fields with spin different from 1 when the internal 
space itself has nonzero spin. 

The Euler number of a space-time manifold is the index of the exterior derivative 
d on differential forms. When the space-time dimension ~s even there is a one-to-one 
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correspondence ~0 ,~, ~5 between the differential form o~ = %1 ,~ d x " " ' "  dx"~ and the 
matrice ~ = %~ 3`,1 . 7 , ,  The ~ span all the matrices on spinors. The space of 

P'k " " " 

matrices on spinors we write S ® S, where S is the space of splnors and S is its dual 

space. 
A Dirac operator can be defined with S as internal space. The correspondence 

~0 ~, ~5 allows us to consider this /p  as a first order differential operator on forms. It  

is an exercise with 3' matrices to show that this operator is d - d*. The gauge field A,  

~s simply the spin connection for g~,~. 
Let A P p  = 0,1 . . . .  n be the space of p-forms on the tangent space of a given 

n-dimensional manifold. One defines as usual the exterior derivatxve dp (here the 

index p is kept for clarity) 

dp: A p -* A p+I . (6.1) 

For example, on the one-form % d x  ' ~ A 1, 

(6.2) 

The adjoints are the divergence operators 

d~ : A p + 1 ...4 A p ' d~o~ = - V~'%. (6.3) 

This defines the de Rham complex 

0 --' A ° do A 1 dl d~  1 A" (6.4) 

in which the composition of two successive operators is zero. The laplacian operators 
a r e  

A p - ~ - d p _ l d ; 1  + d;dp:  A p - )  Ap.  ( 6 . 5 )  

The Euler number  is 

n ?1 

X = E ( -  1) pdim lip = Y'~ ( -  1 )Pdimker (Ap) ,  (6.6) 
p=O p = 0  

where ker(Ap) is the space of harmonic p-forms (d~0 = d*~0 = 0) and is identxfied 
with the cohomology class Hp (the space of closed p-forms dcop = 0 modulo the exact 
ones ~0p = d~op_l) whose dimension is the p th  Bettl number. 

I t  is now easy to recast the Euler number  as an index of the type described in sect. 
2. First split the space of forms into even and odd subspaces 

A += ~ A p, a - =  (~ A p. (6.7) 
p e v e n  p o d d  
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Then define 
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Q = d - d * ,  

( - 1 )  r =  ( - 1 )  p. (6.8) 

A comparison of the definitions gives X = I. 
Now we want to write I in terms of the Dirac operator a9 on S ® S. If ~0 is a 

p-form, then (-1)P0~*-->ys~75. Let us split the matrices on spinors into two 
subspaces 

S ® S +  = {oa: oa~,5 = oa}, S ® %  = (oa: oa),5 = -oa} .  (6.9) 

The ~'5 which anticommutes with O acts on the left on S ® S, so multiplying by "[5 on 
the right commutes with D. We write D = D+~  0 - ,  on the two subspaces (6.9). 
From (6.9), 

( -- 1)Pro <-+ )'S& for t5 ~ S ® S* ,  

It follows that 

(-- 1) P+ 1to <---} ys& for C o G S ® S * .  (6.10) 

1+ = I n d ( D + )  = E ( - 1) pdim Hp-,  
P 

I _ =  I n d ( D _ )  = E ( - 1) p+ldlm Hp + , 
p 

(6.11) 

where Hp and Hp- are the spaces of harmonic forms in S ® S* and S ® S_* 
respectively. Then 

X = E ( - 1) pdim lip = I + -  I _ .  (6 .12)  
P 

The Hlrzebruch signature is simply sign(M) = Ind(D) = I+ + I_. The defimtion is 
s ign(M)= I n d ( d - d * ) ,  where the index is taken with respect to the followmg 
self-adjoint operator which anti-commutes with d -  d* and has square one: 

,r(og) = ( -- 1) p(p-1)/2 * ( ~ ) ,  (6.13) 

where * : A p ~ A" p is the Hodge duality operator, i.e. contraction with e~l ~,. But 
it can be checked that r (o~)~ 3,5&, from which it follows immediately that sign(M) 
= I + + I _ .  

