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Abstract We give an exposition of the details of the proof that all highest
weight representations of the Virasoro algebra for c < 1 which are not in the
discrete series are non-unitary.

The Virasoro algebra is the infinite dimensional Lie algebra with generators Ln,
neZ, satisfying the commutation relations

lK>^ = (™-n)Lm+n+^c(m3-m)δm+nt0. (1)

The number c is called the central charge. The Verma module V(c, h) is the
representation of the Virasoro algebra generated by a vector \h} satisfying

= h\h}, Ln\h}=0, n>0, (2)

and spanned by the linearly independent vectors \h} and

L_felL_fe2...L_kJ/i>, ίύk^ktS ... UK. (3)

We assume that both c and h are real. In this case, a hermitian inner product on
V(c, h) is defined by </#> = 1, and L\=L-n. Define, for p and q positive integers,

The non-unitary theorem [1] is

Theorem 1. For c<l there are negative metric states in V(c,h) if (c,h) does not
belong to the discrete list

c = c(m), m = 2,3,4..., h = hPiq(m), p + q^m. (5)
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The proof of Theorem 1 was given in [1], The present paper is an exposition of
the details of that proof. We recommend the graphs in [1] as a visual aid.

There are analogous non-unitarity theorems for the JV = 1 supersymmetric
extensions of the Virasoro algebra [1,2]. The details of the proofs of the N=ί non-
unitarity theorems are exactly parallel to the proof of the Virasoro theorem.
Goddard et al. [3] proved that all representations in the discrete series allowed by
the non-unitarity theorems for the Virasoro algebra and its N = 1 extensions are in
fact unitary. Boucher et al. [4] have given the non-unitarity theorems for the
N = 2 extensions. The N = 2 proofs [5] are somewhat different from the N < 2
proofs. Di Vecchia, Petersen, Yu, and Zheng have proved that the discrete series of
representations allowed by the N = 2 non-unitarity theorems are in fact unitary
[6].

For N a nonnegative integer, define level N to be the eigenspace of the Verma
module on which Lo has eigenvalue h + N. Level 0 is spanned by \K), and level N,
JV^l, is spanned by the vectors listed in (3) which satisfy Ydki = N. Level N has
dimension P(N), the partition number of iV. Clearly, the levels span F(c, h) and are
linearly independent. Since L]j = L0, levels N and N' are orthogonal if N + N'.
Define the null subspace on level N to be the subspace of vectors in level N which
are orthogonal to all of level N, and thus to all of V(c, h).

The inner products of the states on level N listed in (3) form a P(N) x P(N) real
symmetric matrix MN(c, h) whose entries are polynomials in c and h. An explicit
formula for the determinant of this matrix was announced by Kac [7] and proved
by Feigin and Fuchs [8]. Up to multiplication by a positive number independent
of c and ft,

detMN(c,ft) = Π (h-hp,q(m)ΓN-™\ (6)

where hPtq(m) is given by Eq. (4). In Eq. (6) it does not matter which branch is
chosen for m as a function of c. For c < 1 we choose by convention the branch
0<m<oo. There is a nontrivial null subspace on level N if and only if
detMN(c,ft) = 0.

Kac [9] showed that, for c ̂  1, the metric on V(c, ft) is nonnegative if and only if
h ̂  0. Direct calculation gives the 1 x 1 matrix Mx = 2h, so ft ̂  0 is necessary if the
metric is to be nonnegative. It is straightforward to verify that, in the limit h -> + oo,
MN goes to a diagonal matrix with positive entries. It is also straightforward to
check that det MN(c, h) Φ 0 for c> 1, h > 0. Therefore MΉ(c, h) is nondegenerate and
positive for c> 1, h>0, and is non-negative for c^ 1, h^0. Since this is true for all
levels N, the result follows.

The proof of Theorem 1 is entirely elementary. The strategy is to consider the
matrices MN, N = 1,2,..., one by one. For each N we find a subset GN of the half-
plane c < 1 on which MN(c, h) has a negative eigenvalue. We then say that the
subset GN has been eliminated. Theorem 1 will follow from the fact that the discrete
set (5) is the complement of (J GN in the half-plane c< 1.

