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Abstract

First steps are taken in a project to construct a general class of conformal and perhaps,
eventually, non-conformal quantum field theories of (n−1)-dimensional extended objects
in a d=2n dimensional conformal space-time manifold M . The fields live on the spaces
E∂ξ of relative integral (n−1)-cycles in M . These are the integral (n−1)-currents of given
boundary ∂ξ. Each E∂ξ is a complete metric space geometrically analogous to a Riemann
surface Σ. For example, ifM = Sd, Σ = S2. The quantum fields on E∂ξ are to be mapped
to observables in a 2d CFT on Σ. The correlation functions on E∂ξ are to be given by
the 2d correlation functions on Σ. The goal is to construct a CFT of extended objects
in d=2n dimensions for every 2d CFT, and eventually a non-conformal QFT of extended
objects for every non-conformal 2d QFT, so that all the technology of 2d QFT can be
applied to the construction and analysis of quantum field theories of extended objects.
The project depends crucially on settling some mathematical questions about analysis in
the spaces E∂ξ. The project also depends on extending the observables of 2d CFT from
the finite sets of points in a Riemann surface to the integral 0-currents.
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1 Introduction

This paper reports the first steps of a project to construct and analyze a general class of
quantum field theories of (n−1)-dimensional extended objects in a space-time manifold
of dimension d = 2n. Much still remains to be done.

My referencing is surely inadequate. I hope to do better in future revisions. Section
22 asks for advice on history and references.

1.1 The free n-form on a conformal space-time manifold M of dimension
d = 2n

The first step is to reformulate the conformally invariant quantum field theory of a free
n-form F (x) on a space-time manifoldM of dimension d = 2n as the quantum field theory
of a free 1-form on a space of (n−1)-dimensional extended objects. The general project
extrapolates from this example.

Space-time is taken to be a compact real manifold M of dimension d = 2n with
an orientation and with a conformal class of riemannian metrics. The main example is
euclidean Rd or, rather, its conformal compactification, the d-sphere Sd = Rd ∪ {∞}.
Actually, all that is used of the conformal structure on M is the Hodge ∗-operator acting
in the middle dimension, on n-forms. This might be less structure than a conformal class
of riemannian metrics.

The free n-form theory is the generalization to d = 2n dimensions of free quantum
electrodynamics in 4-d [1–3]. The field equations of the free n-form F (x) are

dF = 0 , dF ∗ = 0 , F ∗ = i−1∗F , (1.1)

where ∗ is the conformally invariant Hodge ∗-operator acting on n-forms,

∗ ωµ1...µn
(x) = ǫµ1...µn

ν1...νn(x)ων1...νn(x) , ∗2 = (−1)n . (1.2)

The integral of the n-form F over an n-surface is the magnetic charge. The integral of
F ∗ is the electric charge. The gauge potential A(x) and the dual gauge potential A∗(x)
are (n−1)-forms constructed by integrating

dA = F , dA∗ = F ∗ . (1.3)

The gauge potentials are determined up to gauge transformations

A→ A+ df , A∗ → A∗ + df ∗ , (1.4)

given by (n−2)-forms f , f ∗.
The extended objects of the free n-form theory are described by fields

Vp,p∗(ξ) = eip
∫
ξ
A+ip∗

∫
ξ
A∗

. (1.5)
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which live on (n−1)-currents ξ in space-time. They carry electric charge p and magnetic
charge p∗. Taking the gauge group G to be compact, G = U(1)×U(1), the charges lie in
integer lattices,

p =
m

R
, p∗ =

m∗

R∗
, m,m∗ ∈ Z . (1.6)

The Dirac quantization condition
RR∗ = 1 (1.7)

follows from the requirement that the correlation functions of the fields Vp,p∗(ξ) should be
single-valued.

1.2 Currents in M and the boundary operator ∂ on currents

Currents will be the basic mathematical objects of this enterprise. A k-current ξ in the
space-time manifold M is a linear function – a distribution – on k-forms ω,

∫

ξ

ω =

∫

M

ddx ξµ1...µk(x)ωµ1...µk
(x) . (1.8)

Dk(M) is the linear space of k-currents in M . A k-current ξ is called smooth when
ξ(x)µ1...µk is smooth. Equivalently, ξ is smooth when it is represented by a smooth (d−k)-
form ωξ,

∫

ξ

ω =

∫

M

ωξ ∧ ω . (1.9)

Since we will be considering fields that live on spaces of currents, it will be more congenial
to write differential forms as linear functions of currents,

ω(ξ) =

∫

ξ

ω . (1.10)

When the n-form F (x) is considered as a quantum field, it is a distributional n-form
acting as a linear function ξ 7→ F (ξ) on smooth n-currents in M .

The boundary operator on currents is dual to the exterior derivative on forms,

∂ : Dk(M)→ Dk−1(M) , (1.11)

∫

∂ξ

ω =

∫

ξ

dω , (∂ξ)µ2...µk(x) = −∂µ1
ξµ1...µk(x) . (1.12)

Examples of k-currents are given by k-dimensional submanifolds in M . The corre-
sponding linear function on a k-form ω is the integral of ω over the submanifold. The
boundary of the k-current corresponds to the boundary of the submanifold.
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1.3 Reformulating the free n-form field theory

The reformulation of the free n-form theory stems from the realization that the space of
(n−1)-currents in M on which the n-forms live can be decomposed into a union of spaces
E∂ξ each of which has the property that its tangent space at each point is a linear space of
n-currents in space-time which is closed under the action of the Hodge ∗-operator. The
spaces E∂ξ will be described in more detail shortly.

Since tangent vectors in E∂ξ are n-currents in space-time, the n-form fields F and
F ∗ = i−1∗F on the space-time manifold M become 1-forms j and j∗ = i−1∗j on E∂ξ,
where the Hodge ∗-operator on n-forms has become a linear operator acting on the 1-
forms on E∂ξ. The field equations become

dj = 0 , dj∗ = 0 . (1.13)

Scalar fields, i.e., 0-forms, φ and φ∗ on E∂ξ are constructed by integrating

dφ = j , dφ∗ = j∗ . (1.14)

The scalar fields on E∂ξ express the gauge potentials on space-time,

φ(ξ) =

∫

ξ

A , φ∗(ξ) =

∫

ξ

A∗ . (1.15)

The extended objects are described by the “vertex operator” fields on E∂ξ,

Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ) . (1.16)

The free n-form theory on M is thus reformulated as a free 1-form theory on E∂ξ. The
free n-form theory begins to look formally analogous to the conformal field theory of a
free 1-form on a two-dimensional manifold.

1.4 The path of generalization

The path of generalization will retrace the historical development of the general class
of two-dimensional conformal and non-conformal quantum field theories starting from
the theory of the free 1-form. The 2d conformal field theories that were constructed in
that development include the theories of several 1-form fields, the orbifolds of the 1-form
theories, and the theories constructed from all these by conformal perturbation theory.
Notable special cases are the 2d conformal field theories containing non-abelian current
algebras. Along a sideline are the holomorphic conformal field theories made from 1-form
theories, including the Monster 2d CFT. Finally, there are the non-conformal 2d quantum
field theories constructed by perturbation theory governed by the 2d renormalization
group. If these constructions on the free 1-form in two dimensions can indeed be carried
out on the free 1-form on the spaces E∂ξ of (n−1)-currents in space-time, then such
a menagerie of examples will strongly suggest that it should be possible to formulate
axiomatically a general class of quantum field theories of extended objects in one-to-one
correspondence with the 2d quantum field theories. I will try here to describe the setting
in which such quantum field theories of extended objects might be formulated, and develop
mathematical conjectures that would provide a construction of such theories.
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1.5 Geometric Measure Theory – flat currents and integral currents

The quantum field theories of extended objects envisioned here are all to be theories of
fields on certain spaces E∂ξ of currents in space-time. The tools for defining E∂ξ and
for doing analysis in E∂ξ come from a branch of mathematics called Geometric Measure
Theory (GMT). Given a manifold M , Geometric Measure Theory defines the complete
metric space of integral k-currents in M [4]. One of several equivalent definitions starts
from maps σ from the oriented k-simplex ∆k to M . The k-current [σ] defined by

∫

[σ]

ω =

∫

∆k

σ∗ω (1.17)

is a delta-function k-current concentrated on the image σ(∆k) inM . A linear combination
∑

α nα[σα] of such k-currents with integer coefficients nα is the k-current representing the
singular k-chain

∑

α nασα in M . The singular k-currents realize a naive idea of the k-
dimensional objects in M .

Next, a certain norm, called the flat norm, is put on k-currents. At each point x ∈M ,
the riemannian metric at x is used to define a euclidean length function |ω(x)| on the
vector space of k-forms ω(x) at x. The co-mass M∗

k (ω) of a k-form is defined as

M∗
k (ω) = sup

x∈M
|ω(x)| . (1.18)

The mass Mk(ξ) of a k-current is then defined as

Mk(ξ) = sup
M∗

k
(ω)=1

|ω(ξ)| . (1.19)

When ξ is the characteristic current of a submanifold of M , the mass Mk(ξ) is the k-
volume of the submanifold. The flat norm of a k-current is defined as

‖ξ‖flat = inf
ξ′

[Mk(ξ − ∂ξ
′) +Mk+1(ξ

′)] , (1.20)

where ξ′ ranges over all (k+1)-currents. The flat norm gives the flat metric on the space
of k-currents,

dflat(ξ1, ξ2) = ‖ξ1 − ξ2‖flat , (1.21)

The completion in the flat metric of the vector space of finite norm k-currents is the vector
space of flat k-currents. Roughly, a flat current is a distribution on k-forms that takes no
derivatives.

The flat norm is a physically reasonable measure of the size of a k-dimensional object.
A k-current ξ of small flat norm is physically small in the sense that it can be shrunk
away to nothing with little effort. If a singular k-current ξ is small in the flat norm,
then there is a (k+1)-current ξ′ such that both Mk+1(ξ

′) and Mk(ξ − ∂ξ′) are small. So
part of ξ can easily be shrunk away through ξ′, which has small (k+1)-volume, and what
remains of ξ has small k-volume and can easily be shrunk away through itself. So the
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flat metric is a physically reasonable measure of the difference between two k-dimensional
objects. The definition of the flat metric requires a notion of distance in M , i.e., a choice
of riemannian metric on M , but the flat metric topology on currents is the same for any
choice of riemannian metric on M .

Completing the space of singular k-currents in the flat metric gives the space of integer
rectifiable k-currents. Finally, an integral k-current is defined to be an integer rectifiable
k-current ξ whose boundary ∂ξ has finite mass. The integral currents that are not singular
currents are fractal objects.

We will write Dint
k (M) for the space of integral k-currents in M . A basic theorem

of [4] states that Dint
k (M) is a complete metric space and that the boundary operator

takes integral k-currents to integral (k−1)-currents,

∂ : Dint
k (M)→ Dint

k−1(M) , (1.22)

acting continuously in the metric topology. Moreover, Dint
k (M) is a normed abelian group

under addition of currents, i.e., the addition law is continuous in the flat metric topology.
We will be using only the Dint

k (M) with k = n− 2, n− 1, n, n+ 1. In order to handle
the case d = 2, n = 1, we need to define the (−1)-currents,

Dint
−1(M) = Z , D−1(M) = C , (1.23)

∂ : Dint
0 (M)→ Dint

−1(M) , ∂η =

∫

η

1 = 1(η) . (1.24)

Also, there is a distinguished d-current which is the oriented manifold M itself, which
acts on d-forms ω by

ω(M) =

∫

M

ω . (1.25)

We will use this d-current for the case d = 2, when it lies in Dint
n+1(M). So we define

Dint
d+1(M) = Z , Dd+1(M) = C , (1.26)

∂ : Dint
d+1(M)→ Dint

d (M) , ∂1 =M . (1.27)

Now we have the augmented de Rham complex of currents

0 < Dint
−1(M) <

∂
Dint

0 (M) <
∂
· · · <

∂
Dint

d (M) <
∂
Dint

d+1(M) < 0

0 < D−1(M)
∨

∩

<
∂
D0(M)
∨

∩

<
∂
· · · <

∂
Dd(M)
∨

∩

<
∂
Dd+1(M)
∨

∩

< 0

(1.28)

The Dk(M) will be the complex currents, but they can be taken to be real for n odd.
The precise characterization of the linear space of complex currents — smooth, flat,
distributional, etc. — will mostly be left unspecified, to be determined by the context.

