January, 1986 EF1 85-99

Notes on String Theory
and

Two Dimensional Conformal Field Theory

Daniel Friedan

Enrico Ferms Institute and Department of Physics
University of Chicago, Chicago, Rlinoss 60637

ABSTRACT

These lecture notes cover topics in the covariant first quantization
of supersymmetric string: super Riemann surfaces, superconformal
quantum field theory in two dimensions, the superconformal world
surface of the string, the superconformal ghosts on the world surface,
the BRST invariant fermion vertex and the spacetime supersymmetry

current on the world surface.

To appear in the Proceedings of the Workshop on Unified String Theories,
Institute for Theoretical Physics, Santa Barbara, July 29 — August 16, 1985.

This work was supported in part by Department of Energy grant DE-FG02-84ER-45144 and
the Alfred P. Sloan Foundation.



1.

z‘

CONTENTS

Introduction

1.1 Covariant quantization of bosonic strings . . .. ......... 6
1.2 Scatteringamplitudes . . ... ................... 7
1.3 Unitarity . ........... . ... 8
14 The BRST current . .. ... ...... ... ... cenno.. 9
1.5 Supersymmetricstrings . ... .......... 0. 11
Super Riemann Surfaces

2.1 Supercoordinates. . .. ... .. ... ... 12
2.2 Superconformal transformations. . . . . ... ... ..... ... 12
2.3 Super Riemannsurfaces . ... .. ... ..o, 13
2.4 Superconformal tensorfields. . .. ................. 13
2.5 Superconformal vectorfields . . . . ... .............. 14
2.6 Super contourintegrals ... .............. ... .... 15
2.7 Indefinite integrals and Cauchy formulas . . . ... ........ 15
28 Periodsandmoduli.................... . ..., 16
Superconformal Field Theory

3.1 Conformal fields and operator product expansions . .. .. ... 18
3.2 The super stress-energy tensor . . . . ... ............ 19
3.3 The global superconformal group SL, ............... 20
3.4 Operator interpretation . . ..................... 22
3.5 Superconformal generators . . . ... ... ............. 23
3.6 Operator products of component fields . . . . ... .....,.. 25
3.7 Modeexpansions . . . . . . .. vt vttt u e e 25
38 Commutation relations of normalmodes . . . . . ., . ... ... 26
3.9 Highest weight states and conformal fields , . . .......... 27
The fermlonlc string

41 Matterfields ... ........ ... ... ... .. 29
4.2 Superconformalghosts . ... .................... 30
4.3 Two-point functions . . . e, 30
44 Stress-energytensors . . . .. .. ... ... .1 ... 31

45 Modeexpansions . . . . ... i iv it e e e, 33



4.6 (Anti-)commutation relations . . .. ... ... ..........
4.7 Matter ground states and seromodes . . . . ... ........
4.8 SO(10) currentalgebra . ... ... ......... ... .....
4.9 N=2 supersymmetry of theghosts . ........... PR

8. First Order Free Fields
5.1 Fields, action, modes, two-point functions . ... .........
5.2 Thestress-energy tensor . . . . . . .. ... ... v v euu..
53 TheU(l)-current . . . ... . ..o ii i tmemennunn.,
54 The Fermi/Bosesea . ..................0.....
5.5 The U(1) streas-energy tensor . . . . .. ..............
56 Bosomisation ............... .0t ee..,
57 Thec=-28ystem ...........0cut. i iuinneen..
6.8 The chiral scalar and Riemann-Roch . . . ... ... .......

6. The Superconformal Ghosts
6.1 Bosomisation ................. ... . .. ..., .
62 Spinfields . . . ...... ... .. ... . o,
6.3 The BRSTcurrent . .. ... .. ........ ... ¢ ¢ouu...

7. The Permion Vertex and Spacetime Supersymmetry
T Vo e e e e e e e
T2 Vir o e
7.3 Scatteringamplitudes . . .. ... ... ........... ...,
74 The rearrangement lemma . . . . ... . ... ......,.,..,..
7.5 Spacetime supersymmetry . . .. ... ...............

References



The basic problem in covariant first quantized string theory is to construct
the world surface of the string as a local two dimensional conformally invariant
quantum field theory. The problem divides in two parts. A conformal field theory
is completely defined by the operator product expansions of its quantum fields,
which can be determined at arbitrarily small distance. So the first task is to
describe the local structure of the world surface. Once the conformal field theory
is defined by its local properties, its global behavior can be checked to determine

the consistency of the string loop expansion.

These notes are about the superconformal invariance of the world surface
of supersymmetric string. The main topics are the construction of the vertex
operators for emission of spacetime fermions and the demonstration of spacetime
supersymmetry in the covariant first quantization. Only the local structure of
the world surface is described; explicit global information is given only for the
two sphere, in order to calculate tree amplitudes. The tree amplitudes illustrate
how global facts such as spacetime supersymmetry and BRST invariance are ob-
tained from local information coded in operator products of chiral fields and, in
particular, conformal currents. The translation from local to global information
is based on the analyticity of chiral quantum fields in two dimensions. The chi-
ral fields on the string world surface include the super stress-energy tensor, the
Fadeev-Popov ghost fields and their anomalous currents, the BRST superconfor-

mal current, and the conformal current for spacetime supersymmetry.

These notes are meant to be read in conjunction with the lectures of Stephen
Shenkerl!l, and describe work done with him, Joanne Cohn, Emil Martinec and
Zongan Qiuiul. Only a few references are given, and then only to relatively
recent work. The references are definitely not meant to convey the history of the
subject. A more complete introduction to the literature can be found in reference
5. Some of the ideas of conformal field theory and covariant bosonic string theory

are discussed in reference 7 from the point of view which is taken here.

Many of the arguments and calculations in these notes are presented rather



telegraphically. The industrious reader might treat the gaps as exercises or prob-

lems.

Section 1 is a sketch of the general strategy of covariant first quantization;
gection 2. develops the -most basic properties of super Riemann surfaces; section
3 skelches superconformal field theory; section 4 describes the ‘superconformal
'w_c;il_d gu';f-ac;'g_o{-f_.e_l_‘mi._gniﬁ-gtring and the superconformal ghosts; section § is a
geéggaﬁlidiggqgsjpg :qf ;@wo dimensional free tengor quantum fields satisfying first
ordq;ggu_:gt,ig_r;'rs_ of motion; section 6 applies the general results of section 5 to the
ég'ppméggggﬁ:lgl @hosts and constructs the BRST current; and section 7 constructs

the fermion vertex and the spacetime supersymmetry current.

1. INTRODUGTION

A theory of gravity, such as string theory, should at least provide a manifestly
Lorentz covariant scheme for calculating scattering amplitudes in flat spacetime.
Covariant first quantization of strings could also be useful as a step towards

understanding the underlying structure of string.

A manifestly relativistic first quantization of string can be carried out us-
ing the language of two dimensional conformal quantum field theory to describe
sums over world surfaces of first quantized strings. The analog in particle the-
ory is the relativistic calculation of scattering amplitudes in first quantization
by representing Feynman diagrams as sums over particle world lines (joined at
interaction vertices).



1.1 Covariant quantisation of bosonic strings

The basic ideas of covariant first quantization of strings are realized in the
bosonic theory'sl. A world surface is given by its location in spacetime, z*(z, 2),
and by an intrinsic metric g,(2, £) on the parameter space of the complex variable
2z, with line element ds? = g¢,,dz? + g,,dzd% + g;,d2%dz + ¢5,dZ*. The intrinsic
metric makes it possible to write a sum over world surfaces f dz dg ¢~5) which
is both local in parameter space and invariant under reparametrizations, and

whose action
S{g,z) = /d’z\/ﬁ (#2 + ARG} 4 g*8,2#35x, + - - ) (1.1.1)
can be expanded in powers of the two dimensional derivatives.

The reparametrizations of the world surface act as a gauge group in the func-

tional integral over surfaces. A natural gauge fixing condition is g,y = p(2,2) gf,';".

where gf,',"’ is some background metric. In this gauge the integral over metrics
becomes an integral over the conformal factors p(z,%) and over the conformal
classes of metrics, represented by a collection of background metrics gi',"' which
are indexed by a finite number of moduli m = (m',m?,...). The conformal

classes of two dimensional surfaces are the Riemann surfaces.

A Fadeev-Popov determinant is introduced into the functional integral be-
cause of the gauge fixing. The determinant is calculated by a Grassmann integral
over conjugate ghost fields 5(2), ¢(2) which are chiral fermion fields on the world
surface, of spins 2 and —1 respectively, corresponding to variations of the gauge
condition and to infinitesimal reparametrizations of the world surface. The gauge
fixed functional integral has the form

¥ emeted) [ gm [ dzdbde

topologics moduli  ficlde | (1.1.2)
exp {— [d%z (axaz +bdc -+ BBE)}

when the action is written in conformal coordinates (z,2) with g{™ = 0, gf’,’" =

%, and interactions of dimension > 2 are dropped from the two dimensional



action because they are irrelevant (nonrenormalizable) in the continuum limit of
parameter space. The coefficient ¢ *** is the string coupling constant. In the

sum over surfaces, the Euler number indexes the string loop expansion.

Note that the conformal factor p is left out of 1.1.2. The classical action
in 1.1.2 is independent of p, but this conformal invariance does not persist in
the two dimensional quantum field theory of z*,b,c if there is a net conformal
anomaly, which always happens except in the critical dimension d = 26. In the
critical dimension p drops from the surface dynamics, leaving 1.1.2. In noncritical
spacetime dimensions the p field must be dynamical, but as yet no acceptable

quantum dynamics for p has been formulated for 2 < d < 25.

In the critical dimension d = 26, the vanishing of the conformal anomaly
means that the z”, b, c quantum field theory depends only on the conformal class
of the surface, and its partition function transforms as a density on moduli space,

80 that the integral 1.1.2 over moduli makes sense (locally in moduli space).

1.2 Scattering amplituades

To calculate a Greens function of N strings, let the sum over topologies in
1.1.2 range over surfaces with N boundary components and fixed wave functionals
on the boundary values, representing N external strings. The boundaries can be
pictured as holes in a compact Riemann surface without boundary. The radii
of the holes are N of the (real) moduli of the original surface. The integrals
over radii near sero produce poles in the external spacetime momenta, and the
N point scattering amplitudes are the residues at these poles. The amplitudes
can thus be calculated as functional integrals over surfaces with N infinitesmal
holes, and particular boundary conditions at the holes. The locations of the
holes are the remaining moduli for the boundaries. The infinitesmal holes can be

represented as local quantum fields on the world surface, called vertez operators.



The scattering amplitudes have the form

G(Pl,»--:PB)= z: / dm /({le~-'sz
topologies  poduls (1.2.1)

Z(m) (Vi(pi,21)- - Viv(ews 2w))

where Z(m) is the partition function of the z*, b, c system (including the string
coupling) on the compact Riemann surface without boundary whose moduli are
m, and (- --),, is the correlation function on the surface. The contribution from

the simplest topology, the two sphere, gives the tree amplitudes.