Henceforth we write hPiq(c) in place of hPiq(m), with the understanding that, for
c < 1, we choose the branch of m with 0 < m < oo. Write CPt q for the vanishing curve
h = hpq(c). Because det MN(c, h) vanishes on the curve CPfq for pq ̂  N, we say that
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the vanishing curve CPtq first appears on level pq, and that the vanishing curves on
level N are the CPyq, pq^N. The curve CPtq intersects the line c = 1 at h = hPyq(ί)
= (p — q)2/4. Orient each vanishing curve so that c — \ is the initial point, and
forward is the direction of decreasing c.

Proposition 1. When the curve CPt 1 first appears on level N=p, it intersects no other
vanishing curves in the half-plane c<\. When Cpq, q>ί, first appears on level
N=pq, its first intersection, moving forward from c = ϊ, is with Cq-ίiP at

Proof The proof is straightforward algebra. D

For q = 1 define CPf ί to be all of CPt q in the half-plane c < 1. For q > 1 define CPt q

to be the part of CPf q for which m > p + q — 1. That is, CPi q is the open subset of CPt q

between c = 1 and the first intersection of CPfq on level N=pq. The first step in the
proof of Theorem 1 is to eliminate all of the half-plane c < 1 except the curves CPtq.
For N^ί define

SN=

Proposition2. lim SN is the half-plane c<\.
N-+ao

(7)

Define a first intersection F on C'Ptqto be an intersection of Cp^q and Cp,tβ,,
pfqf>pq, such that, on level Nf=p'q\ (c, h) is the first intersection encountered on
CPiφ starting from c = ί.

Proposition 3. The first intersections on Cp>q are the intersections Fpqk of C'p>q and
Cp',qr = Cq+k-i,P+k> k*zt. FPί(lfk is the point h = hPfq(m), m = p + ̂  + fe-l. Each of
these first intersections is, at level p'q\ the intersection of exactly two vanishing
curves.

Proof The proof is straightforward algebra. D

It immediately follows that

Proposition 4. The discrete list (5) consists exactly of the first intersections, on all
the vanishing curves Cpq.

Define Rίfί to be the open quadrant c<\, h<0. Define RpΛ = RX p, f o r p > l ,
to be the open region bounded byCp\l9Cp-ltl9 and C\ tP. For p, q > i, define Rpq

to be the open region bounded by Cp>q, Cp^1>q^ί, and C^_1 > p.

Proposition 5. No vanishing curves on level N = pq intersect Rpq.

Proof A vanishing curve which did intersect Rp q would have to intersect its
boundary. By Proposition 3, this does not happen. •

Proposition^ SN-SN-X= (J RP,q U Cp%r
pq = N pq = N

Proposition 7. Except possibly for the curves CPΛ, pq ̂  N, all of SN is eliminated on
levels <N.
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Proof The proof is by induction in N. The proposition is clearly true for JV = 1,
because St is the quadrant c < l , /ι^0, and C\Λ is the line /ι=0, c<ί. Now
suppose the proposition is true for N — 1. We show that it is also true for N. By
Proposition 6, we need to show that the Rpq, pq = N, are eliminated on level N.

We say that two connected regions of the (c, h) plane are contiguous on level N if
they can be connected by a path which does not intersect any vanishing curves on
level N. If two regions are contiguous on level JV, then the signature of MN is the
same in both regions, because the signature can only change when a vanishing
curve is crossed. For each C p β on level iV, for pq ̂  iV, choose a neighborhood U of
CPtq small enough so that the only other vanishing curves on level N which
intersect U also intersect CPtq. U — CPtq has two connected components. Define the
oί side of CPtq to be the connected component on the right of Cp>q, moving
forward, if p ̂  q, and on the left, moving forward, if p < q. The other component is
called the o 1 side of Cp><Γ The motivation for this terminology is that the o 1
side of CPiψ for c near 1, is contiguous on level N—pq with the region o 1, h>0.
This is easily verified by expanding hpq(c) around c = 1. It follows that MN(c, h) is a
positive matrix on the oί side of Cp>q for c near 1. detM# vanishes to first order
on Cp>q. Therefore detMN(c, h) is negative on the c< 1 side of Cp>€, for c near but
not at 1. The sign of detMN(c,h) can only change at a vanishing curve, so
detMN(c,h) is negative in the entire region of the c<ί half-plane which is
contiguous on level pq to the c<ί side of CPtq for c near but not at 1. By
Proposition 5, this region is Rpq. So the region Rp q is eliminated. The induction
step now follows from Proposition 6. D

Given Propositions 2 and 7, we are left with the task of eliminating the intervals
on the curves CPtq in between the points in the discrete list (5). Let IPtqtk, fe^2, be
the open interval on C p g between F p β > f c _! and Fp><z>fc. Let / P ί > 1 be the open subset
of CPtq beyond F P t ί > 1 . That is, 7Ptβ>1 is the open subset ofCP f β with m<p + q.
Clearly,

Propositions.