9



1.6 The bundle E
∂
−→ B of extended objects: E = Dint

n−1(M), B = ∂Dint
n−1(M)

I am proposing to take as the space of extended objects the space

E = Dint
n−1(M) (1.29)

of integral (n−1)-currrents in M . The space E forms a bundle

E




y
∂

B

(1.30)

over the space of (n−2)-boundaries,

B = ∂Dint
n−1(M) ⊂ Dint

n−2(M) . (1.31)

The spaces E∂ξ are the fibers of the bundle, the spaces of relative (n−1)-cycles,

E∂ξ = ∂−1(∂ξ) =
{

ξ′ ∈ Dint
n−1(M) : ∂ξ′ = ∂ξ

}

. (1.32)

The special fiber E0 = D
int
n−1(M)0 is the space of integral (n−1)-cycles.

We will see that the geometry of currents in each E∂ξ is analogous to the geometry of
currents in a Riemann surface. I will call such spaces “quasi Riemann surfaces”.

1.7 Disclaiming rigor

I want to do quantum field theory on the space of extended objects, so I need calculus
and tensor analysis on Dint

n−1(M). But the spaces Dint
k (M) are not, as far as I can tell,

differentiable manifolds. On the other hand, there is a construction of currents — and
flat currents and integral currents — in any complete metric space [5]. So a calculus of
currents in Dint

n−1(M) is available, and thus a calculus of differential forms as the duals
of currents. The spaces Dint

k (M) have nice properties that lend themselves to geometric
analysis — each is a normed abelian group that is generated as an abelian group by an
arbitrarily small ǫ-ball around 0, and each is embedded in a normed vector space (of flat
currents). The special case Dint

n−1(M) has even nicer properties which will be described
below.

It may be that the mathematical basis for calculus and tensor analysis on the spaces
Dint

k (M) already exists, but I cannot tell — mathematical analysis is not exactly my cup of
tea. I will proceed naively, without trying for mathematical rigor, blithely optimistic that
rigor can be achieved eventually. I will explore the possibilities of achieving the project of
constructing quantum field theories of extended objects from 2d quantum field theories
to the point where I can formulate a more or less well-posed mathematical conjecture
on which the program can be based. The mathematical conjecture is that there is a
classification of equivalence classes of “quasi Riemann surfaces” that is analogous to and
extends the classification of ordinary Riemann surfaces. I have almost no evidence for the
conjecture. Its appeal is that it makes feasible the construction of quantum field theories
of extended objects from 2d quantum field theories in the simplest and most direct fashion
that I can imagine. So I call it a “wishful” conjecture.
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1.8 Constructing a QFT of extended objects from a 2d QFT

If the conjecture holds, then there will be an essentially unique map from the space E∂ξ of
integral relative (n−1)-cycles in the space-timeM to the space of integral relative 0-cycles
in a two-dimensional space Σ. The space Σ will be a Riemann surface or something akin
to one. For example, when the space-time is M = Sd = Rd ∪ {∞}, then Σ will be the
Riemann sphere S2 = C ∪ {∞}. A quantum field Φ(ξ) on the space of extended objects
will correspond to a 2d observable in the 2d quantum field theory on Σ located on the
integral 0-current in Σ that corresponds to ξ. The correlation functions of the extended
object fields will be given by the correlation functions in the 2d quantum field theory on
Σ. In this way, the quantum field theory of extended objects will be constructed from the
2d quantum field theory.

2 Geometry of the space Dint

k (M) of integral k-currents in M

2.1 The principal fiber bundle Dint
k (M)

∂
−→ ∂Dint

k (M) ⊂ Dint
k−1(M)

The space Dint
k (M) is a fiber bundle

Dint
k (M)




y
∂

∂Dint
k (M) ⊂ Dint

k−1(M)0 ⊂ Dint
k−1(M)

(2.1)

over the space of integral (k−1)-boundaries. The special fiber Dint
k (M)0 over 0 ∈ Dint

k−1(M)
is the space of integral k-cycles in M , the space of integral k-currents without boundary,

Dint
k (M)0 =

{

ξ ∈ Dint
k (M), ∂ξ = 0

}

. (2.2)

Dint
k (M)0 is closed under addition, thus an abelian group. The other fibers Dint

k (M)ξ0 =
∂−1(ξ0), ξ0 6= 0, are the spaces of integral relative k-cycles in M . That is, if ξ1 is a
k-current in the fiber over ξ0, then every ξ in the same fiber differs from ξ1 by a k-cycle,

∂(ξ − ξ1) = 0 . (2.3)

Each fiber is isomorphic to the space of integral k-cycles Dint
k (M)0, but not in a canon-

ical way. The isomorphism depends on the choice of ξ1 in the fiber. The abelian group
Dint

k (M)0 acts by addition on Dint
k (M), preserving the fibers, acting transitively and faith-

fully on each fiber. So the fiber bundle (2.1) is a principle fiber bundle with structure
group the abelian group Dint

k (M)0 of integral k-cycles.

2.2 The local metric geometry of Dint
k (M) is the same at every point

Translation in Dint
k (M) as abelian group takes any point to any other. In particular,

translation by ξ takes 0 to ξ, for any ξ ∈ Dint
k (M). Translation by ξ preserves the fibers
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of the bundle, taking the fiber over ∂ξ′ to the fiber over ∂(ξ′ + ξ). Translation by ξ takes
the ǫ-ball Bǫ around 0 to the ǫ-ball ξ +Bǫ around ξ. So the local metric geometry of the
principal fiber bundle is the same at every point.

2.3 The tangent spaces of the fibers Dint
k (M)∂ξ all equal Vk+1 ⊂ D

flat
k+1(M)

The space Dint
k (M)∂ξ of integral relative k-cycles is the fiber of the principal fiber bundle

Dint
k (M) over the (k−1)-boundary ∂ξ. A tangent vector ξ̇ in Dint

k (M)∂ξ is a vertical
tangent vector in the principal fiber bundle. By translation in the abelian group, the
vertical tangent space is the same at every point in the bundle,

Tξ(D
int
k (M)∂ξ) = T0(D

int
k (M)0) , (2.4)

equal to the tangent space to the fiber at the distinguished point 0 ∈ Dint
k (M).

Suppose ξ̇ is the tangent vector at ǫ = 0 to an infinitesimal curve ǫ 7→ ξ(ǫ) in the fiber
Dint

k (M)∂ξ. Then ξ(ǫ)− ξ(0) is an infinitesimally small integral k-cycle. There is a unique
integral (k+1)-current ξS(ǫ) of minimal mass solving

∂ξS(ǫ) = ξ(ǫ)− ξ(0) . (2.5)

It satisfies
‖ξ(ǫ)− ξ(0)‖flat =Mk+1(ξS(ǫ)) = ‖ξS(ǫ)‖flat . (2.6)

This minimal integral (k+1)-current ξS(ǫ) can be thought of as the secant between ξ(0)
and ξ(ǫ). The vertical tangent vector is represented by the flat (k+1)-current

ξ̇ = lim
ǫ→0

ξS(ǫ)

ǫ
. (2.7)

Equation (2.6) implies that the (k+1)-current ξ̇ faithfully represents the tangent vector
to the curve ξ(ǫ), i.e., the map from vertical tangent vectors to flat (k+1)-currents is
injective. So the tangent spaces to the fibers are all equal to a certain subspace of the flat
(k+1)-currents,

Tξ(D
int
k (M)∂ξ) = T0(D

int
k (M)0) = Vk+1 ⊂ D

flat
k+1(M) . (2.8)

The question then is: exactly what subspace Vk+1 of flat (k+1)-currents is formed by the
tangent vectors in the space of integral relative k-cycles?

The easiest examples of vertical tangent vectors are the delta-function (k+1)-currents.
Work in coordinates xµ on M and let êµ1

, . . . , êµk+1
be unit tangent vectors at x0 ∈

M along k + 1 different axes. Let ξS(ǫ) be the (k+1)-current representing the (k+1)-

parallelotope with vertex at x0 and edges ǫ
1

k+1 êµ1
, . . . , ǫ

1

k+1 êµk+1
. The tangent vector at

ξ(0) to the curve ξ(ǫ) = ξ(0) + ∂ξS(ǫ) is the flat (k+1)-current

ξ̇ = lim
ǫ→0

ξS(ǫ)

ǫ
= δd(x− x0)êµ1

∧ · · · ∧ êµk+1
(2.9)
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which is supported at the point x0. The value of a (k+1)-form ω on this tangent vector is

ω(ξ̇) = ω(x0)µ1···µk+1
. (2.10)

So, naively, there are at least enough tangent vectors to detect all (k+1)-forms.
The vector space Vk+1 is the Gromov-Hausdorff tangent space. Let Bǫ(Dint

k (M)0, 0) be
the ǫ-ball around 0 in the space Dint

k (M)0 of integral k-cycles. The secant map described
above is a map

S : Bǫ(D
int
k (M)0, 0)→ Bǫ(D

int
k+1(M), 0) ⊂ Dflat

k+1(M) . (2.11)

The image of S lies in the vector space Dflat
k+1(M), so it makes sense to construct the

tangent space Vk+1 by dilating the image of S within that vector space. The unit ball in
Vk+1 is

B1(Vk+1, 0) = lim
ǫ→0

1

ǫ
S(Bǫ(D

int
k (M)0, 0)) , (2.12)

where the limit is taken in the Gromov-Hausdorff metric on metric spaces. A tangent
vector, an element of Vk+1 is a flat (k+1)-current in M whose support set is the same as
the support set of an infinitesimally small integral (k+1)-current. Naively, these should
be the support sets of the integral k′-currents with k′ < k + 1.

3 The Hodge ∗-operator on the tangent spaces Tξ(E∂ξ) = Vn ⊂
Dflat

n (M)

As above, the tangent spaces to the fibers E∂ξ = Dint
n−1(M)∂ξ in the bundle of extended

objects E → B are all equal to the vector space Vn ⊂ Dflat
n (M). The crucial question

is: does the Hodge ∗-operator act on Vn? The Hodge ∗-operator obviously acts on the
tangent vectors that are linear combinations of the delta-function n-currents,

ξ̇ = δd(x− x0)êµ1
∧ · · · ∧ êµn

7→ ∗ξ̇ = δd(x− x0)ǫµ1...µn

ν1...νn(x0)êν1 ∧ · · · ∧ êνn , (3.1)

since any n-vector can multiply the delta-function. But consider a tangent vector ξ̇ whose
support set is at the opposite extreme, the support of an integral current of dimension
n− 1. For simplicity, suppose d = 4, n = 2, and suppose space-time is euclidean R4. Let
ξS(ǫ) be the 2-current

ξS(ǫ) = δ(x1)δ(x2)θ[0,1](x
3)θ[0,ǫ](x

4)ê3 ∧ ê4 , (3.2)

representing a 1× ǫ rectangle in the 3-4 plane. Here θ[a,b] is the characteristic function of
the interval [a, b] ⊂ R. Then ξ(ǫ) = ∂ξS(ǫ) is the 1-current representing the boundary of
the rectangle. The tangent vector to the curve ξ(ǫ) is the flat 2-current

ξ̇ = lim
ǫ→0

ξS(ǫ)

ǫ
= δ(x1)δ(x2)θ[0,1](x

3)δ(x4)ê3 ∧ ê4 , (3.3)

13



whose support is the interval [0, 1] in the 3-axis. The ∗-operator acts on this tangent
vector to give

∗ ξ̇ = δ(x1)δ(x2)θ[0,1](x
3)δ(x4)ê1 ∧ ê2 . (3.4)

It is clear that the 2-current ∗ξ̇ cannot be the tangent vector to a curve of singular
1-currents, to a curve of naive one dimensional objects.