The reparametrization invariance of the original functional integral means
that the integrals over the z; should be conformally invariant, which implies that
the vertex operators should have quantum dimension 1 in z and also 1 in 2.
The simplest examples are the exponentials e**, 1k? = 1, which are the vertex
operators for the tachyonic states of the bosonic string. The duality properties
of the string amplitudes are manifest in 1.2.1; the factorization of amplitudes is
expressed by the operator product expansion of vertex operators. For example,

the leading singularity in the operator product of tachyon vertex operators,
c-'k-:(zl) eik'-s(zz) ~ (31 _ zz)b-l' ei(i-l-k‘]-s(zz) , (1.2.2)

yields a tachyon pole in the intermediate momentum k + k' at ,f,(k + k') =1,

coming from the integration over z; near z;.

1.3 Unitarity

Scattering amplitudes calculated by this prescription are manifestly Lorentz
covariant, but not obviously unitary. The demonstration of unitarity has two
parts. First, the tree amplitudes must be shown free of ghosts; and, second,
the sum over surfaces of nontrivial topology must be shown to produce loop

corrections consistent with the tree amplitudes.



In the covariant first quantisation, the states of the two dimensional field
theory on the cylinder, subject to the residual constraints of reparametrisation
invariance, are the physical states of a single string. This identification of the
states is formally apparent the Schridinger picture of the two dimensional field
theory on the cylinder, where the states are wave functionals on circles in space-
time. The HilBert space of thé two dimensional field theory has an indefinite
metﬁc, _bei:éﬁ_ié df the Lorents signature of spacetime and the Fermi statistics of

the _Aghos_tg._' _

The original covariant approach worked only with the matter fields z*. The
physical states are defined by the gauge conditions L}, |[phys) = 0 and the mass-
shell condition {Lj — 1) |[pAys) = 0, in terms of the Virasoro operators L gen-
erating the residual gauge algebra of conformal transformations. The gauge and
mass-shell conditions are equivalent to the conformal invariance of the integral
over locations of vertex operators in 1.1.2. The metric on the physical states
can be shown nonnegative, the unphysical states can be shown to decouple from
the physical states in tree amplitudes The problem with the classical approach is
that the matter sector by itself is conformally anomalous, so its partition func-
tion must be corrected to become a density on moduli space, and the unphysical

states do not manifestly decouple in the loop corrections.

1.4 The BRST current

An alternative approach uses the BRST quantisation of the world surfacel®l.
The fermionic BRST charge is defined in the combined matter-ghost system,
aatiafyi!{g,QLRST = QpRst; Qhrsy = 0. The physical states are the invariant
statm,"éansrlphya) = 0, modulo the null invariant states Qpasr |state). The
metric on physical states can be shown to be positive, if only by showing that

the two definitions of the physiéal states are equivalent.

The decoupling of physical states can be shown by writing the BRST varia-



tions of fields as contour integrals of a conformal (chiral) current:
(6BRsT®)(w) = 1 f dz jprsr(2) B(w) (1.4.1)
Zﬂ'c

where C, is a simple contour surrounding w. The physical vertex operators V(z)
are the BRST invariant fields, where invariance means that (6ggsrV)(2) is a
total derivative, so that the integral over z vanishes. Equation 1.4.1 is equivalent
to an operator product formula. This is a local property of the conformal field

theory which obtains inside all correlation functions, on all surfaces.

The decoupling of null states can be shown by considering the correlation
function of N —1 physical vertex operators and one BRST-null vertex operator.
Write the null vertex in the form 1.4.1. Deform the contour to surround the
each of the N — 1 physical vertices, giving a sum of total derivatives, each of
which vanishes after integration over the locations of the vertices. This argument
depends on jprsT being conserved on any surface, which means that it must be
a conformal current, a conformal field of weight (1,0), i.e., of weight 1 in z and
0 in 2. The expectation values of vertex operators on arbitrary surfaces must be
BRST invariant, which means checking that contour integrals of jzzsr vanish

up to total derivatives, as long as the contour surrounds no vertex operators.

One way to show that the loop corrections are consistent with the tree ampli-
tudes is to use a representation of the Riemann surfaces in which all the curvature
of the intrinsic metric g,(,',") is concentrated at isolated pointsf*®). The functional
integrals are explicit sums over states, and the moduli play the role of Schwinger
parameters. Since the conformal symmetry is anomaly-free, any representation
of the surfaces is equivalent to any other, so a more suitable representation can

be used for calculation (for example, letting the gfr)

be the constant curvature
metrics). It would be good to have a less mechanical method for showing uni-
tarity in the BRST formalism, perhaps employing relations between functional

integrals over Riemann surfaces of different topologies.
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1.6 Supersymmetric strings

The covariant first quantisation of supersymmetric stringsi!!l follows the
pattern of the bosonic theory. The main difference is that the gauge symmetry
of the fermionic world surface is two dimensional superconformal invariance. The
integral over Riemann surfaces turns into an integral over super Riemann surfaces

(see section 2).

These notes concentrate on the local properties of the superconformal field
theory of the superstring world surface and on the calculation of tree amplitudes.
The main problem is to construct the superconformal BRST current and the
algebra of BRST invariant vertex operators for the bosonic and fermionic modes
of the string"""l. Given the superconformal covariance of the BRST current and
the vertex operators, the remaining issues in the calculation of loop corrections
are construction of BRST invariant expectation values for arbitrary surfaces, and

proof of the finiteness of the integrals over modulilt2,

This covariant approach is not manifestly supersymmetric. The supersym-
metry of the amplitudes is demonstrated by constructing conformal currents
Jo(2) whose charges generate the spacetime supersymmetry algebra"""l. Contour

integrals of j,(2) give the supersymmetry variations of vertex operators:
(6V)(w) = 5+~ § dzjo(2) V (w). (1.5.1)
2::0

Integrating j, around a contractible contour gives gero. On the other hand, a
trivial contour can be deformed into a sum of contours, one surrounding each
vertex operator. Thus the supersymmetry variation of any correlation function
vanishes, even before the integral over the positions of vertex operators and over
moduli. Therefore the amplitudes are supersymmetric. In calculating loop cor-
rections, the crucial issue is whether contour integrals of j, vanish for contractible

contours on non-simply connected surfaces.

11



2. SUPER RIEMANN SURFACES

This section is about tensor analysis on superconformal manifolds of one
complex dimension, the super Riemann surfaces. In the covariant first quanti-
gation, the world surfaces of fermionic strings are super Riemann surfaces. The

point of view taken in this section has evolved from references 13 and 2-5.

2.1 Super coordinates

A one dimensional complex supermanifold is locally described by an ordinary
complex coordinate z and an anticommuting coordinate 8, > = 0, making a
complex super coordinate s = (z,8). The superderivative is the square root of
the ordinary derivative:

a .2 . 9
D=gg+bs- D= .

A super analytic function is a solution of Df = 0, and consists of two ordinary
analytic functions: f(s) = fo(2) + 0f,(2), with f; commuting with # and f;

anticommuting with §.

(2.1.1)

2.2 Superconformal transformations

A super analytic map s — #(s) = (Z(2,0), 6(2, 0)) transforms the superderiva-
tive according to
D = (D8)D + (Dz—6D8)D* . (2.2.1)

A super analytic map is called a superconformal transformation when the su-

perderivative transforms homogeneously:

D=(D8) D, (2.2.2)

Dz —-6D6=0. (2.2.3)

12



2.3 Super Riemann surfaces

It follows from 2.2.2 that a composition of superconformal transformations,
8 i % isalsoa superconformal transformation. A super Riemann surface
can thus be defined as a collection of superconformal coordinate patches, that
is, as a set of super coordinate neighborhoods patched together by supercon-
formal transformations. A super coordinate neighborhood is just an ordinary

neighborhood in 2,

Consider special super Riemann surfaces for which the patching transforma-
tions are.all of the form s — (z, 5) = (2(2), p(2)9), so that the ordinary patching
transformations z — z make an ordinary Riemann surface, and 9 behaves like an
ordinary tensor. “The superconformal condition 2.2.2 becomes 3z = p(z)?. Thus
the p(z) are transition functions for a line bundle over the ordinary Riemann sur-
face whose square is the canonical line bundle. The canonical line bundle is the
bundle of (1,0) forms; its transition functions are 2. A square root of the canon-
ical bundle is called a bundle of half-forms. On Riemann surfaces half-forms are
spinors. Thus ordinary Riemann surfaces with apin atructures are special cases

of super Riemann surfaces.

2.4 Superconformal tensor flelds

In a composition of superconformal transformations, s —» & — i, the super
jacobians obey
D6 = (D6) (Dd) . (2.4.1)

This composition law allows a super differential ds to be defined by the trans-
formation law s
ds = (Dg)ds &= Db. (2.4.2)
Then superconformal tensor fields ¢(s), can be defined by the condition that

¢(x)dx” be superconformally covariant, where A is called the wetght or dimensson

13



of ¢. This means that
$(a)ds = JE)E,  ¢(x) = FE)DI . (2.43)

The superconformal tensor fields are the analogues of ordinary conformal tensor
fields ¢(z), of weight or dimension h, for which ¢(z)dz* is conformally covariant,
i.e., for which ¢(2) = $(2)(dz/dz)*.

The component fields of ¢(s) = ¢¢(2) + 04,(2) consist of an ordinary con-
formal field of weight A, ¢9, and an ordinary conformal field of weight A + 1/2,
#1. When ¢ is a quantum field, its Fermi/Bose statistics are the statistics of ¢,

opposite to the statistics of ¢;.

Globally defined superconformal tensor fields have weights which are either
integer or half-integer. But in what follows it will be useful to manipulate quan-
tum tensor fields whose weights are not integer or half-integer, and so can only be
defined locally. Globally defined fields can be constructed as products of locally
defined fields.

2.6 Superconformal vector fields

Infinitesimal superconformal transformations s --+ & = s + 6s(s), transform

superconformal tensor fields by the infinitesimal version of 2.4.3,

¢p=¢+60 b.9=(v3+.DvD+hdv)$p u(s)=6z+660, (2.5.1)

written in terms of the superconformal vector field v(s), which is itself a super-
conformal tensor field of weight —1. The commutation relations of the Lie algebra
of infinitesimal superconformal transformations is the same as the commutation

relations of the Lie derivatives 6,:

boe) = [00, 8],  [v, w] =vOw —~wdv + ; DvDw. (2.5.2)

14



2.6 Super contour integrals

Integration over the anticommuting coordinate 8 is given by
/doa=1, [dal=o. (2.6.1)

The super contour integral is the ordinary contour integral over z combined with

the integral over 0 , that is,
f ds uls) = f / dou(s) = fdzw(z). (2.6.2)
c c c

The use of the super differential ds is justified by considering the behavior of the

super contour integral under superconformal transformations:

! di (i) = f ds &(i(s)) . (2.6.3)

A dimension % superconformal tensor field is called a superconformal current. By
2.6.3, the super contour integrals of superconformal currents are invariant under
superconformal transformations. Also, if f(s) is a regular super analytic function
in a domain bounded by C, then f.ds Df = 0.