The goal is to eliminate the open intervals Ip,9,k, fc^l. Recall that, when
Cp',q' = Cq+k-ι,p+k S r s t appears on level N'=p'q\ there is a negative metric state
on its c < 1 side, near c = 1. We will show that this negative metric state continues to
exist on the c < 1 side of Cp%q> moving away from c = 1, and in particular exists on
Cp<z on the c< 1 side of Cp< ̂ . That part of C'Piq is a subset of IPΛ^ and, by the
definition of first intersections, there are no intersections on Ipq>k at level N\ It will
then follow that there is a negative metric state on all oϊlp>q>k, and we will be done.

Proposition 9. On level N'=p'q\ the first k successive intersections on Cp> ̂ , are with
Cp+k-jfq+k-p l^j^fe. These are the first intersections F p + f c _ 7 j(ϊ+fc_Λ,. on
Cp+k-j)q+k-p occurring at m=p + q+2k-j-l.

Proof The proof is straightforward algebra. D
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Proposition 10. Suppose (c', W) is on some CPtq, pq=N, but is not on an intersection
of vanishing curves at level N. Then the null space on level N is one dimensional at

Proof detMN(c, h) vanishes to first order at CPtq near (c', hi). D

Proposition 11. At FPtqtk9 the intersection of CPtq and Cp,fq, = Cq_ί+kfP+k, fc^l,
occurring at c = c(m), h = hpq{c\ m=p+q+k— 1,

detMpV_M(c,fc+p<z)Φθ. (9)

Proof If this determinant were zero, then (c, h+pq) would be on a vanishing curve
Crs on level rs^p'q'—pq. Direct calculation of p'q'—pq gives

rs = m{m+\)-(m+ί)p-mq. (10)

The condition that (c,h+pq) lie on Crs is

+ l)r-ms). (11)

It follows from Eqs. (10,11) that r = mors = m + l. But this gives a contradiction if
we take Eq. (10) modm or modm + 1, since l ^ p < m and l ^ q < m + l . D

Proposition 12. For j= 1,2, ...,k there exists an open neighborhood Up,tq,tj of

and a nowhere zero analytic function vfc, h)9 defined on t/P',€,7 wiί/i values in level
JV'=p Y of V(c, h\ such that v/c, h) is in the null space of level N' if and only if (c, h)
is on Cp.Λ .

Proof Write p"=p + k-j, q" = q + k-j9 N"=p"q"<N'. Let t / = l / p W J be a
neighborhood of Fp+k-jiq+k-jtj small enough that it intersects no vanishing
curves but Cp%q» and Cp,>q> on level N'. Choose coordinates (x, y) in U, analytic in
(c, h) and real for c, h real, such that Crq,f is given by x=0 and Cp,q. is given by
y=0. This is possible because the intersection is transversal. At level JV", x = 0 is the
only vanishing curve in U. The one dimensional null spaces of level N" form a line
bundle over the vanishing curve x = 0 near y = 0. Let v'j(O,y) be a nowhere zero
analytic section of this line bundle, and let ύj(x9 y) be an analytic function on U
with values in level N"9 which extends this section. Define the subspace V"(x, y) of
level N' to be the span of the vectors

L_kίL-k2...L-knvΐ(x,y), ί^k^k2^ ... ̂ kn, Σkt=N'-N".
(12)

The dimension of V"(x,y) is P{N'-N"). For >>φθ, the order of vanishing of
detM^O,);) at x = 0 is also P{N'-N"). Therefore, for y + O, F'(0,y) is the null
subspace of level N'. Let V'(x,y) be a subspace of level N' complementary to
V*(x,y)9so level N' is Γ φ F . The matrix of inner products AfN, can now be
written in block diagonal form:

Ax>y)-{xR(x,yy Sfry) '
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where Q and S are symmetric matrices. Three blocks of MN,(x, y) are divisible by x,
as in Eq. (13), because F"(0,y) is in the null subspace of level N'.