Appendix A contains the construction of a curve of integral 1-currents that has the
flat 2-current ∗ξ̇ of (3.4) as tangent vector. So this ∗ξ̇ does lie in the tangent space Vn.
The construction depends essentially on the metric completion of the space of integral
currents. The possibility of this construction was the main motivation for taking the
extended objects to be the integral (n−1)-currents in the general case. Appendix A goes
on to explain how this example might serve as the germ of a rigorous proof that the
Hodge ∗-operator takes all of Vn to itself, for any manifold M of any dimension d = 2n.
Essentially, the construction of Appendix A gives a basis for showing that the vertical
tangent space Vn consists of all flat n-currents supported on integral (n−1)-currents.
Then, since ∗ acts continuously on flat n-currents and does not change their supports, ∗
would act on Vn.

I will assume that the Hodge ∗-operator does act on Vn and thus on all the tangent
spaces of the E∂ξ. The whole enterprise rests on this assumption, so it is especially urgent
that the mathematical question be settled one way or the other.

4 Currents in Dint

k (M)

We will suppose that [5], which constructs the space of currents in a complete metric
space, gives a calculus of currents in Dint

k (M) that includes

• spaces Dint
j (Dint

k (M)) of integral j-currents in Dint
k (M) contained in the spaces

Dj(Dint
k (M)) of complex currents, with properties analogous to those of the cur-

rents in M , and

• spaces of j-forms on Dint
k (M) dual to the spaces of j-currents in Dint

k (M),

• natural linear maps

∂∗ : ∂j,k∗ : Dint
j (Dint

k (M))→ Dint
j (Dint

k−1(M)) (4.1)

Π∗ : Πj,k
∗ : Dint

j (Dint
k (M))→ Dint

j+k(M) (4.2)

which satisfy
∂(Πj,k

∗ η) = Πj−1,k
∗ (∂η) + Πj,k−1

∗ (∂j,k∗ η) , j ≥ 1 . (4.3)

4.1 ∂∗ : Dint
j (Dint

k (M))→ Dint
j (Dint

k−1(M))

Composing with the boundary operator in M , ∂ : Dint
k (M)→ Dint

k−1(M), takes an integral
j-current in Dint

k (M) to an integral j-current in Dint
k−1(M),

∂j,k∗ : Dint
j (Dint

k (M))→ Dint
j (Dint

k−1(M)) . (4.4)
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4.2 Π∗ : D
int
j (Dint

k (M))→ Dint
j+k(M)

There is natural map “pushing down” an integral j-current in Dint
k (M) to give an integral

(j+k)-current in M ,
Πj,k

∗ : Dint
j (Dint

k (M))→ Dint
j+k(M) , (4.5)

based on the fact that a map from the simplex ∆j to the space of maps from ∆k to M is
a map from ∆j ×∆k to M , which is represented by an integral (j+k)-current in M [6].
The pushdown operation extends to the vector space of (flat) currents in Dint

k (M),

Πj,k
∗ : Dj(D

int
k (M))→ Dj+k(M) . (4.6)

The interaction with the boundary operator is

∂(Πj,k
∗ η) = Πj−1,k

∗ (∂η) + Πj,k−1
∗ (∂j,k∗ η) , j ≥ 1 , (4.7)

which follows from ∂(∆j ×∆k) = (∂∆j)×∆k +∆j × (∂∆k).
The pushdown operation Πj,k

∗ is translation invariant for j ≥ 1,

Πj,k
∗ (Tξη) = Πj,k

∗ (η) , j ≥ 1 (4.8)

where Tξ is translation by the integral k-current ξ. Roughly, the pushdown operation takes
the j-current η to the (j+k)-dimensional region swept out by the j-parameter family of
k-currents. In the translated current Tξη, the j-parameter family of k-currents keeps ξ
constant, so nothing additional is swept out, for j ≥ 1.

4.3 Π∗ : Dint
j (Dint

k (M)∂ξ)→ Dint
j+k(M) commutes with ∂

Now restrict to the space Dint
k (M)∂ξ of integral relative k-cycles. For an integral j-current

η in the space Dint
k (M)∂ξ of integral relative k-cycles,

η ∈ Dint
j (Dint

k (M)∂ξ) , j ≥ 1 , (4.9)

the composition with the boundary operator vanishes,

∂j,k∗ η = 0 , j ≥ 1 , (4.10)

because composing with the boundary operator takes the j-current η to the single point ∂ξ
in Dint

k−1(M). Therefore the pushdown operation commutes with the boundary operator,

∂(Πj,k
∗ η) = Πj−1,k

∗ (∂η) , j ≥ 1 . (4.11)

4.4 Π∗ is an isomorphism on the homology groups

The map
Π∗ : D

int
j (Dint

k (M)∂ξ)→ D
int
j+k(M) (4.12)

induces a map of homology groups

Π∗ : Hj(D
int
k (M)∂ξ)→ Hj+k(M) (4.13)

which is an isomorphism [6].
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4.5 Tangent vectors as infinitesimal 1-currents

Suppose ǫ 7→ ξ(ǫ) is an infinitesimal curve in Dint
k (M), at ξ(0) = ξ. It could be directed

vertically, along a fiber, but need not be. The curve is a map from the interval [0, ǫ] to
Dint

k (M), so it is represented by an infinitesimal integral 1-current η(ǫ) in Dint
k (M) or,

equivalently, as the flat 1-current supported at ξ,

ξ̇ = lim
ǫ→0

η(ǫ)

ǫ
. (4.14)

The tangent space at ξ is the space of flat 1-currents supported at ξ, or, equivalently, the
space of infinitesimal integral 1-currents at ξ.

This is just the usual idea of tangent vectors expressed in terms of currents. The
boundary of η(ǫ) is the 0-current

∂η(ǫ) = δξ(ǫ) − δξ(0) . (4.15)

If f is a function on Dint
k (M), i.e., a 0-form, then the derivative of f along the tangent

vector at ξ is

lim
ǫ→0

f(δξ(ǫ))− f(δξ(0))

ǫ
= lim

ǫ→0

f(∂η(ǫ))

ǫ
= f(∂ξ̇) = df(ξ̇) . (4.16)

The pushdown map Π1,k
∗ takes the infinitesimal integral 1-current η to an integral

(k+1)-current in M , and the flat 1-current ξ̇ to a flat (k+1)-current in M . If we restrict
to vertical tangent vectors, the map Π1,k

∗ is injective on the vertical tangent vectors at ξ,
giving the space Vk+1 described previously.

From the same point of view, the j-vectors at ξ, i.e., the linear combinations of an-
tisymmetric j-fold products of tangent vectors, are the infinitesimal integral j-currents
at ξ, which are the flat j-currents supported at ξ. The pushdown map Πj,k

∗ takes an
infinitesimal integral j-current to infinitesimal integral (j+k)-current in M .

4.6 The Hodge ∗-operator on 1-currents in E∂ξ

Given our assumption that the Hodge ∗-operator acts on the vertical tangent spaces Vn, it
will act on the infinitesimal 1-currents in the fiber E∂ξ = Dint

n−1(M)∂ξ and therefore on all
1-currents in E∂ξ. Since Π1,n−1

∗ : D1(E∂ξ) → Dn(M) identifies the infinitesimal 1-currents
in the fibers with Vn ⊂ Dflat

n (M),

∗ Π1,n−1
∗ = Π1,n−1

∗ ∗ . (4.17)

5 An analog of a 2d conformal field theory on each E∂ξ

5.1 n-forms on space-time as 1-forms on E∂ξ

The n-forms F and F ∗ on M pull up to 1-forms j and j∗ on each E∂ξ,

j(η) = F (Π∗η) , j∗(η) = F ∗(Π∗η) , η ∈ D1(E∂ξ) . (5.1)
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Here η is a 1-current in the fiber E∂ξ. Its pushdown Π∗η is an n-current in M . Since
Hodge ∗ commutes with the pushdown,

j∗ = i−1∗j . (5.2)

The 1-forms j and j∗ on the fibers are closed,

dj = 0 , dj∗ = 0 , (5.3)

by the equations of motion on F and F ∗,

dj(η) = j(∂η) = F (Π∗∂η) = F (∂Π∗η) = dF (Π∗η) = 0 , (5.4)

and similarly for j∗.
The 1-forms j and j∗ on the fibers of E → B are invariant under translations in the

whole abelian group E .

5.2 Scalar fields and vertex operators on E∂ξ

On each E∂ξ, integrate
j = dφ , j∗ = dφ∗ . (5.5)

to get 0-forms φ and φ∗. Consider the 0-forms as functions on the fibers, as scalar fields
φ(ξ) and φ∗(ξ). Depend on context to distinguish scalar fields written as functions on the
fiber from scalar fields written as linear functions on 0-currents,

φ(ξ) = φ(δξ) . (5.6)

Define “vertex operators” on each fiber,

Vp,p∗(ξ) = eipφ(ξ)+ip∗φ∗(ξ) . (5.7)

The general observable on a fiber E∂ξ is a product of vertex operators

Vp1,p∗1(ξ1) · · ·VpN ,p∗
N
(ξN) , ∂ξ1 = ∂ξ2 · · · = ∂ξN = ∂ξ . (5.8)

On each E∂ξ there is a formal analog of the 2d conformal field theory of a free 1-form.

5.3 Global symmetry on E∂ξ

Each of the scalar fields φ and φ∗ is determined on each E∂ξ up to a constant of integration,
except for the special fiber E0 where there is a natural normalization condition φ(0) =
φ∗(0) = 0. So, on each non-special fiber E∂ξ, ∂ξ 6= 0, the gauge symmetry of the space-time
symmetry becomes a global symmetry, shifting φ and φ∗ by constants f and f ∗,

φ(ξ)→ φ(ξ) + f(∂ξ) , φ∗(ξ)→ φ∗(ξ) + f ∗(∂ξ) , (5.9)

The constants f and f ∗ depend on the fiber E∂ξ, so they are functions on the base space
B = ∂Dint

n−1(M).
The vertex operators transform under the symmetry group of the fiber as operators

of charges p, p∗,
Vp,p∗(ξ)→ Vp,p∗(ξ)e

ipf(∂ξ)eip
∗f∗(∂ξ) . (5.10)
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5.4 Space-time gauge symmetries are special collections of global symmetries

The product of the global symmetry groups of the fibers E∂ξ is considerably larger than
the local gauge group in space-time. The space-time gauge potentials A and A∗ pull up to
scalar fields φ̃ = Π∗A, φ̃∗ = Π∗A∗ on E that, restricted to each fiber E∂ξ, are solutions of
(5.5). They are special solutions, characterized by the additional condition of additivity
in E ,

φ̃(ξ1 + ξ2) = φ̃(ξ1) + φ̃(ξ2) , φ̃∗(ξ1 + ξ2) = φ̃∗(ξ1) + φ̃∗(ξ2) . (5.11)

The collection of scalars φ, φ∗ on the fibers E∂ξ are not so constrained.
The space-time gauge symmetries A → A + df̃ , A∗ → A∗ + df̃ ∗ are given by (n−2)-

forms f̃ and f̃ ∗ on M which pull up to 0-forms on B = ∂Dint
n−1(M) which give global

symmetries in each E∂ξ, as in (5.9), satisfying the additional additivity condition

f̃(ξ1 + ξ2) = f̃(ξ1) + f̃(ξ2) , f̃ ∗(ξ1 + ξ2) = f̃ ∗(ξ1) + f̃ ∗(ξ2) . (5.12)

5.5 An analog of the U(1)×U(1) 2d gaussian model on each E∂ξ

Identify
φ(ξ) ∼ φ(ξ) + 2πR , φ∗(ξ) ∼ φ∗(ξ) + 2πR∗ (5.13)

for positive real numbers R, R∗. The symmetry group of the theory on E∂ξ becomes the
compact group U(1)×U(1),

f(∂ξ) ∼ f(∂ξ) + 2πR , f ∗(∂ξ) ∼ f ∗(∂ξ) + 2πR∗ , (5.14)

U(1)×U(1) = (R/2πRZ)×(R/2πR∗
Z) . (5.15)

The “momenta” of the vertex operators are quantized,

p =
m

R
, p∗ =

m∗

R∗
, m,m∗ ∈ Z . (5.16)

Now there is on each E∂ξ a formal analog of the 2d conformal field theory of a free 1-form
with compact symmetry group G = U(1)×U(1). This 2d conformal field theory is the 2d
gaussian model.