2.7 Indefinite integrals and Cauchy formulas

Define the indefinite integral

L 3]

13, %) = [ ds u(s) (27.1)

f(82,8) =0, D f(s;,8)=uw(s). (2.72)

15



The natural coordinates for super translation invariant functions on the plane

are

L L1} 3
032=01~02=/d' zlg=21—h‘9102=/dl/dl‘
[ $] B3 [ 2] (2.7.3)

D2y = by = Dh2yy D62 = 1= —Dyb6;, .

A super analytic function f(s) can be expanded in a power series around s;:

. =1
fm) = X — (212)" 83 (1 + 612 D) f(s2)
n=g B (2.7.4)
= f(82) + 012 D2f + 202021 + - .
The super Cauchy formulas are
1 1 e
m / dll 2;2"-1 =0 2—#—' f d'l 912 242 L= n,0 (2-7.5)
Cy Ca

where C; is a simple contour winding once around z;. Combining 2.7.4 and 2.7.5,

1 e 1 ..
%c/ d.l f(.l) 012 252 ' = ;! 82 f(.Z)
3

. (2.7.6)
ZLﬂ'é{ ds, f(s)) 27" = a a; D, f(s2) .

2.8 Periods and moduli

On a jopologically nontrivial super Riemann surface, the indefinite integral
2.7.1 is defined only up to the super periods of w, fs ds' w(s'). The theory of
super Jacobian varieties and super theta functions should parallel and organize

the theory of ordinary theta functions.

The super moduli of super Riemann surfaces are the variations of the patch-
ing transformations which define the super Riemann surface, modulo super-

conformal transformations of the coordinate neighborhoods!!4l. Infinitesimally

16



the moduli are the superconformal vector fields on the overlaps of coordinate
neighborhoods, modulo differences of superconformal vector fields on the neigh-
borhoods themselves. This describes the first cohomology group of the super
Riemann surface with coefficients in the superconformal vector fields. This coho-
mology group is realized as the (-7, ;) forms modulo the image of D acting on
the (—3,0) forms. Super integration on the super Riemann surface identifies the
dual space of the infinitesimal moduli space with space of superconformal ten-
sors of weight 3 (see equation 3.2.5 below). For genus g > 1, the Riemann-Roch
theorem. (see eection 5.8 below) and the vanishing theorem for superconformal
fields of negative weight, give 2(g — 1) as the number of weight % conformal
fields and 3(g9 — 1) as the number of weight 2 conformal tensor fields. Therefore
the super moduli space has 3(g — 1) ordinary complex dimensions and 2(g — 1)

anticommuting complex dimensions.

The bosonic dimension of the super moduli space is exactly the dimension
of the moduli space of ordinary Riemann surfaces with spin structure. Therefore
the super moduli space consists of the ordinary moduli space of Riemann surfaces
with spin structures, plus 2(g — 1) fermionic coordinates lying in a vector bundle

over the ordinary moduli space.

For the generic compact Riemann surface of genus g there are 2% spin struc-
tures, corresponding to all the possible sign changes of half-forms transported
around the 2g non-trivial cycles on the surface. When the corresponding Rie-
mann surface has nontrivial automorphisms, there are fewer spin structures. The
space of spin structures is thus a 2%.gheeted covering of ordinary moduli space,
branched af the singular points. This covering can be realized by the 2% first
order theta functions of integer characteristic which are the partition functions

of free Majorana-Weyl fermions in the various spin structures.

17



3. SUPERCONFORMAL FIELD THEORY

3.1 Conformal flelds and operator product expansions

In a conformal field theory!8:7:15.16] the primary or conformal fields are con-
formal tensors of weight (h,R), or, equivalently, scaling dimension A + % and
spin h — h. Chiral fields have h = 0 (or h = 0), 80 they are analytic fields (or

antianalytic fields). The operator product expansions of conformal fields,
$i(21) 4i(22) ~ (21 — 2)" % Cijs da(22) (3.1.1)
k
stand for identities which obtain in every correlation function of ¢; and ¢;:

(i) i(z2) ) = EZ(ZI =) At G (- (ela(z2) ), (3.1.2)

where the notation [¢x]ns [#elo = &4, stands for a sum over the descendent fields
of ¢; on level n with coefficients which depend only on the weights A, ;; (see
Shenker’s lectures!!! for an explanation of descendent fields). The identity 3.1.2
holds for z; near 2; and, by analytic continuation, for all 2; and z,. For nonchiral

fields the sum in 3.1.2 should include factors (2, — 22)"““"”""*"‘.

There is an expectation value (- -),, for each Riemann surface, but the op-
erator product identities are independent of the surface. The operator product
expansions are local properties of the conformal field theory. They can be re-
garded as defining the quantum field theory, since 3.1.2 can be used to reconstruct

the correlation functions from the operator product expansions.

In a superconformal field theory the primary superfields, the superconfor-
mal fields, are superconformal tensor fields on super Riemann surfaces. A two
dimensional quantum field theory can be invariant under superconformal trans-
formations in s alone or in both s and 8. It suffices to consider & alone, since the

discussion of local superconformal invariance in & is parallel and independent.

18



The partition function Z{m) depends on the super moduli parametrising
the super Riemann surfaces. The superconformal fields obey operator product
expansions analogous to 3.1.1, with 2, and 8,; taking the place of z; — z,. In

. 1/2
power counting, #;; counts as z,é .

3.2 The super stress-energy tensor

The fundamental quantum field in a superconformal field theory is the super
stress-energy tensor

T(s) = Tr(z) + 0T5(z2). (3.2.1)

T(s) is a chiral superfield of dimension 3/2. Tg is the ordinary stress-energy

tensor (dimension (2,0)); T is its super partner (dimension (3/2,0)). T(s)

generates the superconformal transformations 2.5.1 by

6.4(s) = 5= f dm 9(s.) T(m:) $(s2) (3.2.2)

where C; is a simple contour winding once around 2;. As usual, this identity

holds within correlation functions.

By the super Cauchy formulas 2.7.6, the transformation law 3.2.2 is equiva-
lent to the operator product expansion
() 1/2 0
T(s:) §(82) ~ — h $(s2) + LD;¢ + 20,0+ (3.2.3)
252 22 252
where the ommitted terms are nonsingular. Only the singular part of the operator

product expansion contributes to the contour integral.

The super stress-energy tensor is itself an anomalous superconformal field

of weight 3/2:

¢ 1 36, 11 b,
~ ———+ =—2T - —
T(s;) T(s2) iz + 227, (s2) + 22 D, T + zuazT

(3.2.4)
6T = (vd+ {(Dv)D +30v)T + 5¢3°Dv.
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There are at least two approaches to deriving 3.2.4. In the first approach, the
subleading singularities in T'(s;) T(s;) are determined by 3.2.2, which fixes the
dimension of T(s) to be 3/2, which fixes the two point function, which deter-
mines the leading singularity, up to a constant & The second approach is to
determine the form of 3.2.4, up to the arbitrary number ¢, by symmetries of the
quantum field theory on the plane: Euclidean invariance, supersymmetry and
scale invariance. The second argument applies especially to superymmetric crit-
ical phenomenal!®3]. The coefficient & of the anomaly, the central term in the
operator product, is the fundamental characteristic number of a two dimensional

superconformal field theory.

The super stress-energy tensor represents the infinitesimal variations of the

super moduli:

2 logZ(m) = [ ' (z,2) (T(x)),, + cuc. (3.25)

am’

where f; is a (-1, ;) form representing the infinitesmal variation of m. One way

to calculate (T(s)),, is to take the expectation value of 3.2.4:

(T(8:) T(82)},, ~ (E205° + 3002217 (T(32)),, - (3.2.6)

3.3 The global superconformal group SL,

The effect of a finite superconformal transformation s -+ % on the super
stress-energy tensor is computed by requiring the operator product expansion

3.2.4 to hold in both s and s:
T(s) = T(&)(D6)’ + {&S(s, 3) (3.3.1)
where S(s, 8) is the super Schwarzian derivative
D9 D% D%

S(s,8) = o5 236_ 7 = d(log D8) D(log 3(—1/D8§)) . (3.3.2)
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On the sphere, the globally defined superconformal vector fields are of the form
v(s) = (voy + toz + w12") + 8(0_yp2 + 0ip22) (3.3.3)

forming the super Lie algebra Osp(2, 1). The correlation functions of supercon-
formal fields are-Osp(2, 1) invariant, because at large distance the correlation
functions of the super stress-energy tensor are of the form of its two-point func-
tion, :
{T(z)--) ~ Oz +027), (3.3.4)

which implies that contour integrals of v(s)7T'(s) vanish at infinity for the vector
fields 3.3.3. -

The vector fields 3.3.3 are exactly the solutions of 3Dy = 0, which is the
infinitesmal form of the super Schwarsian derivative 3.3.2. By equation 3.3.1,

the super Schwarzian derivative obeys the composition law
S(s,&) = S(s,i) + (DF)*S(,%) (3.3.5)

implying that S(s,8) = 0 for all the global superconformal transformations which
can be made from successive infinitesimal transformations, i.e., the connected
component of the identity in the global superconformal super group. The solu-

tions of S(s,,8;) = 0 are
b. =6, +012/2u Z =z + (a + 0100)/212 (3.3‘6)

where the parameters of the transformation are 59 = (20,60), 82 = (2,9;) and a.
This group is SL,,a supersymmetric extension of the ordinary global conformal

group SL; of fractional linear maps z — (az + b)/(cz + d).

The Lie algebra of ordinary conformal vector fields on the cylinder, or the
punctured plane, is the the complexification of the Lie algebra of Diff(S*), which
is the group of diffeomorphisms of the circle. Diff(S') can be identified with
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the conformal transformations of the punctured plane which satisfy the reality
condition #(1/2*) = 1/%(2)*.

The superconformal vector fields on cylinder or the punctured plane form
two super Lie algebras, the Ramond and Neveu-Schwarz algebras, corresponding
to the two spin structures (boundary conditions) on the cylinder. The super-
conformal algebras are the complexifications of the super Lie algebras of the two
groups of super diffeomorphisms of the circle, Diff 4(S"). The distinction between
the two super groups only appears when there is a strong enough topology on the
group to distinguish the two boundary conditions on the circle which define triv-
ial and nontrivial O(1) spinors. The super Schwarzian derivative is the globally
invariant generator of the second cohomology group of the super group ﬁfi( s'),
just as the ordinary Schwarzian derivative is the S L, invariant generator for the

two cohomology of Diff(8")I"7].