Finally, we need to calculate I:~ = Ind(D_+). To use the index formula (5.18) we 
need to know F ~ ,  the curvature of the metric spin connection on S+_. This is simply 
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the ordinary curvature represented by infinitesimal rotations on the dual space of 
the spinors: 

F~; = -3(1 ' ~ + -+ 3'5)gRt~,~Y,3' • (6.14) 

The Euler number and Hirzebruch signature are then given by 

X=I+-l_=f(~)n/2det-1/z[(xR)- ls inh½R]tr[~se-R-~ror ' /4]  

sign(M)= f + + I _ =Jk2--~ ] ( [  ' ]n/2det-i/z[(½R)-tsinh½R]tr[e-a-~rJ/4] _ (6.15) 

where the definition of _R is given in (5.19). The traces can be calculated with the aid 
v IJ bt of the fermionic path integral with lagrangian (~'Ot~' + ~ R_~,~ ), or by putting R~ in 

two by two block diagonal form and calculating the following identity: 

e-  -R~Y"Yt~/4 = det 1/2 (cosh(½R) e- ~ ' o t a ~ ( a / 2 ) ~ 0 / 2  ' (6.16) 

where the ~o behave just as the ~b0, as anticommuting variables whose products 
represent antisymmetric products of y matrices. Combining (6.15)-(6.16) we get 

1 e ~' ~"_R~,~2...R,._,, , (6.17) x = f ° ' ( n / 2 ) !  

s ign(M)= f ( -~  )"/2det-1/z[(½R) ltanh½___]. (6.18) 

7. The global obstruction to spin 

There are space-times in which it is impossible to consistently and covarlantly 
define spinors [6]. The obstruction comes from global topology. We will describe the 
obstruction here as a Z 2 anomaly in the quantum mechanics of the spinning particle: 
the same sort of global anomaly that Wltten found in SU(2) gauge theory [7]. The 
quantum mechanics turns out to be sensible if and only if the space-time carries 
spinors. It would be surprising otherwise, since the wave functions of the spinning 
particle are the spinors. 

The argument is exactly the same as in [7]. To construct the spinning particle 
through the path integral with action (4.20) it is necessary to make sense of the 
integral over ~ .  The value of the path integral is d ~ f f  Vt),  which depends on the 
closed path x~(t) in space-time and on the space-time metric g~. The operator Vt 
acting on vector fields ~ ( t )  along the loop is real and skew-symmetric, so its 
eigenvalues are grouped in complex conjugate pairs of imaginary numbers tXk, t~_ k 
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= - l ) t  k. For a typical path x " ( t )  there are no zero eigenvalues, so it makes sense to 
put the eigenvalues in order: 0 < )~ ~< 7~2 . . . .  Then we can write, leaving out the 

normalization, 

d ~ v t )  = I--I X/,. (7.1) 
k > O  

This definition is extended to all the nearby dosed paths by following the )t k, k > 0, 
as the path x " ( t )  changes, keeping continuity in the correspondmg eigenfunctlons 

of X7 t. 
This procedure can be used to extend the definition of d ~  ~7t) to any loop 

x " ( t )  by following any route from the initial loop. It only remain~ to check ff the 
definition depends on the route taken. Since the defimtion of d ~ ( x T t )  is only 
extended locally, over neighborhoods in loop space, two routes could produce 
different values. The product (7.1) will always contain one eigenvalue from each 
complex conjugate pare so the only possible discrepancy is m the sign. Following a 
route in loop space, ~det(X7t) changes sign every time a pair of eigenvalues 
t)tk, - t ) ,  k crosses zero. The definition is consistent if and only if each route sees the 
same number of crossings mod 2. This is equivalent to the requirement there be an 
even number of crossings along any closed path in loop space. 

This obstructmn to constructing the spinning particle, 1.e. the number of elgen- 
value crossings mod 2 along closed paths m loop space, is a topological lnvariant. 
Any deformation of the route in loop space or of the space-time metric changes the 
number of crossmgs m pairs. A closed path m loop space describes a surface in 
space-time. So the obstruction to constructing the spinning particle ~s a Z 2 valued 

continuous function on surfaces. 
Let x"(s ,  t), as s vanes from 0 to 1, be a closed path m loop space. Followmg 

Witten, we wdl calculate the number of eigenvalue crossings of X7 t as s goes from 0 
to 1 in terms of the zeros of a Dirac operator on the s, t surface. Define the operator 
XT, actmg on vector valued functions +"(s,  t) by analogy with XTt: 

espY '= O,qj, + O,x~r¢~(x)~7.  (7.2) 