The compactification of the symmetry group on each fiber expresses the compactifi-
cation of the global gauge group of the space-time n-form theory to U(1)×U(1).

6 Synopsis

The goal now is to flesh out the analogy between the 2d field theory and the field theory
of extended objects on each of the fibers E∂ξ, the end being to develop machinery to
translate the construction of any 2d quantum field theory into the actual construction of
a quantum field theory of extended objects.

I can imagine replacing the analog of the 2d gaussian model on each fiber with analogs
other 2d quantum field theories by performing on each fiber the known constructions on
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the 2d gaussian model, including, for example, (1) constructing the twist fields of the Z2

orbifold of the 2d gaussian model, or (2) specializing to R = R∗ = 1 and constructing
the SU(2)×SU(2) current algebra of the self-dual gaussian model, or (3) constructing
the analog of 2d conformal perturbation theory and then the analog of 2d non-conformal
perturbation theory. But what is really wanted is a general machine that implements the
analogy for an arbitrary 2d quantum field theory, by actually constructing a quantum
field theory of extended objects from the data of the 2d quantum field theory.

Sections 7 – 10 take up the quantum field theory of the free n-form. The quantization
is expressed by the Schwinger-Dyson equations on the two-point correlation functions
of the space-time n-forms and the gauge potentials. Section 7 develops the geometric
structures on M used in section 8 to write the Schwinger-Dyson equations in terms of
currents. The geometric structures consist of a linear operator J = ǫn∗ on n-currents
in M satisfying J2 = −1, which is a small modification of the Hodge ∗-operator, and a
skew-hermitian form IM〈 ξ̄1, ξ2 〉 on currents in M , which is a similarly small modification
of the usual bilinear intersection form on currents. The small modifications are needed
to make the properties of these geometric structures independent of the parity of n. The
operator J is imaginary for n even, so E∂ξ must be complexified in order for J to act
on its tangent vectors. This is done in section 9. The complexification EC∂ξ is then an
almost-complex space. In section 10, the J-operator and the skew-hermitian form pulled
up to EC∂ξ are used to write the Schwinger-Dyson equations for the fields of the free 1-form

quantum field theory on EC∂ξ. The S-D equations on E∂ξ are formally identical to the S-D
equations for the free 1-form on a Riemann surface.

Section 11 points out the geometric resemblance of EC∂ξ to a Riemann surface. The

linear operator J acting on 1-currents in EC∂ξ resembles resembles the linear operator J
acting on 1-currents in a Riemann surface that expresses the almost-complex structure of
the Riemann surface. The push-down map Π∗ takes k-currents in EC∂ξ to (n−1+k)-currents

in M , so the pulled-up skew-hermitian form on currents in EC∂ξ, Π
∗IM〈 η̄1, η2 〉, pairs a k1-

current η1 and a k2-current η2 when k1 + k2 = 2, exactly as does the skew-hermitian
intersection form on the currents in a Riemann surface.

Section 12 tries to capture the geometry of currents shared by the spaces EC∂ξ and
by ordinary Riemann surfaces in the definition of a quasi Riemann surface. The quasi
Riemann surfaces are to be the geometric settings for the general class of quantum field
theories of extended objects. A quasi holomorphic curve is defined to be a morphism of
quasi Riemann surfaces from an ordinary Riemann surface Σ to one of the EC∂ξ. A local
q-h curve is a q-h curve where the Riemann surface Σ is the open unit disk in the complex
plane.

Section 13 describes how the free 1-form quantum field theory on EC∂ξ pulls back along
a quasi-holomorphic curve to give the 2d CFT of the free 1-form on the Riemann surface
Σ. The q-h curves serve as 2d probes of the extended objects. The local q-h curves probe
the local structure of the extended objects.

In section 14, I propose a strong conjecture on the classification of quasi Riemann
surfaces: that quasi Riemann surfaces are isomorphic iff they have the same homology
data — the skew-hermitian intersection form and the complex structure on the integral
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homology in the middle dimension. The conjecture identifies the spaces EC∂ξ of integral
(n−1)-currents in M with the space Dint(Σ)0 of integral 0-currents in a two-dimensional
space Σ that has the same homology data as M . When M has the homology data of
a Riemann surface, the 2d space Σ will be a Riemann surface. For example, when M
is the conformal manifold Sd = Rd ∪ {∞}, the 2d space Σ will be the Riemann sphere
S2 = C ∪ {∞}. The bundle E → B is replaced by a bundle Q(M) → PB(M) of quasi
Riemann surfaces over the integral projective space of B.

Section 15 describes how the conjecture can give a means to construct the correlation
functions of fields on EC∂ξ as correlation functions in the 2d CFT on the two-dimensional
space Σ. This will require extending the observables of the 2d CFT from products of local
fields over finite sets of points in Σ — e.g., products of a finite set of vertex operators —
to products over integral 0-currents. Such an extended 2d conformal field theory (ECFT)
transcribes directly from the quasi Riemann surface associated to the two-dimensional
space Σ to the quasi Riemann surfaces associated to the spaces EC∂ξ.

Section 16 is a formal discussion of the equivalence between perturbation theory in
the space-time theory and perturbation theory in the 2d theory — first for the free n-
form theory on M and the free 1-form theory on Σ, then for perturbations in general.
In the course of the discussion, a modicum of evidence for the conjecture is found. The
discussion is formal in the sense that there are no distance scales, neither on M nor on Σ.
I hope that, eventually, a connection can be made between the cutoff scale in space-time
and the cutoff 2d scale, so that non-conformal quantum field theories of extended objects
can be constructed from non-conformal 2d quantum field theories, both governed by the
2d renormalization group.

Sections 17 and 18 return to the classical theory of the free n-form as a free 1-form
on E∂ξ. Section 17 presents the local gauge symmetry in space-time as a specialization
of local gauge symmetry in the bundle E∂ξ → B. The local gauge transformations in the
fibers E∂ξ are the global symmetries of the 2d theory on E∂ξ. The intent is to provide a
prototype pattern for gauge symmetry in the general class of quantum field theories of
extended objects. In particular, I hope that 2d quantum field theories with nonabelian
global symmetry will give quantum field theories of extended objects in space-time with
nonabelian local gauge symmetry in space-time. Section 18 takes up the multitude of the
fibers E∂ξ. The theory of extended objects should be a single entity woven from all the
analog 2d theories on the E∂ξ. Again, the intent is to make a prototype argument that
might be adapted to the general case.

Section 19 explores, incautiously, some consequences of the conjecture on quasi Rie-
mann surfaces. First, to meet the technical requirements of a quasi Riemann surface, an
ordinary Riemann surface Σ needs to be modified slightly — “augmented” — to a space
Σ+. The group Aut(Q(Σ+)) of automorphisms of the quasi Riemann surface Q(Σ+)
associated to Σ+ is contained in a larger group G(Σ+) which is essentially the group of
automorphisms of the integral 1-currents in Σ. There is a universal bundle Q(0)→ PB(0)
of quasi Riemann surfaces over the homogeneous space PB(0) = G(Σ+)/Aut(Q(Σ)). For
every conformal manifold M with the homology data of Σ, the bundle Q(M)→ PB(M)
of quasi Riemann surfaces associated to M is embedded in a natural way in the universal
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bundle. The universal bundle of quasi Riemann surfaces becomes the natural setting for
the quantum field theories of extended objects.

Section 20 lists the main mathematical questions that need to be resolved. Section
21 lists some of the further steps that might be taken, most of which require assuming
that the mathematical questions are resolved favorably. Section 22 asks advice about the
history of the ideas used and about references.

7 More on currents in M

7.1 Intersection of currents

The intersection form is the bilinear form on smooth currents

IM(ξ1, ξ2) =

∫

M

ddx ǫµ1···µk1
ν1···νk2

1

k1!
ξ1(x)

µ1···µk1
1

k2!
ξ2(x)

ν1···νk2 (7.1)

for k1 + k2 = d, and zero for k1 + k2 6= d. The intersection form extends to generic pairs
of integral currents (“in general position”). On singular currents, the intersection form
agrees with the intersection number of the corresponding singular chains. The intersection
form on currents depends only on the orientation ofM . It is independent of the conformal
structure.

For d = 2n, the intersection form satisfies

IM(ξ1, ξ2) = (−1)k1IM(ξ2, ξ1) (7.2)

IM(∂ξ1, ξ2) = (−1)k1IM(ξ1, ∂ξ2) (7.3)

IM(∗ξ1, ξ2) = (−1)nIM(ξ1, ∗ξ2) , k1 = k2 = n (7.4)

IM(ξ, ∗ξ) > 0 , ξ 6= 0 , k1 = k2 = n . (7.5)

The last equation fixes the relation between the sign of ∗ and the orientation of M . The
positive definite quadratic form IM(ξ, ∗ξ) is independent of the orientation .

7.2 The operator J = ǫn∗ on n-currents

The properties of the Hodge ∗-operator and of the intersection form IM(ξ1, ξ2) depend on
the parity of n. In particular, the ∗-operator on n-currents satisfies ∗2 = (−1)n. This is
a problem if the spaces E∂ξ are to look like two dimensional spaces, for every n. Some
small modifications are needed to make the properties uniform for all values of n, even
and odd.

Define the J-operator acting on n-forms and on n-currents to be

J = ǫn∗ (7.6)

where ǫn is a number satisfying
ǫ2n = (−1)n−1 (7.7)
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so that
J2 = −1 (7.8)

for very value of n. One possible choice of the numbers ǫn is

ǫn =

{

1 , n odd,

i , n even.
(7.9)

For n even, J is imaginary, so this modification requires allowing currents to be com-
plex. For the sake of uniformity in n, we will take the currents to be complex for all
n. For n odd, there will be a complex conjugation symmetry. For n even, there will be
a symmetry combining complex conjugation with reversal of orientation. Discussion of
complex conjugation and reality conditions will be left until section D.

7.3 The chiral projection operators P±

Define the chiral projection operators acting on n-currents and on n-forms,

P± =
1

2

(

1± i−1J
)

. (7.10)

P+ projects on the self-dual n-currents, P− on the anti-self-dual n-currents.