3.4 Operator interpretation

The simplest operator interpretation of a conformal field theory is given by
the radial quantization. It is constructed from the correlation functions on the
sphere or, equivalently, on the plane or the infinite cylinder. If z = ¢* = €'t jg
the standard complex coordinate for the plane, so that w is the standard coor-
"dinate on the cylinder, then correlation functions on the sphere or the plane or

the cylinder are interpreted as vacuum expectation values of r-ordered products

(8(21)---) = (0] 7 {¢(z) -} |0) (34.1)
where the operator valued fields are r-ordered by putting fields of large |2| to the
left and fields of small |z| to the right.

On the cylinder there are two spin structures, given by periodic or antiperi-
odic boundary conditions in the o direction. Thus the Hilbert space of the radial

quantization divides into two sectors; the Neveu-Schwarz (NS) sector, in which
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the spinor fields are single valued on the plane (but double valued on the cylinder
because of the factor dz'/?) and the Ramond (R) sector in which the spinor fields
are single valued on the cylinder (but double valued on the plane). The super-
conformal fields are block diagonal in the NS @ R decomposition of the Hilbert
space. Vacuum expectation values are single valued in the plane, so the vacuum

state |0) is in the NS sector.

A highest weight state |S) in the R sector is an ordinary conformal highest
weight state, 8o it corresponds to some ordinary conformal field S(z). This
conformal field is called a spin field. It is block off-diagonal in the NS ® R
decomposition. A spin field S(3), acting on the vacuum in the NS sector, creates

the highest weight state |S) = S(0) |0) in the R sector.

Integrating over all super Riemann surfaces includes summing over all spin
structures. On the torus there are four spin structures, two boundary conditions
in each of two directions. The partition function is a Hilbert space trace. Picture
one direction as euclidean time and the other as space. The sum over spatial
boundary conditions is the sum over NS and R sectors in the trace. Summing
over boundary conditions for the spinor fields introduces a projection operator
3 + 3T in the trace, where the chirality operator I' commutes with integer spin
fields and anticommutes with half-integer spin fields. On surfaces of genus > 1
the sum over spin structures provides in each loop a sum over R and NS sectors

and a chiral projection.

3.5 Superconformal generators

An infinitesmal superconformal transformation of the punctured plane cor-
responds to a superconformal vector field v(s), analytic away from the origin.

The transformation is generated by the operator

Ty = ﬁ / ds v(s)T(s) (35.1)
Co
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where C, winds once around the origin, making a “space-like hypersurface” in
the radial quantization. Commutation relations of operators can be represented

in terms of r-ordered products,

s f de e T() 9(s.)

Co,3-Co

- 5"15 i ds, v(s,) T(s,) $(s;) (3.5.2)

[TIvIs ¢('2)]

= 6|r¢(’2)

where Cy; winds around 2; and the origin, e.g. |2| > |22|, and Cp winds around
the origin but not 23, e.g. |22} > |z| > 0. The deformation of contours is justified
by the analyticity of the r-ordered products for 2; # 0, 2;. The contours and
deformations can always be chosen so as to miss any other quantum fields which

might be present in the correlation function.

- The contour integral argument shows that the commutation relations of
the generators Lj,) are encoded in the singular part of the operator products of
T(s). This argument is quite general. The singular parts of the operator product
expansions of analytic (chiral) fields, with themselves and with other quantum
fields, are equivalent to their commutation relations. The equivalence is real-
ized by the contour argument. Even for nonchiral fields, the singular operator
product expansions are equivalent to commutation relations, but in the absence
of analyticity the contour integral must be replaced by a principal part inter-
pretation of the singularity. The advantages of operator products is that they
are independent of the Hilbert space interpretation, they obtain on arbitrary
two dimensional surfaces, and they are easily calculated from functional integral

representations of correlation functions.
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3.6 Operator products of component fields

Expanding 3.2.3, 3.2.4 in component fields gives

Tn(z;)Tg(z,) - (zl3i{:) ; (z_,—zzz)’TB(h)+'é52 8,Ts

To(z) Te(2) ~ T+ o

T Tr(e) ~ s+ 2 Tala)

Ta(m) (o) ~ Lol + o @6.1)
Tola) hler) ~ (e bl + o ou

Tele) dols) ~ L ()

Te(z) () ~ A ),¢o(z,)+ —auto.

3.7 Mode expanslons

The fields expand in Laurent (Fourier) series:

Te(z) = Lz "21G,  dol2)
Ts(z)

; z—n-—h ¢0‘n

3.7
A T

The powers of z are such that, when z — log = takes the plane to the cylinder,
the covariance of, for example, ¢o(2) (dz)*, implies that the ¢y, are the Fourier
coef.ﬁ-cign_t‘g of ¢ on the cylinder. ‘A component field of integer weight & is always
indexed by integers n. A field of half-integer weight A is indexed by integers n
in the R sector and by half-integers n in the NS sector. Euclidean time reversal
on the cylinder corresponds t;> 2 — z = 1/3. The adjoint of a field is given by
(#(2)dz*)" = ¢*(2)dz*. The reality of the super stress-energy tensor implies

Lt=L.m GL=G_... (3.7.2)

25



3.8 Commutation relations of normal modes

Commutation relations are derived from the operator product expansions by

representing modes as contour integrals, then deforming contours. An anticom-

muting parameter ¢ is introduced in order to express anticommutation relations

as commutation relations, whatever the statistics of the field ¢. The commutation

relations are

[Lmy $0(2)] = 2z™1'8¢0 + h(m + 1)z™$(2)
(L, $1(2)] = 2™*'3o+ (h+ 3)(m+ 1)2™0(2)
[Gm, $o(2)] = €2m¥1/29y(2)
[€Gm, $1(2)] = €[zm+1/20¢0 +2(m + })h 240 (2)]
[Los Te(2)] = z™10Te + 3(m+1)z"Tx(2)
(Les To(2)] = 2™*8Tp + 2(m+ 1)2™Tp(2) + 3&(m® — m)z™-?
(Gos Tr(e)ly = 2™"VTo(2) + Le(m? — 1)gm-s
[Gm, Ts (Z)] = Zm+l’zan + 3(m + %)z"‘“‘/’Tp(z)
ILIM ¢0.ﬂ! = [(h_ l)m— n|¢0.m+n
léGm, ¢0,n] = e¢l‘m+n
[Gm) $10] = el(2h — 1)m — nlgomin
[Lm, Lnl = (m - n)Lm+,. + ié(m’ - m)6m+,,,o
ILm: Gn[ = (%m - n)Gm+,,

[Gm, Gn]+ = 2Lm+n + %E(mZ - 5)6""1’",0

(3.8.1)

(38.2)

(3.8.3)

(3.8.4)

The conformal generators L, form the Virasoro algebra; the superconformal

generators G,,, L, form the Ramond algebra (integer n) and the Neveu-Schwars

algebra (half-integer n). ﬁz is generated by G_,z2, Gyy2, L_., Ly, L,. In par-

ticular, Ly (+Lo) is the generator of dilations, which is the hamiltonian in radial
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quantization. The mode expansions are arranged so that

[LG; ¢ni = —-né¢, (3.8.5)

as long as the form 3.7.1 is used for the mode expansion of ¢(z).

3.9 Highest weight states and conformal fields

A ground state for the superconformal algebra is a state |h) which is an-
nihilated by all the lowering operators L,,, G,, and has eigenvalue A for L.
In mathematical terminology the ground states are called highest weight states,

because mathematicians usually call ~A the weight of the state.

In the Ramond sector Gy commutes with Ly and therefore acts on the ground
states. Gy anticommutes with the chirality operator I. If h # 2/16 then G2 # 0
and the ground states come in pairs of opposite chirality. If A = &/16 then
Gi |h) = 0 (this is a bit subtle in a nonunitary theory). Then |A) is a supersym-
metric ground state for the Ramond system on the cylinder with supersymmetry
generator Gy, and is not necessarily paired with a state of opposite chirality. The
Witten index of the Ramond sector is the net chirality of the A = ¢/16 states. In
a unitary system G2 > 0 so all A = /16 states are heighest weight states.

In an ordinary conformal field theory there is a one to one correspondence
between conformal fields ¢(z) of conformal weight A and highest weight states
|h) (for the L,) with eigenvalue Ly = h. The correspondence is |A) = ¢$(0)|0).
Given the conformal field ¢, the state ¢(0)|0) exists and is nonzero, because
correlation functions of ¢(2) are finite at z = 0, and because no quantum field
can annihilate the vacuum (in the unitary two dimensional field theory associated
with euclidean spacetime). The highest weight condition on |A) then follows from
the commutation relations of ¢(z) with the conformal generators. Conversely,
given the highest weight state |A), completeness of the field algebra implies that

there is a quantum field ¢(2) which has a matrix element between the vacuum and
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|h). By subtracting other quantum fields it can be assured that ¢ creates no states
of energy less than h. Then |h) = ¢(0)]0), because z = 0 corresponds to 7 = —oo.
The highest weight condition on |h) implies the operator product 3.6.1, first only
for 2, = 0 and acting on the vacuum, then as an operator statement because
no fields annihilate the vacuum, and then for all z; because of two dimensional

translation invariance.

In superconformal field theories, the NS heighest weight states |h) corre-
spond to superconformal fields ¢(s) = ¢o(2) + 04,(2), where ¢o(0)|0) = |h) and
#.(0)|0) = G_,/2 |h). The highest weight conditions for the superconformal al-
gebra correspond to the operator product 3.2.3 between T and ¢. The highest
weight states |h) in the R sector correspond to the spin fields. These are pairs

54(2) of conformal fields such that

S4+(0)[0) = |a)  S-(0)[0) = Go|h)

Tr(2) S+(2z2) ~ (21— )% S_(z) (3.9.1)
Te(z1) S_(22) ~ 3(h— §g&)z1 ~ 22)™** Sy (22) -

The Ramond supersymmetry is unbroken only if A = &/16. Then it is possible
to have G4 |h) = 0, S_(2) = 0 and a nonzero Witten index.

Note that Ts and S; are not mutually local. The field theory containing
spin fields Sy becomes local only in combination with the chiral projection I' = 1.
Both the sum over sectors and the chiral projection are accomplished by the sum
over spin structures. The projection eliminates T and the other half-integer

fields, and eliminates one spin field in every chiral pair.
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4. THE FERMIONIC STRING

The world surface of fermionic string is described by a two dimensional
superconformal field theory, consising of a matter superfield, X*, u = 1,...,d
which gives the location of the world surface in spacetime; and ghost superfields

B, C which arise from fixing the superconformal gauge on the world surfacelltl,

-The radial quantigation of this superconformal field theory gives the one
string Hilbert space. Both matter and ghost systems are indefinite metric field
theories (although the matter sector becomes unitary when the spacetime metric
has euclidean signature); the positive metric of the string Hilbert space only
appears after the BRST condition is imposed on the states of the two dimensional
field theory.