Then define the two-dimensmnal Dirac operator 

~7 = 171 ~7 t --[- 0 3 17s ' (7.3) 

which acts on two-dimensional splnors tensored with space-ume vectors, gr has two 
zero modes for every eigenvalue crossing. The doubling occurs because X7 t had to be 
turned into a 2 × 2 matrix of operators in order to make a covariant operator on the 

s, t surface. 
The number of zero modes of ~' is a topological lnvariant (mod4). To see this, 

define the following operators on the nonzero modes: 

"q = I ~71-1V~, r 2 = io2, T 3 = ~1~'2 . (7.4) 
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The real, skew-symmetric operators r e form the Clifford algebra 
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5rk + rk~ ) = _ 26jk. 

The only irreducible representation of this algebra is 4-dimensional, so eigenvalues 
of ~" can only approach or leave zero in quartets. 

Thus the number of eigenvalue crossings of Vt along the path x~(s, t) equals 
(mod2) half the number of zero modes of the two-dimensional Dirac operator V. 

The topological obstruction to making spinors is also associated with 2-surfaces in 
space-time. Making spinors means covering the orthogonal group at each point with 
the spin group, its double covering. The metric connection performs parallel trans- 
port of tangent vectors, so to every closed loop it associates, by transport around the 
loop, an orthogonal linear transformation of tangent vectors. A closed path in loop 
space thus determines a dosed path in O(n), which is homotoplcally either the trivial 
closed path or the nontrivial one. Only the trivial one hfts to spin(n), so, in order for 
there to exist a spin structure on space-time, all of the closed paths in O(n) induced 
by closed paths in loop space must be trivial. Conversely, if every closed path in loop 
space gives a contractible closed path in O(n) then spinors do exist. 

The construction of spinors comes down to a question about surfaces, in particu- 
lar, about the bundle of space-time tangent vectors +~(s, t) over the s, t surface. 
Because we are dealing with homotopy mvariants of paths in loop space, we can 
lirmt the discussion to spherical surfaces. Strictly speaking, this is only true if 
space-time is simply connected, since otherwise there is more than one connected 
component to loop space, and more than one spin structure is possible. We ignore 
this complication. On each hemisphere of a spherical surface the bundle of space-time 
tangents can be triviahzed, so the only issue is what happens at the equator. The two 
trivializatlons are patched together by a function from the equator to O(n). The 
triviality or non-triviality of this loop in O(n) is exactly the same as the triviality or 
nontnviality of the loop of parallel transports in O(n). The patching loop in O(n) 
can be deformed so that it lies m an 0(2) subgroup, say the upper left 2 × 2 block. 
The bundle of space-time tangents then splits into n -  2 trivial one-dimensional 
bundles plus a possibly nontrivial 2-dimensional bundle. Any such nontnvlal 
2-dimensional bundle can be taken to be the bundle of majorana splnors on the 
sphere. 

There are two possible decompositions of the operator V. If spinors exist, the 
bundle of space-time tangents over the sphere being trivial, then V decomposes into 
n copies of the ordinary Dirac operator on the sphere. The ordinary Dlrac operator 
has two zero modes, so ~r has 2n, a multiple of four. On the other hand, if spmors 
do not exist, then ~r decomposes into n - 2 copies of the ordinary Dirac operator on 
the sphere and one copy of the Dirac operator on spinors ® spmors. Splnors ® spinors 
are the differential forms. V = d -  d* has two zero modes among the forms on the 
two sphere: the constants and e~,. Thus, if spinors do not exist, there are 2(n - 2) + 
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2 = 2n - 2 zero modes, which is equal to 2 (mod4). So we confirm that the global 
quantum anomaly is the same as the topological obstruction to having a spin 
structure. 

The standard suggestion for coping with space-times which admit no spinors is to 
use internal degrees of freedom to compensate for the obstruction to spinors, so that 
neither set of degrees of freedom makes sense globally on space-time, but the 
combined set does. In the formalism we have been using for the spinning particle, 
this means making 7/ a real field. The superfields D X  and N would have separate 
identities only locally; globally they would have to be regarded as two components 
of a single object. It would be interesting to know if, for fermions obeying a Dirac 
equation of this twisted type, there are global gravitational-gauge anomahes, like 
Witten's SU(2) anomaly, which could limit the possibility of compensating with 
internal degrees of freedom for the non-existence of spinors. 
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