7.4 The skew-hermitian intersection form IM〈 ξ̄1, ξ2 〉 on currents

Define the skew-hermitian intersection form on currents by

IM〈 ξ̄1, ξ2 〉 = ǫn,k2−nIM(ξ̄1, ξ2) , (7.11)

where the numbers ǫn,k are

ǫn,k = (−1)nk+k(k+1)/2 ǫ−1
n . (7.12)

The constants ǫn,k are chosen so that the skew-hermitian intersection form satisfies

IM〈 ξ̄1, ξ2 〉 = − IM〈 ξ̄2, ξ1 〉 (7.13)

IM〈 ∂ξ1, ξ2 〉 = −IM 〈 ξ̄1, ∂ξ2 〉 (7.14)

IM〈 ξ̄1, ξ2 〉 = 0 , k1 + k2 6= 2n (7.15)

IM〈 Jξ1, ξ2 〉 = −IM 〈 ξ̄1, Jξ2 〉 , k1 = k2 = n (7.16)

IM〈 ξ̄, Jξ 〉 > 0 , ξ 6= 0 , k1 = k2 = n . (7.17)

The skew-hermitian intersection form on n-currents is block diagonal in the chiral decom-
position,

IM〈 ξ̄1, ξ2 〉 = IM〈P+ξ1, P+ξ2 〉+ IM〈P−ξ1, P−ξ2 〉 , k1 = k2 = n . (7.18)
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8 Quantum field theory of the free n-form on M

The quantum field theory of the free n-form is described by its partition function and
its two-point correlation functions. The two-point functions are determined by their
Schwinger-Dyson equations, which will be written here in terms of the J-operator and
the skew-intersection form IM〈 ξ̄1, ξ2 〉 on currents inM , with no mention of n. This means
that J and IM〈 ξ̄1, ξ2 〉 encode all the geometric data needed to construct the quantum
field theory.

The partition function has interesting dependence on the space-time manifold M and
its conformal structure. The derivatives of the partition function wrt the parameters
describing M can be derived from the two-point functions, so the S-D equations on the
two-point functions completely determine the quantum theory. For now we are only
interested in the quantum field theory on a fixed space-time. The partition function is
left for later.

The Schwinger-Dyson equations for the n-form fields and the gauge potentials are
obtained in Appendix B by deriving them in the free n-form theory on R

d.

8.1 The chiral fields

Take the n-form field F (x) to be a complex field F = F1 + iF2 with the global U(1)
symmetry F → eiαF . The reality condition F = F̄ will be applied later.

The chiral n-form fields are

F± = P±F , F±(ξ) = F (P±ξ) . (8.1)

The chiral gauge potentials are the (n−1)-forms solving

dA± = F± . (8.2)

The euclidean adjoint fields are

F †
±(ξ̄) = F∓(ξ) , A†

±(ξ̄) = A∓(ξ) . (8.3)

The euclidean adjoint fields are defined so that, on Rd, the euclidean adjoint field is the
Wick rotate of the Minkowski space adjoint field. This is worked out in Appendix B.

Use the index notation Fα, Aα, α = ±.

8.2 The Schwinger-Dyson equations in terms of IM〈 ξ̄1, ξ2 〉

The quantum fields Fα(x) are distributions that are smeared against smooth (complex)
n-currents ξ to give observables Fα(ξ). The Aα(x) are smeared against smooth (n−1)-
currents. The two-point functions are determined by the Schwinger-Dyson equations
(derived in Appendix B),

〈F †
ᾱ(ξ̄1)Fβ(∂ξ2) 〉 = −2πi γᾱβIM〈 ∂ξ1, ξ2 〉 (8.4)

〈A†
ᾱ(ξ̄0)Fβ(∂ξ2) 〉 = −2πiγᾱβIM〈 ξ̄0, ξ2 〉 (8.5)
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γ+̄+ = 1 , γ+̄− = 0 , γ−̄+ = 0 , γ−̄− = −1 . (8.6)

Note that these S-D equations are consistent with dA± = F±, but they are not consistent
with F± = P±F . The identities F± = P±F hold only up to contact terms — they hold
as field equations, but not as equations on the distributional correlation functions. The
only ambiguity in the two-point functions is in the contact term in 〈F †

ᾱ(ξ̄1)Fβ(ξ2) 〉,

〈F †
ᾱ(ξ̄1)Fβ(ξ2) 〉 → 〈F

†
ᾱ(ξ̄1)Fβ(ξ2) 〉+ 2πi(∆γᾱβ)IM〈 ξ̄1, ξ2 〉 . (8.7)

Either dA± = F± or F± = P±F can be satisfied in the distributional correlation functions,
but not both.

The only geometric data used in the quantization of the free n-form on M is the J-
operator acting on Dn(M) and the skew-hermitian intersection form IM〈 ξ̄1, ξ2 〉 restricted
to the subspace

Dn−1(M)⊕Dn(M)⊕Dn+1(M) . (8.8)

The skew-hermitian intersection form depends only on the manifold structure of M . The
J-operator depends on the conformal structure of M .

9 EC∂ξ as an almost-complex space

For n even, the operator J = ǫn∗ is imaginary, so we have to complexify E∂ξ in order to
get a space where J acts on the tangent vectors. There is no need to complexify when n
is odd, but we do so anyway for the sake of uniformity in n.

A straightforward, natural complexification is

EC∂ξ = E∂ξ ⊕ i∂D
int
n (M) (9.1)

The tangent space at each point is the complex vector space Vn ⊕ iVn. J acts on each
tangent space and satisfies J2 = −1, so EC∂ξ is an almost-complex space with almost
complex structure J .

The pushdown maps Π∗ extend to EC∂ξ, producing complex currents in M . The push-

down map Π1,n−1
∗ taking 1-currents in EC∂ξ to n-currents in M is compatible with the J

operators on 1-currents in EC∂ξ and on complex n-currents in M ,

Π1,n−1
∗ J = JΠ1,n−1

∗ (9.2)

The dual pull-up map Π∗ takes complex n-forms on M to complex 1-forms on EC∂ξ, and is
compatible with the J operators on the forms,

J Π∗ = Π∗J . (9.3)
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10 The Schwinger-Dyson equations on EC∂ξ

We pull the Schwinger-Dyson equations up from M to EC∂ξ. The fields on EC∂ξ are the
space-time fields pulled up from M ,

jα = Π∗Fα φα = Π∗Aα (10.1)

jα(η) = Fα(Π
1,n−1
∗ η) φα(η) = Aα(Π

0,n−1
∗ η) (10.2)

jα = Pαj dφα = jα (10.3)

j†±(η̄) = j∓(η) φ†
±(η̄) = φ∓(η) . (10.4)

The S-D equations (8.4–8.5) become

〈 j†ᾱ(η̄1)jβ(∂η2) 〉 = −2πi γᾱβΠ
∗IM〈 ∂η1, η2 〉 (10.5)

〈 φ†
ᾱ(η̄0)jβ(∂η2) 〉 = −2πiγᾱβΠ

∗IM〈 η̄0, η2 〉 , (10.6)

where Π∗IM〈 η̄1, η2 〉 is the the skew-hermitian intersection form pulled up from M ,

Π∗IM〈 η̄1, η2 〉 = IM〈Π∗η1,Π∗η2 〉 . (10.7)

The S-D equations (10.5–10.6) on EC∂ξ are formally identical to the S-D equations (8.4–8.5)
for the free 1-form on a Riemann surface Σ, with J taking the place of the almost complex
structure of Σ and Π∗IM〈 η̄1, η2 〉 taking the place of the skew-hermitian intersection form
IΣ〈 η̄1, η2 〉 of Σ.

The analogy between the field theory on E∂ξ and the 2d field theory now holds on the
quantum level. We have a quantum field theory on each EC∂ξ that has the same form as
the 2d quantum field theory.

11 Quasi two-dimensionality of EC∂ξ

The only geometric data used in the quantization on EC∂ξ is the J-operator acting on

D1(EC∂ξ) and the skew-hermitian form Π∗IM〈 η̄1, η2 〉 on

D0(E
C

∂ξ)⊕D1(E
C

∂ξ)⊕D2(E
C

∂ξ) . (11.1)

Π∗IM〈 η̄1, η2 〉 vanishes unless the pushed-down currents intersect in M , i.e., unless

(k1 + n− 1) + (k2 + n− 1) = d (11.2)

which is
k1 + k2 = 2 , (11.3)

just as for the skew-hermitian intersection form of a two-dimensional manifold. The
J-operator on 1-currents and the skew-hermitian form Π∗IM〈 η̄1, η2 〉 have exactly the
properties (7.8, 7.13–7.17) of the J-operator and the skew-hermitian intersection form of
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a Riemann surface. The strict positivity property (7.17) will hold if we mod out by the
null space of the skew-hermitian form on the 1-currents.

This structure — spaces of 0-currents, 1-currents, and 2-currents with a J-operator
and a skew-hermitian form — is to be the geometric setting for quantum field theory of
extended objects.

12 Quasi Riemann surfaces

I will try to formulate an abstract definition of quasi Riemann surface that encompasses
the geometry of currents on ordinary Riemann surfaces and also of currents on the spaces
EC∂ξ. The idea is to include in the definition all the properties that apply both to the

currents in a Riemann surface and to the currents in the spaces EC∂ξ. The definition will
be not be entirely precise. I will mention some of the properties, but probably not all of
them. And I will remark one key technical gap.

Then I will conjecture: (1) that quasi Riemann surfaces are classified up to isomor-
phism by the homology data — the homology along with the skew-hermitian form and
the J-operator in the middle dimension, and (2) that every isomorphism class contains a
two-dimensional conformal space, which is a Riemann surface when the homology data
is appropriate. The homology of a connected Riemann surface Σ is H1(Σ). The middle
homology of EC∂ξ is Hn(M). For example, if M = S2n then each EC∂ξ is isomorphic to S2

as a quasi Riemann surface, if the conjecture is true.
Further, I will suppose that every 2d conformal field theory (2d CFT) can be installed

in a natural way on any two-dimensional quasi Riemann surface Σ, in particular on the
quasi Riemann surface corresponding to an ordinary Riemann surface, e.g., S2. This
means extending the observables from products of ordinary local quantum fields over a
finite collection of points in the two-dimensional space to products of local fields over an
integral 0-current in the two-dimensional space. The integral 0-currents are the extended
objects in the two-dimensional space. The extension of a 2d CFT from Riemann surfaces
to the two-dimensional quasi Riemann surfaces might be called a 2d extended conformal
field theory (2d ECFT).

The mathematical conjecture will then allow the 2d ECFT to be installed on each of the
EC∂ξ, via an isomorphism of quasi Riemann surfaces between EC∂ξ and the corresponding two-
dimensional quasi Riemann surface. This will give a conformal field theory of extended
objects in M for every 2d CFT.

12.1 Definition

A quasi Riemann surface is to consist of abelian groups Qint
0 , Qint

1 , Qint
2 . Each Qint

k is
contained in the corresponding complex vector space Qk = C ⊗Z Qint

k . The Qint
k are

complete metric spaces. There is a boundary operator ∂ and an augmented de Rham
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complex

0 < Qint
−1 <

∂
Qint

0 <
∂
Qint

1 <
∂
Qint

2 <
∂
Qint

3 < 0

0 < Q−1

∨

∩

<
∂
Q0

∨

∩

<
∂
Q1

∨

∩

<
∂
Q2

∨

∩

<
∂
Q3

∨

∩

< 0

(12.1)

with
Qint

−1 = Z , Q−1 = C , Qint
3 = Z⊕ iZ , Q3 = C . (12.2)

Call Qk the k-space of the quasi Riemann surface, and call its elements the k-currents.
The imaginary parts are to cope with manifolds M of dimension d = 2n with n even.