4.1 Matter flelds

The action and equation of motion of the matter superfield (in flat spacetime)

Swater = 5= [ #2488 DX*DX,, DDX*=0,  (4L1)

X*(x,8) = X¥(3)+ X*(8),  X*(s) = 2*(z) + 6y*(z), (4.0.2)

after eliminating the auxiliary field F* = 3,3, X* by its equation of motion. The
action of the component fields is

Somapier = % [ @z (32403, - 93y - §99) . (4.1.3)

This is the model appropriate to the type II superstrings. For heterotic strings
there is no 8 and an additional Es x E; or S0(32) chiral current algebra in 2. For
type I superstrings the world surfaces include the nonorientable surfaces (which
are not globally complex), and have boundaries; and there are gauge degrees of

freedom on the boundaries.- In any case, the present discussion is only concerned
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with the superconformal aspect of the world surface, so only the (2, 8) sector is

discussed.

The matter chirality operator T is defined by [T, z#| = 0, [T, y#|; = 0. In
the type II theory there are two separate chirality operators, ' and T, and two

‘projections.

4.2 Superconformal ghosts

The field C is the ghost for infinitesimal transformations of the super world
surface; it has weight -1 and Fermi statistics. The field B is the ghost for in-
finitesimal variations of the superconformal gauge condition and is conjugate to

C; it has weight 3/2 and Bose statistics. The action and equations of motion are
. . B B B
Sphost = ;/d’zdﬂd@ Bbc, TDB=o0=DcC. (4.2.1)
The dimensions and statistics of the component fields are

B(s)=p(z) +0b(z), P: h=3/2 (Bose), b: h=2 (Fermi)
C(s)=c(2) + 61(2), c: h=—1 (Fermi), v: h=~1/2 (Bose)
(4.2.2)

The action for the component fields is
1 - -
Sppon = [ a3 (43¢ + 837) . (42.3)
The chirality operator I' commutes with b and ¢ and anticommutes with 8 and

7.

4.3 Two-point functions

-All correlation functions of free fields are determined by the two-point func-

tions. For the time being the following expressions should be regarded as the
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singular parts of the two point functions on any surface. Later it will become
apparent that these are also the exact two point functions on the sphere or
plane. They are derived from the action using the identities 89 In |z|*> = x63(z),
dz! = x6%(2).

X*(s1) X¥(82) ~ — ¢*1n 2, B(3,) C(8:) ~ 6122y ~ C(s,) B(x;)
2%(z)) 2°(2;) ~ 9" In(zi — 22) c(21)b(s2) ~ (21 —22)' ~ B(21) c(22)

Y (21) ¥* (%) ~ - g*"(21~ 22)"' (21)B(22) ~ (21— 2z2)" ~ — B(21) ¥(22)
(4.3.1)

4.4 Stress-energy tensors

The stress-energy tensor (and central charge) has contributions from the
matter fields and from the ghosts: T = TX + T#*, & = &X + 2. One way to find
the stress-energy tensor is to use the known form of the operator product expan-
sions with the free fields. Write T as the most general superfield of dimension
3/2 bilinear in the fields and neutral in all conserved charges, and then fix the
unknown numerical coefficients by the operator products. For example, write
Te* = ,CIB + a;DCDB + a;3CB and then calculate operator products with

B, C by making partial contractions.

Products of fields at coincident points usually need renormalisation. In free
field theory all divergences come from self-contractions, so bilinears in the free
fields have finite connected correlation functions, thus finite singular operator
product expansions. For calculations of finite parts of operator products a simple
systematic regularization of bilinears is simply to subtract the singular part of
the operator product of the free fields. On the sphere this means simply omitting

all self-contractions. Here is a sample calculation of one contribution to the T C
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operator product:

C3,B C(s;) ~ —(3,BC(s;)) C(s)
~ 022i7 C(8)) (4.4.1)
~ 012277 C(82) + 0122, 3:C .

For the rest of the calculations, keep in mind that C, DB and DX obey Fermi

statistics, and take advantage of the identity 83, = 0. The results are

7% = _lpxrax,
2 : 3 (4.4.2)
T = _C3B + EDC DB - iaCB.

T¥ =-1y.oz* TX = ~30z*9z, — 10¢*y, (44.3)
TE = ~c0f ~ 30cP + Lqb T =cab+23cb — 170p — 304P o
Once the coefficients in T are fixed, the T T operator products are calculated by

partial contractions; the central terms are the double contractions. For example,

TX(s,) TX(s2) ~¢ ({D: X* D2 X*) (3:X,, 3.X,) + (D, X* 3.X,) (3, X, D:X"))
To*(s,) To*(s,)~(3,B C(s,)) (C(s,) 3;B) + - -- .
(4.4.4)
The results are
*=d @ =-10 é&=d-10. (4.4.5)

The critical dimension d = 10 is determined by the condition that the combined
matter ghost system be free of conformal anomaly. The combined two dimen-
sional quantum field theory then depends only on the super conformal class of

the world surface.



4.6 Mode expansions

The mode expansions of the free fields are

z* = ):,.z‘n—la: z"(Z) = iq’ +a5|nz+2n¢oz__na£
V'(2) = 'Enz‘”“/’%

() = Tasth @) = Tah,

o(s) = Eaz™cn Ae) = e,

(4.5.1)

The superconformal generators are

Gl = Ti —Yna%

L = S —laladh +)(in- DVEYE
G s (3n — k)ca—iBr + Yn—sbe

Lo Ti (k ~2n)c—ybs + Gn— k) YnsBe -

(4.5.2)

There is implicit normal ordering of the quadratic expressions for Lo in 4.5.2
(see the discussion of renormalization in section 4.4 and of ground state energies
in section 4.7). The indices n of the modes L,, a,, b, and c, are integers. In
the NS sector the indices n of the modes G,, ¥4, Yo, and B, are half-integers
(n € Z+1). In the R sector they are integers (n € Z). The behavior of the fields

under z - 1/% and hermitian conjugation gives

(@)t = —ar b =8, d = cn
Wt = Bl = B A = Ya. (4.5.3)

4.0 ,(,A,ll,l__i')(?on;mntatlon relations

“The (anti-)commutation relations of the modes are calculated from contour

integrals of the two point functions, and-depend only on the siq_gular parts. Only
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the nonzero relations are written here:

[av‘:u a:l = —gh m6m+n [at').l qul = —g‘w P = !03 (4 6 l)
w’:v ‘('r‘:|+ = —g"bmin (C'M b"|+ = Smin = hm ﬂn]
[Gm a:l = —nYnin {L,.., a,‘.'l = —”‘3:-+n
[Gas W2l = alia Loy 98] = (=3m— nl¥m+n
[Gmy colt = Tmin [Lm, €a] = (=2m —n)Cmin (4.6.2)
(Gmy balt = (2m=1n)Bmin  [Lmiba] = (m—n)bnyn
[Gnu 7n] = (_3m - n)c"!-ﬂl [Lmr 7n| = (—gm - ﬂ)"m-{»n
IGnu ﬁnl = bm+n ILm) ﬁnl = (;m_ n)ﬂm+n

4.7 Matter ground states and sero modes

The zero mode algebra of the matter system is generated by the total space-
time momentum operator p* = saf and, in the R sector, the fermionic gero
modes ;. From 4.6.1, the ¢} zero modes satisfy the anticommutation relations

of the spacetime y-matrices:

I¥8, ¥ol+ = —¢* - (4.7.1)

The matter ground states are the states annihilated by all the lowering operators
@’y ¥in. In the NS sector there is one ground state |k) for each momentum
eigenvalue p* = k*. In the R sector the ground states can be written |k, a) = |k)®
la) where |k) is the ground state of z* and |a) is a ground state of y*. By 4.7.1,

the states |a) form a Dirac spinor, with indices a = 1--- 242, Summarizing,

ag [k) = ik*|k)  ¢ila) =4*518)  Gilk,a) = —iflk.a)

Lilk) = 3k*|k)  L¥la) =i5dla) LIk a) = (3k*+ Gd)|k,a) .
(4.7.2)
The L} eigenvalue follows from the Ramond supersymmetry algebra Lo = G2 +

d/16 and the supersymmetry of the Ramond ground states |0, a).
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The 5L, invariant matter vacuum |0) is the sero momentum ground state
of the NS sector. The full Hilbert space of the two dimensional field theory is
generated from the ground states by the raising operators a*,,, ¢*,. Thus the NS
sector contains only states which transform as Lorents vectors, i.e., are spacetime
bosons; and the R sector contains only states which transform as Lorents spinors,

and so are spacetime fermions.

The chirality operator I is normalised to be +1 on the vacuum, thus I’ = 1
on the NS ground states (since [T, 9| = 0), and on the excited statesI' = (—1)7,
the fermion parity. I' acts on the R ground states |a) as +44,, because it
anticommutes with the y). The choice of sign is conventional and immaterial

except in the type II theories where I' = 744; = I are the two inequivalent
possibities.

If the projection I' = 1were made only on the matter sector, it would produce
a theory with spacetime chirality (except for the I' = —T' type II theory). But
the I’ projection acts on the combined matter ghost system, so there will only
be spacetime chirality after projection if the ghost states do not come in chiral
pairs, i.e., if the Witten index of the ghost Ramond sector is nonsgero.

The ground states Jk) of the NS sector are created from the vacuum by the
superfields ¢* X, because they are superconformal fields which create momentum

k* and have weight }k?:
DX"(8,) *X(52) ~ (DX*(5,) X*(53)) (ik,) %X ~ 8,327} (—ik#) e*X
Tx(il) Cik‘x('z) ~ %k‘,kt (D,X" X'(lz) (6.X, xr(lz)) ei*'x(lg) + e

o (%k! 01281—22 + %zﬁ’Dg + anﬁ' 83) e"*'x .
(4.7.3)

The spin fields S,(2) are the conformal fields which create the ground states

|a) of ¢ in the R sector:

la) = S,(0) |0) |k, @) = S.e™**(0) [0) . (4.7.4)
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The Ramond supersymmetry of |a), equation 4.7.2, implies that S, (z) has weight
d/16 =5/8.

4.8 S0(10) current algebra

The spin field S,(z) can be constructed from the SO(10) chiral current
algebra of the y systemil:

*(z) = ¥*¥*(2)
**(2)i%"(w) ~ (z-w)?(g""¢"" —pev)+ (z-w)™" (48.1)
xg*?5* (w) (1 = pov)(1 = oes1) .

The current algebra determines the entire theory because the stress-energy tensor

T? is generated by the currentslt®l:

2

*¥(2) Jw(w) ~ W + 2(d - 1)(3¢*)¢* (w) (4.8.2)

~1/4
d-1

The Sugawara stress-energy tensor 4.8.3 is renormalised by subtracting the lead-

T5(2) = *3u(2) . (4.8.3)

ing singularity in the operator product 4.8.2.