The key point now is that <2(0,0) is non-degenerate. To see this, first note that,
for n > 0 , the vector ίy?J(0, y) = 0, since LnuJ(0,y) is in the null subspace of level
JV'—n, which is trivial. From this, and from the explicit basis (12) for V"(x, y), we
see that

Q(x,y) = MpΎ-pW,(c,h+p"q") + O(x), (14)

where (c, h) corresponds to (0, y) under the change of coordinates. Since (0,0) is the
first intersection Fp»tq»j, Proposition (11) gives detβ(0,0)φ0.

Since detβ(0,0)φO, Q(x,y) is non-degenerate on all of U, if necessary
replacing U by a smaller neighborhood of (0,0). Let W be the matrix

(15)
\U 1 /

and make the change of basis

(16)

Let V'"(x9 y) be the new complement to F"(x, y), on which T(x, y) is the inner
product. The order of vanishing argument implies that det T(x, y) is nonzero for
y Φ 0 and vanishes to first order at y = 0. The one dimensional null space of T(x, 0)
is the null space of level JV' for x Φ 0. At x = y = 0, the one dimensional null space of
T(0,0) spans, with F"(x,y), the P(JV)-JW) + 1 d i m e n s ional null subspace of
level N'. By the same argument which gave rj(x, y), we can choose a nowhere zero
analytic function t /x, y) on U9 with values in Fw(x, y), such that i /x, 0) is in the
null space of T(x, 0) and therefore in the null space of level N'. Since T(x, y) is non-
degenerate for yφO, Vj(x,y) is not in the null space of level ΛΓ if yφO. D

Let Jp>fq'tp 1 <jύK be the open interval on CV>Λ> between

Let JP'tq't i be the open interval on Cp>tq> lying between c = 1 and Fp+k- ltq+k- lt i
Let Wp,iq,j, 1 ̂ j ^ fe, be a neighborhood in the plane which intersects no vanishing
curves on level N' except Jp>,q>j' For j > l , require

WP>,q>jnUp,,q,j*<b, WpWJnUpWJ^+φ.

For 7 = 1 require only

Wλ, .inlV.,.. iΦ0. (18)

Proposition 13. For eachj, 1 ̂ j ^ fe, ί/zβrβ zs α nowhere zero analytic function Wj(c, h)
on WP'>q>j with values in level N' such that Wj(c, h) is in the null space of level N' if and
only if (c, h) is on Jp>,q'j- On the intersections of their neighborhoods of definition,
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Wj=fjΌj9 where fj is a nonzero function, and w^—gp^γ, where gj is a nonzero
function.

Proof Again, the null space of level N' is trivial on Wp>%q>^ except on JP',q>,p where it
is one dimensional D

Proposition 14. The level N' metric is negative on the vectors vp<tq<j(c, h) and on the
vectors wp,iq*j(c,h), on the c<\ side of Cp^q>.

Proof The matrix MN, is positive in Wp>tq>tl on the c>\ side of Cp%q>, by the
contiguity argument, since there are no intersections on Cp>iq> between WP'tq>, i and
c = 1. The inner product is thus positive on wp%€%x on the c> 1 side of Cp>tq,. The
inner product vanishes to first order on wp^q,Λ on Cp>tq>. Therefore the inner
product is negative on wp>iq*Λ on the c<\ side of Cp^q>. The proposition now
follows by induction on the series wί9vl9 w2, v2,..., since neighboring vectors in the
series differ by nonzero functions fj or gj9 and since the Wj(c, h) and Vj(c, h) are in the
level iV' null space only for (c, h) on Cp^q>. •

Proposition 15. IPtqyk is eliminated on level N'=(q + k—l)(p + k).

Proof By the previous proposition, the metric is negative on vp>q,k(c,h), on the
c< 1 side of Cp^q>. But IPi(lfk approaches arbitrarily close to Cp,tq. on the c < 1 side
within Upw>fc. Therefore MN(c, h) has a negative eigenvalue at one end of IPtq^
But the signature of MN(c,h) cannot change along /p,€,fe5 because there are no
intersections at level N' on /p>€>fc. The proposition follows. •

Propositions 2, 7, 8, and 15 imply Theorem 1.

Acknowledgement. We thank Adrian Kent for a critical reading of the manuscript.

Note added in proof. A similar but not identical version of the details of the non-unitarity proof
has been given by Langlands [10].
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