If only n odd were considered, then all the imaginary parts could be dropped.
There are pushdown maps

Πj,k
∗ : Dint

j (Qint
k )→ Qint

j+k (12.3)

satisfying
∂Πj,k

∗ = Πj−1,k
∗ ∂ +Πj,k−1

∗ ∂∗ . (12.4)

The induced maps on the homology groups of the augmented de Rham complex of integral
currents Dint

j ((Qint
k )0) on the space of integral k-cycles,

Πj,k
∗ : Hj((Q

int
k )0)→ Hj+k(Q

int) , (12.5)

should be isomorphisms.
There is a linear operator J on Q1 and there is a nondegenerate skew-hermitian form

IQ〈 η̄1, η2 〉 on ⊕kQk. They satisfy
J2 = −1 (12.6)

and

IQ〈 η̄1, η2 〉 = − IQ〈 η̄2, η1 〉 (12.7)

IQ〈 ∂η1, η2 〉 = −IQ〈 η̄1, ∂η2 〉 (12.8)

IQ〈 η̄1, η2 〉 = 0 , k1 + k2 6= 2 (12.9)

IQ〈 Jη1, η2 〉 = −IQ〈 η̄1, Jη2 〉 , k1 = k2 = 1 (12.10)

IQ〈 η̄, Jη 〉 > 0 , η 6= 0 , k1 = k2 = 1 (12.11)

IQ〈 η̄1, η2 〉 = −η̄1η2 , k1 = −1, k2 = 3 . (12.12)

More properties that might be included in the definition of quasi Riemann surface are
discussed below, in section 12.5.

We will say that a quasi Riemann surface is connected when

H0(Q
int) = H2(Q

int) = 0 . (12.13)
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So all the homology of the augmented de Rham complex is in the middle dimension,
which is dimension 1, H2(Qint). The quasi Riemann surface associated to a Riemann
surface Σ will be connected iff Σ is connected. The quasi Riemann surfaces associated
to a manifold M will be connected iff Hn−1(M) = 0. To avoid (minor) complications,
I will assume connectedness. So Riemann surfaces Σ will be assumed connected. And
Hn−1(M) = 0 will be assumed for space-time manifolds M .

Note that Q1 decomposes as a Hilbert space into three orthonormal subspaces

Q1 = (∂Q2)⊕Q1,H ⊕ (J∂Q2) (12.14)

where Q1,H is the space of harmonic 1-currents,

Q1,H = (Ker ∂) ∩ (J Ker ∂) , JQ1,H = Q1,H , Ker ∂ = (∂Q2)⊕Q1,H . (12.15)

12.2 EC∂ξ as a quasi Riemann surface

To interpret EC∂ξ as a quasi Riemann surface, let Qk be the k-currents in EC∂ξ modulo the
null spaces of the skew-hermitian form Π∗IM〈 η̄1, η2 〉,

Qint
k = Dint

k (EC∂ξ)/N
int
k , Qk = Dk(E

C

∂ξ)/Nk , k = 0, 1, 2, 3 . (12.16)

The skew-hermitian form is

IQ〈 η̄1, η2 〉 = Π∗IM〈 η̄1, η2 〉 = IM〈Π∗η1,Π∗η2 〉 , (12.17)

which is manifestly nondegenerate. Take J = ǫn∗ to be the J-operator already defined on
Dint

1 (EC∂ξ). The skew-hermitian form factors through the pushdown maps Π∗(M) ofM (so
written to distinguish them from the pushdown maps of Q), so the spaces Qint

k are spaces
of currents in M modulo the appropriate null spaces,

Qint
0 = ⊕

k∈Z
Dint

n−1(M)k∂ξ ⊕ i∂D
int
n (M) (12.18)

Qint
1 = Dint

n (M)⊕ iDint
n (M) (12.19)

Qint
2 =

(

Dint
n+1(M)⊕ iDint

n+1(M)
)

/N int
n+1(M, ∂ξ) (12.20)

Qint
3 =

(

Dint
n+2(M)⊕ iDint

n+2(M)
)

/N int
n+2(M, ∂ξ) (12.21)

Q0 = Dn−1(M)C∂ξ (12.22)

Q1 = Dn(M) (12.23)

Q2 = Dn+1(M)/Nn+1(M, ∂ξ) (12.24)

Q3 = Dn+2(M)/Nn+2(M, ∂ξ) (12.25)
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where

N int
n+1(M, ∂ξ) =

{

ξ2 ∈ D
int
n+1(M)⊕ iDint

n+1(M) : IM〈 ξ̄1, ξ2 〉 = 0 , ∀ξ1 ∈ Q
int
0

}

(12.26)

N int
n+2(M, ∂ξ) =

{

ξ2 ∈ D
int
n+2(M)⊕ iDint

n+2(M) : IM〈 ∂ξ, ξ2 〉 = 0
}

(12.27)

Nn+1(M, ∂ξ) =
{

ξ2 ∈ Dn+1(M) : IM〈 ξ̄1, ξ2 〉 = 0 , ∀ξ1 ∈ Dn−1(M)C∂ξ
}

(12.28)

Nn+2(M, ∂ξ) = {ξ2 ∈ Dn+1(M) : IM〈 ∂ξ, ξ2 〉 = 0} . (12.29)

The elements of Dint
n−1(M)∂ξ are of the form ξ1 = ξ + ξ0 for arbitrary integral (n−1)-cycle

ξ0. Therefore

N int
n+1(M, ∂ξ) = ∂N int

n+2(M, ∂ξ) , Nn+1(M, ∂ξ) = ∂Nn+2(M, ∂ξ). (12.30)

N int
n+2(M, ∂ξ) is the subgroup of (imaginary) integral (n+2)-currents that do not intersect

the (n−2)-boundary ∂ξ. N int
n+1(M, ∂ξ) is the subgroup of (imaginary) integral (n+1)-

boundaries that do not link the (n−2)-boundary ∂ξ.
The boundary operator acts on η ∈ Qint

0 by

∂Mη = (∂η)∂ξ (12.31)

where the lhs is the boundary operator on currents in M acting on η considered as an
integral (n−1)-current in M .

The problem is to define 1 ∈ Qint
3 . It must satisfy

IQ〈 1, 1 〉 = −1 , (12.32)

where, in the skew-hermitian form, on the left is 1 ∈ Qint
−1 and on the right is 1 ∈ Qint

3 . So
1 ∈ Qint

3 must be represented by an (n+2)-current in M

ξ3 ∈ D
int
n+2(M)⊕ iDint

n+2(M) (12.33)

which satisfies
IM〈 ∂ξ, ξ3 〉 = −1 . (12.34)

The definition of the skew-hermitian intersection form in M in terms of the ordinary
intersection form given in section 7.4 says

IM〈 ∂ξ, ξ3 〉 = ǫn,2IM(∂ξ, ξ3) = IM(∂ξ,−ǫ−1
n ξ3) , (12.35)

so ξ3 must satisfy
IM(∂ξ, ǫ−1

n ξ3) = 1 . (12.36)

The existence of such a current ξ3 is a constraint on ∂ξ. There must exist an integral
(n+2)-cycle ǫ−1

n ξ3 which has intersection number 1 with ∂ξ. I believe that this is equivalent
to the condition that ∂ξ is irreducible, i.e., that

∂ξ 6= k∂ξ′ , ∀k ∈ Z, ∂ξ′ ∈ ∂Dint
n−1(M) , k 6= ±1 , (12.37)

but I do not have a proof. Assuming this to be true, then EC∂ξ gives a quasi Riemann
surface iff ∂ξ is irreducible.
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12.3 The bundle Q(M)→ PB(M) of quasi Riemann surfaces

EC±∂ξ give the same quasi Riemann surface, so we can associate the quasi-Riemann surface
to the integral line Z∂ξ ⊂ B. The integral lines Z∂ξ are the maximal abelian group
homorphisms Z→ B. Write PB(M) for the space of integral lines in B,

PB(M) = {Z∂ξ : ∂ξ ∈ B , ∂ξ irreducible} . (12.38)

We might call PB(M) the integral projective space of B.
There is a quasi Riemann surface Q(M)Z∂ξ for every integral line Z∂ξ ∈ PB(M). Let

Q(M) = ∪
Z∂ξ∈PB(M)

Q(M)Z∂ξ (12.39)

so
Q(M)→ PB(M) (12.40)

is a bundle of quasi Riemann surfaces.
The 0-space of the quasi Riemann surface QZ∂ξ is

Q(M)int
Z∂ξ,0 = ⊕

k∈Z
Dint

n−1(M)k∂ξ ⊕ i∂D
int
n (M) (12.41)

within which the space of 0-cycles, Ker ∂, is

(Q(M)int
Z∂ξ,0)0 = D

int
n−1(M)0 ⊕ i∂D

int
n (M) . (12.42)

Note that the same (QZ∂ξ,0)0 occurs in every fiber QZ∂ξ.
The sum of the 0-spaces of all the fibers Q(M)Z∂ξ, taken as subgroups within the space

of (n−1)-currents in M , is the full space of extended objects,
∑

Z∂ξ∈PB(M)

Q(M)intZ∂ξ,0 = D
int
n−1(M)⊕ i∂Dint

n (M) = EC. (12.43)

12.4 A Riemann surface Σ as a quasi Riemann surface

Now we want to associate a quasi Riemann surface Q(Σ) to every ordinary Riemann
surface Σ. The integral spaces Q(Σ)intk are complexifications of the integral k-currents in
Σ, and the Q(Σ)k are the complex k-currents in Σ,

Q(Σ)int0 = Dint
0 (Σ)⊕ i∂Dint

1 (Σ) (12.44)

Q(Σ)intk = Dint
k (Σ)⊕ iDint

k (Σ) , k = 1, 2 (12.45)

Q(Σ)k = Dk(Σ) , k = 1, 2, 3 . (12.46)

Again, the imaginary parts are needed to cope with manifolds M of dimension d = 2n
with n even.

The boundary operator acts on Q(Σ)int0 by

∂ : η 7→

∫

η

1 , (12.47)
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and on Q(Σ)3 by
∂ : 1 7→ Σ . (12.48)

The J-operator is ǫ1∗ with ǫ21 = 1. The skew-hermitian form is IQ〈 η̄1, η2 〉 = IΣ〈 η̄1, η2 〉.
Condition (12.12) expresses the extension of IΣ〈 η̄1, η2 〉 to η1 ∈ D−1(Σ), η2 ∈ D3(Σ), by

IΣ〈 1̄, 1 〉 = IΣ〈 ∂δz , 1 〉 = −IΣ〈 δ̄z, ∂1 〉 = −IΣ〈 δ̄z,Σ 〉 = −1 . (12.49)

One significant technical issue will be left unresolved. The pushdown maps

Πj,k
∗ : Dint

j (Q(Σ)intk )→ Q(Σ)int3 , j + k = 3 (12.50)

must be identically zero, as the definition of Q(Σ) presently stands. Somehow, the spaces
of currents Dint

j (Q(Σ)intk ) will have to be augmented to reflect the augmentation of the de
Rham complex of currents in Σ. This is discussed further in section 19.3 below.

12.5 Definition (more)

The abstract definition of quasi Riemann surface should require all properties that are
satisfied by the concrete quasi Riemann surfaces Q(Σ) and QZ∂ξ. The list of properties
might include

1. Each of the complete metric spaces Qint
k should be generated as an abelian group

by an arbitrarily small neighborhood of the identity.

2. The tangent spaces T0Qint
k should be dense subspaces of the vector spaces Qk.

3. The operator J on Q1 should preserve the tangent space T0Qint
0 .

4. The skew-hermitian form IQ〈 η̄1, η2 〉 should be defined on a dense subspace of Q̄k⊗
Q2−k.

5. IQ〈 η̄1, η2 〉 should be defined on a dense abelian subgroup of Q̄int
k ×Q

int
2−k, where it

should take values in Z⊕ iZ.

6. The maps Πj,k
∗ should be surjective (onto). For Q(Σ) and j + k = 3, this is an

unresolved issue.

7. Π1,0
∗ should be injective on the tangent space T0Qint

0 and Π2,0
∗ should be injective on

the space of 2-vectors at 0 ∈ Qint
0 .