Adopt the spinor conventions

['hn "Iu]+ = —Guv €af = —€fa €af 4 = 6.:
- u® = Py U = €qgu” Af = Al (4.8.4)
7;13 =7, 'np'hrlaﬂ = 'ﬂ»'fﬂsa Tw=—"-

The fermion field y* is completely determined from the current algebra by

the operator product
1id o 1 OV _ VO
3*(2) ¥ (@) ~ = ("9 = 9°*9*)(w) (485)
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and S, is determined by

1#(2) Salw) ~ —— 4#1] Sp(w), (486)

in the sense that all of their operator products are determined by the currents.

Thie operator products (for d = 10) are (writing S, for S, (0), ¥* for ¥#(0)):

W) W~ (a0
9M3) S ~ (z-w) i
W(z) 5% ~ (2 w) (=15 87
V(E) Sa ~ (z—w)t e S
vy¥(2) 5° ~ (z-w) N (=Inkyly s? (4.8.7)
Sa(2) Sp ~ zMep+ 274 Yogu+ 27y g G
5%(2) 87 ~ 27¥Y(=eP) 4 2 MppPyp 4 2 A P
§°(2) Sp ~ 6+ 00 + 7 g
Sa(2) S% ~ z4(—63) + 274 Byp + 2 A Ly, B
The coefficients are given by the following arguments. The y* ¢* operator prod-
uct and the leading term in the S, Sp operator product are fixed by SO(10)
invariance up to normalizations. The ¢ S operator product is obtained by re-
quiring consistency of j#¥ S, with ¢* ¢y S,. The ¢ contribution to S S is found

by evaluating {y(2) S(w) S) & w™"/22~%/4(z—w)~"/* in the t wo limits 2 — w and
w -+ 0. Similarly, the §#¥ contribution is determined by evaluating {; S S).

Note the fractlonal pOWers of zin the operator pmd ucts 4.8 7 appropnate to
the fractional d)menslon of S.. Note also that I‘Ia) = ’7u |a) lmpllea rs,r-t =
(115)as whnch is mconslstent wnth the S S ~ Y operator product Thus the
spin ﬁelds of the matter sector do not by themsclves form a local quantum ﬁeld
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theory, and the chirality operator I' acting in the matter sector alone is not an
automorphism of the local algebra of spin fields. These difficulties are resolved

by combining S, with the spin fields of the superconformal ghosts.

The advantage of the current algebra approach is its manifest Lorents in-
variance. The spin fields S, can also be realized explicitly as ordinary vertex
operators, that is, as exponentials of free chiral scalar fieldsi!®l. The vertex
operator construction is not manifestly Lorents invariant, but it allows explicit
calculation of correlation functions, on any surface. On the other hand, the cur-
rent algebra is useful for obtaining the first few coefficients in operator product
expansions. It can be used to find correlation functions/*®:%}, but not easily, except

in the simplest situations.

It will be useful to know some subleading terms in the operator products
when leading terms vanish. Assume that the indices in the following operator
products are contracted with spinors u®, v# and a vector k, satisfying afv = 0,
and use the shorthand 7} 4 = O for this situation. Then

Y*(2) Sa ~ 2/ y*,Sa (4.8.8)

where ¢*,5,(z) is the conformal field corresponding to the state ¢*,|a). In

general,
Y9r(a) 8 ~ 2 A ILS 4 S, (48.9)
Thus, when 9% = 0, the following is a finite product,
Wap¥*P*S? = (1 - Jd)¥", S, , (4.8.10)

and
Y¥#(2) So ~ (2 — 0)F(1 — 1d) 0 ap# g 57 . (4811)

4.9 N=2 supersymmetry of the ghosts

As an aside, it might be interesting that the superconformal ghost system

has an additional supersymmetry. Combined with the manifest N = 1 super-
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conformal invariance, this gives O(2) extended superconformal symmetry. The
fundamental O(2) superconformal multiplet in two dimensions consists of the
stress-energy tensor, two dimension 3/2 conformal fields, and the dimension 1
current of the O(2) symmetry. Under an N = 1 superconformal subalgebra these
fields split into the N = 1 super stress-energy tensor T'(s) and a dimension 1
superconformal field J(s). The condition on J(s) which gives the closure of the

N = 2 algebra is
J(x,) J(32) ~ JE25 + 20,327 T(s2) . (4.9.1)
In the superconformal ghost system,
J = 2(DB)C + 3B(DC) (4.9.2)

is a dimension 1 superconformal field which satisfies 4.9.1. Thus the ghost system

has an N = 2 superconformal symmetry.

5. FIRST ORDER FREE FIELDS

The component fields 8, ¢ and A, 7 of the superconformal ghosts are special

cases of free fieldssatisfying first order equations of motion. This section discussea

the general case!811,19:2:45]

6.1 Fields, action, modes, two-point functions
Let b(z) and ¢(3) be conjugate conformal fields:

=1/J*zbac 3b=3c=0
T

weight(b) = A weight(e) =1~ A.

(5.1.1)
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The conformal ghosts b,c have A = 2; their superpartners A, have A = 3/2.

The basic facts are

{ +1 Fermi statistics {0 NS sector
€= -

—~1 Bose statistics 3 R sector
() b(w) ~ —— bz) e(w) ~ ——
v zZ—-w 2 zZ—w
biz)= ¥ #"7?b, ()= Y UM, (5.1.2)
n€E§-A+Z nEI+A+2
b, +ecub, = dpin b} =eb_, el =c_,.
Q=e(1-2)) A= 31~ €Q).

In the NS sector the fields are single valued on the plane; in the R sector they
are double valued. Strictly speaking, the R sector should be present only for
A€ % + Z, When A € Z the case § = % is a twssted sector. In 5.1.2 the fields are

operators on an indefinite metric Hilbert space.

6.2 The stress-energy tensor

The stress-energy tensor is determined by the weights of b and ¢:

T = -Abdc + (1 - A)dbe = }(dbe — bdc) + ;eQa(be) . (5.2.1)

Asusual, T}," is renormaliged by subtracting the singular part of the b, ¢ operator

products. Double contractions give the conformal anomaly

TE%(2) TE*(w) ~ 3cb<(z — w)*

(5.2.2)
P = —¢(12)% — 12X + 2) = €(1 — 3Q?).
The mode expansions are:
Lze = Zk [k - (l - A)MI bm—k C; = Eg S(k — AM) Com—% bg
(5.2.3)

[LBe, ba] = (—(1 = A)m — n)bpsn  [LBS €a) = (=AM — n)emsn
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For the superconformal ghosts,

]
|
o
[}
.4
I
|
»
-3

b, ¢ €= 1,
By e=-1,

> >
Il

(5.2.4)
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5.3 The U(1)-current

The action 5.1.1 has a chiral U(1) symmetry whose chiral current is

iz)= —l;c =ecb=) 2"}, Jn =2 ccasby
n k

M) bw) ~ (-1 (z-w)'bw) J)e(w) ~ (+1)(z - w)" e(w)
“N.'.' bnl = -b""’ﬂ” U'M cn' = +Cumips .

Jo = charge operator  charge(b) = —1  charge(c) = +1
J(Z) J(w) ~ C(Z - "")_2 Uuu jn] =€ m6,,,+,, . (5.3.1)

The algebra of the chiral current and the stress-energy tensor is anomalous:

T*(2)j(w) ~ Q(z—w)™+ (2~ w)?j(2)

(5.3.2)
(L5, Jal = —Mimin + 2QM(M + Démsn

80 j(2) is scale and translation covariant (m = 0,—1) but not conformally covari-
ant. The anomaly coefficient Q can be interpreted as a background charge on

the sphere (see also equations 5.4.2 and5.6.3 below):
W=, 5 = -1} 5. = -5 - Q. (5.3.3)
There is no normal ordering ambiguity in J» for m 3# 0, therefore

= dom—Qbap. (5.3.4)
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6.4 The Fermi/Bose sea
A Fermi/Bose sea is a state |g) which splits the normal modes:

b.lg) =0 n>eg-2A
calg) =0 n>—-eq+A

(5.4.1)

where g € Z for the NS sector and g € } + Z for the R sector. By 5.1.2, the only

nonzero inner products are
@-Qlg)=1. (5.4.2)

The two point function in the sea |g) is

1

(c() b))y = £ a7 0M0™ (g~ Qlenbale) = (2)" == (543)
from which,
U(z) J(w)), = e(z - w)™?

(Tb"(z) j(w))q =Qz-w) + (2 - w)"zg (5.4.4)

(TP4() T>(w), = (= — W) e + (= — W) *ea(@ +0) =

Bl = 0 ((@=e (T°(2) =Leq(Q + q)a?
(5.4.5)

Jinlg) = 0 Jolg) =qlq) L3)g) =3eq(@+ q)lg) -

Thus the Bose/Fermi sea |g) has charge ¢, and it is apparent that 5.4.2 expresses
the presence of a background charge Q. An SL: invariant state has Ly, = 0, so
the only candidates are [0) and |-Q). Only a neutral state can be translation

invariant, so |0) is the unique S L, invariant state.

Each Fermi sea can be obtained from any other by applying a monomial in
the fields b, €. But this is not true for the Bose seas. The Bose seas |g) generate

inequivalent representations of the b, ¢ algebra.
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5.6 The U(1) stress-energy tensor

Define the U(1) stress-energy tensor by
T9(2) = Le (§(2) - Qa3), (5.5.1)

subtracting the singularity in the j, j operator product 5.3.1. The linear term in
5.5.1 is designed so that 1‘}, and TE® will have the same commutation relations
with j:

T(2)j(w) ~(2 - w)~*Q +(2 - v)§(2)

(5.5.2)
T (2) P(w)~(z — w)~*id + (2 — w) 22T (w) + (z — w)~*8,T!

be . s g0
do1-3Q = {c Fermi statistics (5.5.3)
cb¢ +2 Bose statistics.

In the Fermi case the U(1) current algebra gives the complete dynamics (T}, =
TE¢), but in the Bose case it does not. For Bose systems, definel?l

Ti-%(z) = TP¢(2) — TV(2) . (5.5.4)
By 5.3.2 and 5.5.2, T!-?}(z) commutes with j(w) and therefore with T¥(w), and

T!-?(2) generates a conformal algebra with central charge cl-% = 2.

5.6 Bosonisation

Use the U(1) current to define a chiral scalar field ¢(2):

)= edd(z)  d(z) = dwj(w)

I2) $(w) ~(z-w)™"  ¢(2) $(w) ~ € In(z — w)

i(2) et L g(z - w)~! et(w) [do, ,uﬂvi] = g e®l*
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Ti(z) ) ~ [ leg@+ @) (z—w)? +(z—w)! 8.] Pliahd (5.6.1)
charge(e™) =g  weight(e'®) = jeq(Q +9) -
93 Hole) (z - w)‘“‘ 1)+ 8(w)
(% j0) = |g) (5.6.2)

The soliton operator e shifts the Fermi/Bose sea level by g units of charge.

Equation 5.4.2 gives
{0] e 9*) |0} =1 (5.6.3)

which again shows the need for charge —Q to absorb the background charge @
on the sphere.

The U(1) current can be fermionized in terms of fundamental solitons e**.

In the Fermi case the fundamental solitons are exactly the original b, ¢ fields
b(2) = e—*®) ¢(z) = & (Fermi statistics) . (5.6.4)

The e%* e%* operator products, given by equation 5.6.1, can be compared with
5.4.1 to confirm 5.6.2 for the Fermi systems. In the Bose case the U(1) solitons
cannot give the original fields, because of the missing central charge —2 and

because the soliton fields e*#*) are fermionic, while b, ¢ are bosonic.

5.7 The ¢ = —3 system

Define
n=2ace* 3t =dbett. (5.7.1)

n(z) and §(2) are conjugate free fermion fields of conformal weights 1 and 0
respectively:
n(z) §(w) ~ (z —w)™" ~ £(2) n(w)

z)=Xaz" ' @)=L,z % [9m &alt = Smin -

(5.7.2)
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n and § commute with ¢ and have
M=l Q@¥=-1 c"=-2, (5.7.3)

Thus every first order _Bpse'syatem consists of its own U(1) current algebra along
with the A = 1 first order Fermi system n, . The Bose fields can be written

b=e¢*3¢ c=c'n (Bosestatistics). (5.7.4)

and again the operator products of the exponentials confirm 5.6.2.

__Th_g n, £ system contains its own chiral U (1) current, which gives a second

chiral scalar x(z):
ax=nt x(z)x(w)~In(z-w) p=e* EF=e. (5.7.5)

The sero-mode algebra [5,, (o] = 1 forces the ground state of the 5, ¢ system
to be twofold degenerate. The two ground states are the S L, invariant [0) and

its hermitian conjugate |-Q),,. Since §{ = e,

{01£(2)[0) ¢ = (0 £0 10} ¢ = 1. (5.7.6)

But in the construction 5.7.4 for the original fields b, ¢ only p = 0¢ appears.
Therefore the ¢ = —2 system is really 5, p and not 5, ¢. In the 5, p system, it is

consistent to fix o = 0. Then the 9, p system has a unique ground state:

(0] 10),, = (0] &0- 10}, - (5.2.7)

5.8 Tﬁe chiral scalar and Riemann-Roch

* ‘The anomalous operator product of the stress-energy tensor with the chiral
U(1) current, equation 5.3.2, is equivalent to the anomalous conservation law for
the chiral current:

8j(z) = €80¢{z) = LQRP /3 (5.8.1)
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where R(®,/g is the two dimensional scalar curvature density. The operator
product 5.3.2 is derived from the conservation law 5.8.1 by differentiating with
respect to the two-metric to get a Ward identity, and using the Ward identity to

determine the singular part of the operator product expansionm.

The anomalous conservation law is the equation of motion for ¢, derived

from the action

S@#) = 5. [ #2 (~3694 - 1QVTRY) . (5.5.2)

Note that the action is well-behaved for Fermi systems (e = 1) if ¢ — i4. The

exponentials then take the familiar form €',

To find the background charge on an arbitrary Riemann surface, note that
the action 5.8.2 gives expectation values (e") =0 unless g + ¢**** = 0 with the
background charge given by

gt = Q 8Lx [ vs R =Q(1-g) (5.83)

where g is the genus of the Riemann surface, and 2(1 — g) is the Euler number

given by the Gauss-Bonnet formula

1
wl? VIR? =2(1-g). (5.8.4)

The sphere has g = 0, which gives the background charge ¢g*** = Q, as already
seen in the operator representation. The background charge is related to the

number of solutions of the equations of motion 5.1.1:
# of b solutions — # of e solutions = eg*** = (1 - 2A)(g-1) (5.8.5)

which is the Riemann-Roch formula.
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6. THE SUPERCONFORMAL GHOSTS

0.1 Bosonisation

Specialising the constructions of the previous section to the superconformal

ghosts,
p=e—¢3€ = e *H gy .,___eé,, = e?X
E=cX n=c¢* (6.1.1)
b=e"’ c=e’.

The properties of the chiral acalars are

#(z) p(w)=-In(z-w) Q= 2 c*= 13 wi(e%)=—g(q+2)
x(z2) x(w)=+In(z-w) Qx=-1 c*= -2 wt(e™)=+ig(¢9-1) (6.1.2)
o(z)o(w)=+In(z-w) Q° =-3 ¢*=-26 wi(e?’)= +§q(q - 3)

The total ghost charge is ¢-charge plus o-charge; the ghost charge operator is
jo‘ + 5. The inequivalent representations of the 3, 7y algebra are indexed by the
¢ + x-charge, since A and 7 both commute with j¢ + Jo'. One way of picturing
this extra quantum number is to fermionize the current A+, giving two charged
solitons, e** and e**. The e*X solitons are free, but the e** solitons cannot be

free, since their dimensions do not add up to 1.

6.2 Spin fields

The integer weight ghost fields b, c, 9, 3¢ are not affected by the spin fields,
8o the ghost contribution to the spin fields comes only from ¢. The exponentials
¢* are components of superfields (NS operators) for ¢ € Z, and spin fields (R
operators) for ¢ € } + Z. Note that these spin fields, like the S, of the matter
sector, have fractional weights and do not by themselves form a local algebra of

fields. Only the combined ¢, ¢* system will have a local algebra of spin fields.
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The integer weight ghost fields all commute with the chirality operator I'.
The identity has even chirality, as does the corresponding state, the S L, invariant

vacuum [0),. The solitons e** are odd, so
Pla),=(-1r'la), 9€2Z. (6.21)
For the Ramond states, up to a conventional choice of overall sign,
Tlg), =(-D)™"lg), q¢€}+2. (6.2:2)

In terms of the spin fields,
(-1)* g€

(-2 g€ §+ Z (6.2.3)

I'e®P ! = e {

which is obviously inconsistent with the operator products of the exponentials, in
the same way that I'S,I'~! = (7115)a. is inconsistent with the operator products
of S,. Only in the combined ¢, ¢* system can the chirality operator be extended
to the spin fields, with the I' = 1 projection giving a local field theory.

The spin field ¢*/2, of weight —5/8 = ¢2€ /16, corresponds to the unique state
[1/2), ® |0),, of unbroken Ramond supersymmetry in the ghost system. The
Witten index is thus +1 in the Ramond sector of the ghosts. This is responsible
for spacetime chirality in the covariant formulation of the fermionic string theory.
If the ghost states were all paired in chirality, then the I' = 1 projection would

produce only states of paired spacetime chirality.

6.3 The BRST current
The BRST supercurrent is
Jsrsr = DC(C DB — £ DC B) (6.3.1)

where normal ordering is done with respect to the SL, invariant state, in which

{B(3.) C(8;)) = 612/212. In Feynman diagrams for correlation functions on the
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sphere which involve J ggsr, no self-contractions are included. The BRST charge
e 1
€Qopsr = P f dzdf € Jppsr(s)  Qhpsr = Qoasr - (6.3.2)

The BRST current is completely specified by three conditions:

L. the BRST transformation laws of the superconformal matter fields of weight
h: ‘ o |

[€Q§RSTI onatlul = l‘c + %D(‘C)D + ha(eC)l onauu ] (6.3.3)

2. the transformation laws of the ghost fields:

le@srst) €] =¢(CaC - | DC DC)

[eQBrsT, B} = — (6.3.4)

3. the requirement that Jgrsr be an anomaly free supercurrent, i.e. a super-

conformal field of weight 1/2:

T(s,) Jorst(81) ~ § 912217 Jprsr(®:) + L2i; DoJpgsr + 012277 92Jprsr -
(6.3.5)

The last condition ensures that Jpgsr is analytic (conserved) on any world-
surface, and-that its contour integrals are conformal invariants. From properties
1-3 it follows that

) Qfmsr =0, (6-3-6)

because, by the BRST transformation laws, Q% g5 commutes with all the matter
fields and C, and.[Q%gsy; B] = —|T, @Brsr)+ =0 because Jpgsr i a conformal
supercurrent.. Therefore Q% psy -commutes with all the fields and must be a
multiple of the.identity. But- it has total ghost charge -+2 while the ldentlty is

neutral. Therefore Q% g5 = 0.
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The procedure for finding (or verifying) equation 6.3.1 for Jprst is to write
the most general superfield of total ghost charge +1, and then to fix its coefficients
by evaluating the operator products needed to verify equations 6.3.3-6.3.5, using
the two-point function 8,,/2,,. Only if d = 10 is it possible to satisfy all of the

defining properties simultaneously. Rewriting Qprsr in the form
-1 x| 4 1o7l80l
Qsast = 5 f dzdb ¢ (CT) + fOTIo) (6.3.7)

makes it easy to derive 6.3.3. From 6.3.3 it is obvious that any A = 1/2 supercon-
formal field in the matter sector is a BRST invariant vertex operator. These ver-
tex operators are enough to give the complete S-matrix of the spacetime bosons

(the NS sector). It is also useful to rewrite Qprsr again:

2
QBRS?':Q[I?AST + Qg;asr + Qﬁﬁsr

o _ 1 IXB1} _
BRST= 5 f dz (cTy cdcb) (6.35)

Il

( 1 i -
5}331:2—", f dz }1¥,0z™u z—r—'.fdz lef™xy, 02"

@ _.1 2 _ 1 1,2¢—2x—
anr—“zﬁldzhb = E;.fdz:c“x"

6.4 BRST invariant expectation values

The vacuum |0) is the SL, invariant state (for all of the fields). All charge

operators annihilate the vacuum. The vacuum expectation values

(g =10l---10) (6.4.1)

are the correlation functions of the conformally invariant quantum field theory
on the sphere (or plane or cylinder). These expectation values vanish unless they
contain ghost operators which exactly soak up the ghost background charges.
In particular, (l)Q = 0. The disadvantage of these expectation values is the

background b, ¢ charge. It requires that three of the vertex operators contain a
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factor of c. In tree amplitudes this is not a problem of principle, since the BRST
quantization treats all operators of the matter — ghost system equally. But it is
an inconvenience, because the asymmetry of the distribution of the b, ¢ charges
among the vertices obscures the duality of the scattering amplitudes, and because
it would be attractive to have the full S-matrix entirely in terms of the z, ¢, ¢
system. In loops the problem is serious, since there are no vertex operators with

the negative b, c charge needed to neutralise the background.