8. The maps Πj,k
∗ should satisfy compatibility conditions, perhaps such as that

Dint
1 (Dint

1 (Qint
0 ))→ Dint

2 (Qint
0 )→ Qint

2 (12.51)

and Dint
1 (Dint

1 (Qint
0 ))→ Dint

1 (Qint
1 )→ Qint

2 (12.52)

should give the same result.
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12.6 Morphisms

A morphism f : Q → Q′ of quasi Riemann surfaces is a set of maps

fk : Q
int
k → Q

′ int
k (12.53)

preserving all the structures and properties of quasi Riemann surfaces. The morphism is
determined by f0 : Qint

0 → Q
′ int
0 . The quasi Riemann surface conditions are constraints

on f0. The map f1 : Qint
1 → Q

′ int
1 is the derivative of f0,

∂f1 = f0∂ . (12.54)

Extended to a linear map f1 : Q1 → Q′
1, it should preserve the J-operators

f1J = Jf1 (12.55)

and it should be a partial unitary transformation with respect to the positive definite
hermitian forms,

IQ〈 η̄1, Jη2 〉 = IQ′〈 f1η1, Jf1η2 〉 . (12.56)

In addition, f1 should preserve the kernels of the pushdown operator,

f1
(

KerΠ1,1
∗

)

⊂ KerΠ1,1
∗ . (12.57)

Thenf2 : Qint
2 → Q

′ int
2 will be given by

∂f2 = f1∂ . (12.58)

Continuity of f1 should guarantee that the skew-hermitian forms are preserved in toto.
In particular, continuity should ensure that

f2∂1 = ∂1 . (12.59)

Alternatively, a morphism is determined by f1 : Qint
1 → Q

′ int
1 , subject to the constraints

M1 f1 is a homorphism of abelian groups.

M2 f1 is continuous.

M3 f1 (Ker ∂) ⊂ Ker ∂

M4 f1 (Im ∂) ⊂ Im ∂

M5 f1J = Jf1

M6 IQ〈 η̄1, Jη2 〉 = IQ′〈 f1η1, Jf1η2 〉

M7 f1∗ (KerΠ1,1
∗ ) ⊂ KerΠ1,1

∗ .
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The last condition is essential. All the quasi Riemann surfaces QZ∂ξ have the same
(Qint

Z∂ξ)1 = D
int
n (M) + iDint

n (M). The subgroups Ker ∂ and Im ∂ in (Qint
Z∂ξ)1 are the same.

They have the same J and IQ〈 η̄1, η2 〉 on (QZ∂ξ)1. Only KerΠ1,1
∗ depends nontrivially on

Z∂ξ. Let
W int

1,1 =
{

η ∈ Dint
1 ((Qint

Z∂ξ)1) : Π
1,1
∗ η ∈ ∂(Qint

Z∂ξ)3
}

. (12.60)

Then KerΠ1,1
∗ ⊂ W

int
1,1 and

W int
1,1/KerΠ1,1

∗ = Z . (12.61)

W int
1,1 is the same for all Z∂ξ. What distinguishes — and characterizes — the different

(Qint
Z∂ξ)1 is the way that KerΠ1,1

∗ sits inside W int
1,1.

The linear operator f1 on Q1 = (∂Q2)⊕Q1,H ⊕ (J∂Q2) is determined by its action on
∂Q2 and its action on Q1,H , which is the complex homology. The action on J∂Q2 then
follows because f1 commutes with J .

12.7 Isomorphisms and automorphisms

Write Iso(Q,Q′) for the isomorphisms between two quasi Riemann surface. WriteAut(Q)
for the group of automomorphisms of Q.

If f : Q → Q′ is an isomorphism, then f1 : Q1 → Q′
1 is unitary. Conversely, unitarity

of f1 should imply that a morphism f is an isomorphism.
For a Riemann surface Σ, the group Conf(Σ) of conformal symmetries of Σ is a

subgroup of Aut(Q(Σ)). For example, Aut(Q(S2)) contains PSL(2,C) as a subgroup.
For a conformal manifold M , the group Conf(M,Z∂ξ) of conformal symmetries ofM

that preserve ±∂ξ is a subgroup of Aut(QZ∂ξ). For example, if M = Sd and ∂ξ is an
(n−2)-sphere in M , then Aut(QZ∂ξ) contains S(O(n+2,R)×O(n−1,R)) as a subgroup.

12.8 Morphisms and homology

A morphism f : Q → Q′ maps the homology group H1(Qint) into the homology group
H1(Q′ int). The homology map is injective because the skew-hermitian form is preserved.
The free parts of the homology groups are lattices in the real homology groups H1(Q) and
H1(Q′), which are complex Hilbert spaces, the complex structures given by the respective
J-operators and the positive definite hermitian inner product given by the skew-hermitian
forms combined with the J-operators. The map of homology groups preserves this struc-
ture. I do not know how to deal with the torsion subgroup of the homology, so I will just
disregard the possibility of torsion.

Call the homology of a quasi Riemann surface, along with the action of J and the
skew-hermitian form, the homology data. An isomorphism of quasi Riemann surfaces
gives an isomorphism of homology data, so two quasi Riemann surfaces are isomorphic
only if they have isomorphic middle homology data. I will conjecture shortly that this
should be ‘if and only if’, that quasi Riemann surfaces are classified by the homology
data.

For connected quasi Riemann surfaces, all the homology is in the middle dimension.
For the quasi Riemann surface Q(Σ) associated to an ordinary Riemann surface Σ, the
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middle homology of the quasi Riemann surface is the middle homology of Σ, doubled,

H1(Q(Σ)
int) = H1(Σ,Z)⊕ iH1(Σ,Z) . (12.62)

For a quasi Riemann surface QZ∂ξ associated to a manifold M of dimension d = 2n, the
middle homology of the quasi Riemann surface is the middle homology of M , doubled,

H1(Q
int
Z∂ξ) = H1(M,Z)⊕ iH1(M,Z) . (12.63)

Again, the imaginary parts can be dropped if we limit ourselves to n odd.

12.9 Quasi-holomorphic curves

Given a Riemann surface Σ, define a quasi-holomorphic curve, or a quasi-holomorphic
Σ-curve, to be a morphism of quasi Riemann surfaces from Q(Σ) to a QZ∂ξ. Define a local
quasi-holomorphic curve to be a q-h Σ -curve with Σ conformally equivalent to the open
unit disk.

Recall that

(QZ∂ξ)0 ⊃ ∂−1(1) = EC∂ξ = D
int
n−1(M)∂ξ ⊕ i∂D

int
n (M) . (12.64)

The map f0 : Q(Σ)0 → (QZ∂ξ)0 is equivalent to the map

C : Σ→ EC∂ξ , C(z) = f0(δz) . (12.65)

The map f0 can be recovered from the map C by

f0 :
∑

i

niδzi 7→
∑

i

niC(zi) . (12.66)

The map f1 : Q(Σ)1 → (QZ∂ξ)1 is the derivative of C,

f1 = C∗ : D
int
1 (Σ)⊕ iDint

1 (Σ)→ Dint
n (M)⊕ iDint

n (M) (12.67)

It preserves the almost-complex structures J and the skew-hermitian forms on currents,

C∗J = JC∗ on D1(Σ) , (12.68)

Π∗IM〈C∗η1, C∗η2 〉 = IΣ〈 η̄1, η2 〉 . (12.69)

A pseudo-holomorphic curve [7] is a map from a Riemann surface Σ to an almost complex
space that preserves the almost complex structures. So a quasi holomorphic curve is a
pseudo-holomorphic curve in EC∂ξ that preserves the skew-hermitian forms on currents in
the middle dimension.

For z a local complex coordinate on Σ, condition (12.68) takes the form

J∂zC = i∂zC , J∂z̄C = −i∂z̄C . (12.70)

For n odd, J = ǫn∗ is real, so it is consistent to impose the reality condition C̄ = C. Then
C : Σ→ E∂ξ and we can forgo complexifying E∂ξ. For n even, C must be complex.

A q-h curve C sweeps out an integral (n+1)-current Π∗C∗Σ in the space-time M . An
(n+1)-current intersects an (n−1)-current at a 0-current. A small local q-h curve will
sweep out a small (n+1)-current in M , so a small local q-h curve sees the local structure
of an extended object in the form of a 0-current.
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13 2d CFT on a quasi-holomorphic curve

Suppose C is a quasi-holomorphic curve in EC∂ξ. The 0-form and 1-form fields on EC∂ξ pull
back to give 0-form and 1-form fields on the Riemann surface Σ,

C∗φ±(η0) = φ±(C∗η0) , η0 ∈ D0(Σ) (13.1)

C∗j±(η1) = j±(C∗η1) , η1 ∈ D1(Σ) . (13.2)

The fields on Σ satisfy the field equations of the 2d CFT,

d(C∗φ±) = C∗j± . (13.3)

The 1-forms on Σ are chiral by the quasi-holomorphic condition (12.68),

P+(C
∗j+) = C∗j+ , P−(C

∗j−) = C∗j− . (13.4)

Translated into the usual language of 2d CFT,

φ+(z) = C∗φ+(δz) , φ−(z̄) = C∗φ−(δz) , (13.5)

j+(z) = (C∗j+)
z(z) , j−(z̄) = (C∗j−)

z̄(z̄) , (13.6)

∂φ+ = j+(z) , ∂φ− = 0 , (13.7)

∂̄φ+ = 0 , ∂̄φ− = j−(z) . (13.8)

We now have the classical fields of the 2d CFT on Σ.
To have the 2d quantum field theory on Σ, we need the correlation functions to satisfy

the Schwinger-Dyson equations of the 2d CFT,

〈 (C∗jᾱ)
†(η̄1)C

∗jβ(∂η2) 〉 = −2πi γᾱβIΣ〈 ∂η1, η2 〉 (13.9)

〈 (C∗φᾱ)
†(η̄0)C

∗jβ(∂η2) 〉 = −2πiγᾱβIΣ〈 η̄0, η2 〉 , (13.10)

which translates to
∂̄〈 φ†

+(z) j+(w) 〉 = 2πδ2(z − w) , etc. (13.11)

The second quasi-holomorphic condition (12.69) — that C preserves the skew-hermitian
forms — implies that the 2d S-D equations (13.9–13.10) follow from the S-D equations
(10.5–10.6) on EC∂ξ. So we have the 2d CFT on the quasi-holomorphic curve.

The vertex operators V (ξ) on EC∂ξ are exponentials of the φ±(ξ). They pull back to Σ
to the corresponding exponentials of C∗φ±,

C∗V (η) = V (C∗η) , η ∈ Dint
0 (Σ) . (13.12)

In the usual language 2d CFT, the pulled back vertex operators are the local fields

V (z) = C∗V (δz) = V (C(z)) . (13.13)
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The correlation functions of the 2-d fields,

〈C∗V1(η1) · · ·C
∗j±(η

′
1) · · · 〉 = 〈 V1(C∗η1) · · · j±(C∗η

′
1) · · · 〉 , (13.14)

are the correlation functions of the 2d CFT on Σ, since the local properties of the corre-
lation functions are completely determined by the S-D equations.

For n odd, the q-h curve C can be taken real, a map Σ → E∂ξ. The real n-form
field F (x) on M becomes the real 1-form j on E∂ξ. The 1-form field C∗j on Σ is then
real. The 2d CFT is the free theory of a real 1-form. The 2d CFT on Σ is exactly
what was called the analog theory on E∂ξ. For n even, the situation is more complicated.
Even if F (x) is a real n-form, C∗j must be a complex 1-form, because the q-h curve
C is necessarily complex. The fields on EC∂ξ pulled back to Σ comprise a subalgebra of
the 2d CFT of the free complex 1-form. Consider the fields of the real n-form theory
as a subalgebra in the complex n-form theory — the subalgebra generated by the vertex
operators invariant under the complex conjugation symmetry F ↔ F̄ . On Σ, this becomes
a different subalgebra of the 2d CFT of the free complex 1-form C∗j, the subalgebra
generated by the vertex operators invariant under the combination of complex conjugating
and reversing orientation J → −J , P+ ↔ P−. More detail is given in Appendix D.