Let
(~Ql = (0l e **(o0)  (-Q|0)=1 (6.42)

be the state conjugate to the vacuum, in which the ghost background charges
have been neutralised. Note that ¢3-?# is a conformal field of weight 0. The

vacuum and its hermitian conjugate are both BRST invariant

QsrsT|0) =0  (~Q|QpasT=0. (6.4.3)

The vacuum is invariant because the conformal generators commute with Qggsr
and the SL; invariant state is unique. To show that its conjugate is invariant,

first show directly from

bj0) =0 n >-1 cal0) = 0 n >2

(6.4.4)
Bal0) =0 n>-1/2  7,|0) =0 n >3/2

that
@rsr o) =0. (6.4.5)

Then use version 6.3.8 for @pgsy, and the standard operator products of expo-

nentials.

Both the vacuum expectation value (- - ), and the expectation value
(do= (=@l 10) = (¢ (o0} -+ Jo (6.45)

are BRST invariant. The advantage of (- - -), is charge neutrality; (1), = 1. On

higher genus Riemann surfaces, there is a manifestly BRST invariant expectation
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value (- -)4(,_, With background charge Q(1 ~ g). For calculating loop ampli-
tudes, the problem is to screen the background charge to get a BRST invariant,

neutral expectation value on an arbitrary Riemann surfacel!3l.

The correlation functions on the sphere of exponentials of the chiral scalars
é, X, 0 are calculated using two-point functions in the simplest possible form,
+In(z — w), ommitting self-contractions exactly as if there were no background
charge. The only effect of the background charge is to determine which ex-
pectation values of exponentials are nongero, namely those which neutralize the

background charges.

Note that these BRST-invariant expectation values are for the small algebra
of p, p = €, not for the large algebra of , € which includes the & gero mode.

In the large algebra, the neutraliger of the background charge is e3*~2¢+x  but

[(@erst, €] £ 0. (6.4.7)

This is a key point in the construction of the fermion vertex.

7. THE FERMION VERTEX AND SPACETIME SUPERSYMMETRY

The object is to construct BRS invariant vertex operators for spacetime
fermions, and to construct a two dimensional chiral current for spacetime super-
symmetry. The vertex operators must be spin fields in the matter ghost system
so they should combine the spin fields S, of the ¥* system and the spin fields
e¥*/2 of the P, 4 system. The fermion vertex operator should be a fermion field
on the world surface in order that the fermion amplitudes have the antisymmetry

properties appropriate to spacetime Fermi statistics.

It is enough to construct the vertex for massless fermions, since the scatter-

ing amplitudes of all the other states appear as residues of the massless fermion
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amplitudes at poles in the intermediate momenta. In the language of two di-
mensional field theory, the vertex operators for the massless fermions generate
through their operator products the algebra of vertex operators for all physical

states.

71 Vi

It would be mmplest if the fermion vertex did not couple to the ordinary
conformal ghoata b c. The fermlon vertex operator must then anticommute (up
to a total derwatlve) with each of QQ;:;’} because each has a different b, c charge.
The vertex operator should be an ordinary conformal field of weight 1 in order

to anticommute with ansr

The simplest candidate for the matter part of the massless fermion vertex is
u®S,e**, which has dimension 5/8 + k?/2 = 5/8. The ghost sector must supply
the missing 3/8 weight:

' Voypr = u'e 38,647 (7.1.1)

V_y2is an ordinary conformal field of weight 1 if k& = 0. For invariance under

Q,, rsr 4 will bave to satisfy the massless Dirac equation fu =0,

.. The I‘ = 1 projection requires that u® be left handed. Henceforth the con-
venhon wxll be that S, is left handed, i.e., I'S,I'* = S,, and S* is right handed.
After the chlral projection, V_,/,(2) becomes a local fermionic field. It is fermionic

because
V_172(2) Vo pa(w) ~ (2 - w)"u"u"ﬁ,e“do,c’“”(w) , (7.1.2)
which is odd under z « w.
Béfauae V_1, is a conformal field of weight 1,
(@Bksrs Vorpels = 8(c Vo) . (7.1.3)
The spacetime Dirac equation fu = 0 implies [QUhsr, Vi /2(z)]4+ = O because

e *,8,2* V_yy5(w) ~ (2 - w)“‘(—i#u)acli“"sae“” ~(z—w)’.  (7.2.4)

83



The last piece of the BRST invariance, [Qksr, Vo1 /2(2)l+ = 0, follows from the

nonsingularity of the operator product expansion
e Xb2) V_y (W) ~ (2 - w)*'e%"szu"’s.,e"""(w) . (7.1.5)
Combining the three pieces gives BRST invariance of V_y,:

[Qsrst, Vorpzly = (Vo) - (7.1.6)

7.2 Vi

V_y/2 cannot be the entire fermion vertex operator because it has nongero
¢ charge. The correlation functions {V_.,/2(2) - -)o on the sphere all vanish by
charge conservation. The correlation functions {V_,/3(2) - --)q vanish except for
the four point function. This difficulty can be avoided if there is a second fermion
vertex, Vy/2(2), baving the opposite ¢ charge. ¢*/? has dimension —5/8 and odd
chirality, so the spin field with even chirality, e#/2S* has dimension 0 and is
righthanded in spacetime. To get even chirality, weight 1 and lefthandedness
in spacetime, write a vertex of the form e2*u®y%;573z,¢'*>. The question now

becomes BRST invariance.

A BRST invariant vertex operator V;/, can be constructed from V_, /2 using
the extension of the matter-ghost system which contains the field £(z). Re-
call that the ghost system contains 8¢, but not { itself. Thus £V_,; is not in
the matter-ghost system, but |Qpgst, £V-1/1] §s, because the commutation with
Qpgrsr can absorb the gzero mode of {. Since Q4zsr = 0, the commutator is
automatically BRST invariant. Normally, commutation with Qpgsy gives ver-
tex operators for BRST-exact states, which are null and decouple from physical
states. But here the algebra of fields has been expanded 8o that all BRST invari-
ant states are BRST-exact in the large algebra. Thus any BRST-closed state in
the small algebra can be represented as a commutator with Qpgsy in the large

algebra.
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To be precise, define V, ;2 by

2|Qsrst, EV_112) — 8(2c€V_12)
zlqg)asr- V_ija] + L684/3-xyog, cits

v,
2 (7.2.1)

The total derivative is subtracted because it contains £, whereas Vi/2 should be
in the small algebra. This modification does not affect BRST invariance because

the BRST commutator is still a total derivative:

[@erst Vij2]l+ = —8{QsasT, 2c€Viapo)s (7.2.2)

The term in 7.2.1 containing 4(2) will never contribute to correlation functions
because neither V_;/; nor V2 contains ¢(z). So V)/2 might as well be defined as
2[0%:)1 st V-1/2], which can be calculated using the operator product 4.8.11:

Vijz = /20" 90,(03, + Sk-py, )50 (7.2.3)

7.3 Scattering amplitudes

The two fermion vertex operators, V_I,z and Vyy,, give tree level fermion

scattering amplitudes by formulas of the form
AQ1,...,N) =/dz,~--dz~ Ve Vo » (7.3.1)

but it must be shown that these formulas do not depend on the choice of ¢
charges ¢; = +3, £ ¢ = 0. This will be done in section 7.4, by showing that the

expectation value in equation 7.3.1 is invariant under rearrangements of the g.

First note that, given this rearrangement lemma, the fermion amplitudesfac-



torize, as they should, on the Neveu-Schwars amplitudes for spacetime bosons:

Voip(z) Viple) ~ —2[02;}151» V_i2(21) €Viya(2,)]
~ 2[0&:51‘. (2 - 22)—'“".'“T"g*faafc_‘\bpG‘("’“’"'(?/z)l
- (o sl

X (3zp + i(ky + ky)- P, ) ehittado(a))
‘ (7.3.2)
8o the integral over 2, near 2, gives a pole at (k; + k2)* = 0 whose residue is a

NS massless vector boson vertex operator of the form Vo(2;) = [ d8-DXe** X,

On the other hand, the operator products V2 Vy/2 and V_y;, V_,;, factor-
ize the amplitudes on vertex operators Vi, with ¢ charge +1. For example,
Vo Voayp~Vo = e *ye'**. But any factorization on Vi, is exactly equivalent
to a factorization on Vj,, since each pair of fermion vertices which are brought
close together can be taken to be of opposite charge by the rearrangement lemma.
Therefore V 4, are alternative forms of the massless boson vertex. Equation 7.3.2
shows explicitly that V; is derived from V_, exactly as Vy; is derived from V_,,,.
A more complicated calculation shows that V., is derived in the same way from
Vo. In the classical formulation of the fermionic string, the physical states cor-
responding to the vertex operators V_, and V, were discussed as two equivalent
“pictures® for the string states, although, because the ghosts were missing, there

was no weight 1 vertex operator V_;.

It is clear now that there are infinitely many pictures, corresponding to
the inﬁniteiy many Bose seas which give the inequivalent representations of the
superconformal ghost fields 8, 4. The infinite number of equivalent vertex op-
erators for each physical state are derived by the picture changing operation
Va1 = [@pasr, £V}, and by its inverse. The rearrangement lemma given below
for V4, can be generalized to show the equivalence of all the pictures for both

fermions and bosons.

56



7.4 The rearrangement lemma

The object is to show that

( Vllt(‘) 1/2(“’) ) < -Voyalz) - Vn/z(w)---)o. (7.4.1)

The idea is to use the;equivalence of expectation values in the small and large

algebras and the contour integral form of the BRST transformation:

(- A(z) IGQansr, 54(“’)] Yo
[ d2 (£(c0) - A(2) - Jamsr(#) £(0)A(w))
(7.4.2)
f d2 {---€(s)A(2) - - domsz(2) €(w)A(w))
( [anns-r, §A(w))--- A(2) ) ag

The contour can be deformed by BRST invariance of the expectation value and
of the operators represented by ellipses. The £ field can be moved because its

dimension is sero and only its sero mode participates in the expectation value.

7.5 Spacetime supersymmetry

The spacetime supersymmetry current g,(2) is simply the fermion vertex at

zero momentum. It takes the forms
Qo1/2(2) = €*S0  Quapp =¥ 15500z, .- (7.5.1)

in the various pictures. ¢,(z) is a BRST invariant dimension 1 conformal field,
80 its contour integral

Qa.{ =

is invariantly defined. The operator product 7.3.2 gives

L f dzg.4(2) (75.2)

r4 {1

[Qﬂ,—l/h Qﬂ.l[!]«'» = 'ﬁgpp (753)
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where p, i8 the spacetime momentum operator, and {Q,.1/2, V_12] = Vo, i.e.,
[Qa.l/!, C_‘IZSﬁC““L', = 7:5«’#8“‘ ’ (754)

showing that Q, is the spacetime supersymmetry generator. Since Q, com-
mutes with the screening operator ¢%°~2¢ for the background charge, the contour
argument shows that the expectation values {- --), on the sphere are invariant
under supersymmetry. Thus the tree amplitudes are supersymmetric. All that
is needed to show supersymmetry of the loop expansion, since ¢,(2) is a confor-
mal current, is to show that the screening charges on arbitrary Riemann surfaces

preserve spacetime supersymmetry.
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