14 A wishful conjecture

The project is to construct the CFT of extended objects in space-time from the 2d CFT.
For every 2d CFT, there is to be a CFT of extended objects which, when pulled back to
a quasi-holomorphic curve, gives the 2d CFT on the Riemann surface. Some theories of
extended objects — for example, orbifolds of free n-form theories — might be constructed
directly in terms of the skew-hermitian form on currents and the J-operator, so that their
pull-backs to q-h curves are manifestly the corresponding 2d theories. For the general
case, however, a method is needed to construct the theory of extended objects from the
2d CFT. The data of the 2d CFT on the quasi-holomorphic curves must be enough to
construct the correlation functions of the theory of extended objects.

The only way I can imagine realizing this project is by means of isomorphisms between
the quasi Riemann surfaces QZ∂ξ and the quasi Riemann surface Q(Σ). The fields and
correlation functions on QZ∂ξ will be constructed simply by pulling back the fields and
correlation functions of the 2d theory on the Riemann surface Σ.

The only reason I can imagine for such isomorphisms to exist is if any two quasi
Riemann surfaces with the same homology data are isomorphic. The conjecture is

The isomorphism classes of quasi Riemann surfaces are classified by their
homology data.

Each isomorphism class contains a unique two-dimensional model. For each
possible set of homology data there is a unique two-dimensional conformal
space Σ with that homology data, so that Q(Σ) belongs to the isomorphism
class. The two-dimensional conformal space Σ is an ordinary Riemann surface
when the homology data allows.
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I have no idea what the two-dimensional conformal space Σ might be when the homology
data is not that of a Riemann surface, much less how to construction the correlation
functions of a 2d CFT on such a space. Prudence suggests limiting to space-times M
with homology data such that Σ can be a Riemann surface. Actually, I will be more than
delighted if the conjecture can be shown to hold for trivial homology data, so that it will
apply to the basic case, M = Sd, Σ = S2.

I do not know how to prove the conjecture. There might be a route via the local
quasi-holomorphic curves. It might be supposed that

Every local quasi-holomorphic curve in Q(Σ) is given by a local neigborhood
in Σ, up to automorphisms of Q(Σ).

A local quasi-holomorphic curve in a quasi Riemann surface Q is a rigid object
in the sense that it has a unique “analytic” continuation to an isomorphism
Q(Σ)→ Q for some two-dimensional space Σ.

If the conjecture is true, then the group Aut(Q(Σ)) will be a very interesting object.
It will naturally contain the group Conf(Σ) of conformal symmetries of Σ. It will be
isomorphic to the groups Aut(QZ∂ξ) for every conformal manifold M with the same
middle homology data as Σ, and every integral (n−1)-boundary ∂ξ in M , so it will also
contain the groups Conf(M,Z∂ξ) of conformal symmetries of M that preserve ±∂ξ, for
every such M and ∂ξ.

15 Correlation functions from extended 2d CFT

Assuming the conjecture is true, the geometric isomorphism between each of the QZ∂ξ

and Q(Σ) can be used to construct a CFT on each of the QZ∂ξ from any 2d CFT on Σ.
The observables on QZ∂ξ will be the pull-backs under an isomorphism f : QZ∂ξ → Q(Σ),

f ∗Φ(ξ) = Φ(fξ) , (15.1)

of the 2d observables Φ(η) on Q(Σ). The correlation functions on QZ∂ξ will be given by
the correlation functions on Σ,

〈 f ∗Φ(ξ) · · · 〉 = 〈Φ(fξ) · · · 〉Σ . (15.2)

For this to work, the 2d CFT on Σ needs to be extended so that

The extended 2d observables Φ(η) are defined on the integral currents η ∈
Q(Σ)intk . The automorphism group Aut(Q(Σ)) acts on the vector space of
extended observables. The correlation functions of extended observables are
invariant under Aut(Q(Σ)).

In ordinary 2d CFT, the observables are products of local fields over finite sets of
distinct points,

Φ(z1, . . . , zN) = ϕ1(z1) · · ·ϕn(zN) , (15.3)
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and linear combinations of such products. We can regard such an observable as living on
the 0-current η =

∑

i δzi . The problem is to extend observables to integral currents.
The vertex operators of the 2d gaussian model extend formally — classically — to the

integral 0-currents since the fields φ and φ∗ are 0-forms,

Vp,p∗(η) = eipφ(η)+ip∗φ∗(η) . (15.4)

The regularization and renormalization of such extended vertex operators is still to be
dealt with. From the start, I have been making an unspoken assumption, as a guiding
hypothesis, that the vertex operators of the free n-form CFT can be constructed on the
integral (n−1)-currents in the space-timeM , as quantum fields. I have not actually carried
out this construction. Now the proposal is to construct the extended vertex operators as
observables in the extended 2d CFT, then transport them to the space-time M via the
conjectured isomorphism of quasi Riemann surfaces.

The construction of an extended 2d CFT from an ordinary 2d CFT is one of a number
of further steps towards realizing the project that are listed in section 21 below.

16 Perturbation theory

The plan is to move, eventually, from conformal field theories of extended objects to
non-conformal quantum field theories of extended objects, constructed from extended 2d
non-conformal quantum field theories. As a step in that direction, I consider perturbing a
2d CFT and constructing the corresponding perturbation of the CFT of extended objects
in space-time. The discussion is formal. Nothing is said about a relation between the 2d
cutoff scale and the space-time cutoff scale.

A perturbation of a 2d CFT on a Riemann surface is given by integrating a quantum
field that is a (1,1)-form on the Riemann surface. Such perturbations arise when the 2d
CFT depends on parameters, such as the parameter R of the 2d gaussian model, and also
when the the 2d CFT can be perturbed to give a non-conformal 2d QFT. In the latter
case, the integral will depend on the 2d metric. It will have to be cut off and renormalized.
The correspondence between variations of the 2d QFT and integrals of (1,1)-form fields
is a manifestation of the action principle.

16.1 Varying the parameter R of the gaussian model

The parameter R in the theory of a free n-form F onM is varied by inserting in correlation
functions the integral

∫

M

∗F ∧ F . (16.1)

The n-form F pulls up to the 1-form j = Π∗F on EC∂ξ. Suppose Σ is a compact Riemann
surface without boundary, and C is a quasi-holomorphic Σ-curve. Then C∗j is a free
1-form on Σ. On the Riemann surface Σ, we have the 2d gaussian model with parameter
R. The parameter R in the 2d gaussian model is varied by inserting in the correlation
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functions on Σ the integral
∫

Σ

∗(C∗j) ∧ (C∗j) =

∫

Σ

C∗(∗j ∧ j) , (16.2)

which is the integral of the (1,1)-form ∗j ∧ j pulled back from EC∂ξ to Σ.
The insertions (16.1) and (16.2) must give the same result. They can be written

∫

M

∗F ∧ F = I−1
M 〈 JF , F 〉 ,

∫

Σ

∗(C∗j) ∧ (C∗j) = I−1
Σ 〈 JC

∗j, C∗j 〉 , (16.3)

where I−1
M 〈 ω̄1, ω2 〉 is the skew-hermitian bilinear form on n-forms that is the inverse of

the skew-hermitian bilinear form IM〈 ξ̄1, ξ2 〉 on n-currents in M , and I−1
Σ 〈 ω̄1, ω2 〉 is the

inverse of IΣ〈 η̄1, η2 〉 on 1-currents in Σ.
The identity between the two integrals (16.1) and (16.2) for the variation of R is now

I−1
M 〈 JF , F 〉 = I−1

Σ 〈 JC
∗Π∗F, C∗Π∗F 〉 = Π∗C∗(I

−1
Σ )〈 JF , F 〉 (16.4)

which will hold if and only if
I−1
M = Π∗C∗(I

−1
Σ ) . (16.5)

Combined with the quasi-holomorphic condition on C,

IΣ = C∗Π∗IM , (16.6)

equation (16.5) is equivalent to the unitarity of

Π∗C∗ : D1(Σ)→ Dn(M) . (16.7)

Π∗C∗ is unitary iff C is an isomorphism of quasi Riemann surfaces. Therefore, if the
conjecture holds, then the variation of R in the 2d CFT on Σ is equivalent to the variation
of R in the n-form theory on M .

This argument for the unitarity of Π∗C∗ is based on the structure of the n-form CFT
on M and the 1-form 2d CFT on Σ. These are both free quantum field theories, so it
should be possible to translate the argument into purely mathematical terms, amounting
to a proof that, for Σ a compact Riemann surface without boundary, any morphism of
quasi Riemann surfaces Q(Σ)→ QZ∂ξ must be an isomorphism.

16.2 Perturbing by a general (1, 1)-form

Suppose that the conjecture holds. Then perturbing the 2d QFT on Σ is equivalent to
perturbing the QFT of extended objects inM . The 2d perturbation is given by integrating
a (1, 1)-form over Σ. The perturbation of the QFT in M should be given by integrating
an (n, n)-form over M .

Suppose f : Q(Σ) → QZ∂ξ is an isomorphism. Suppose ΦΣ is a (1,1)-form on Σ.
Represent ΦΣ as

ΦΣ =
∑

a,b

ca,b Jwa ∧wb (16.8)
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for some collection of 1-forms wa on Σ and some constants ca,b. Then

∫

Σ

ΦΣ =
∑

a,b

ca,bI
−1
Σ 〈 w̄a, wb 〉 . (16.9)

The linear operator

f1 : Q(Σ)1 → (QZ∂ξ)1 , Q(Σ)1 = D1(Σ) , (QZ∂ξ)1 = Dn(M) (16.10)

is invertible, so we can construct the n-forms Wa on M ,

Wa = (f ∗
1 )

−1wa . (16.11)

From the Wa make a (n, n)-form on M ,

ΦM =
∑

a,b

ca,b JWa ∧Wb . (16.12)

Then
∫

M

ΦM =
∑

a,b

ca,bI
−1
M 〈 W̄a,Wb 〉 =

∑

a,b

ca,bI
−1
Σ 〈 w̄a, wb 〉 =

∫

Σ

ΦΣ . (16.13)

So the perturbation by the (1, 1)-form ΦΣ on Σ and the perturbation by the (n, n)-form
ΦM on M will have the same effect.

The construction of ΦM from ΦΣ is ambiguous. ΦM is only determined up to an
(n, n)-form that integrates to zero on M . Such (n, n)-forms are the redundant fields —
the perturbations that only reparametrize the fields of the QFT, taking the QFT to an
equivalent QFT. Thus the 2d perturbation ΦΣ maps to a class of equivalent perturbations
ΦM of the space-time QFT.

17 Gauge symmetry of the classical free n-form

This section and the next go back to the classical field theory of a free n-form in the
space-time M regarded as a collection of free 1-form theories on the fibers of the bundle
E → B of integral (n−1)-currents in M over the integral (n−2)-boundaries. This section
expresses the space-time gauge symmetry of the theory in terms of a gauge symmetry over
B. The gauge symmetry group is the global symmetry group of the analog 2d theory. One
message is that generalization from the 2d gaussian model to 2d quantum field theories
with nonabelian global symmetry groups might yield space-time theories with nonabelian
gauge symmetry. In section 19 below, I will try to translate the structure described here
for the classical theory to the quantum theory on the bundle of quasi Riemann surfaces.

The n-form theory has local U(1)×U(1) gauge symmetries

A 7→ A+ df , A∗ 7→ A∗ + df ∗ (17.1)
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given by pairs f, f ∗ of (n−2)-forms on the space-time M . The 1-form theory on each E∂ξ
has a global U(1)×U(1) symmetry. We have seen that local gauge transformations on M
give global symmetry transformations in each E∂ξ. If we are to build a space-time QFT
from 2d QFT on the E∂ξ, we will need to go in the opposite direction, constructing the
local gauge symmetries in space-time from the global symmetries in the E∂ξ.

17.1 The local gauge transformations over B

In the 2d gaussian model on a Riemann surface Σ, write TΣ for the space of solutions φ,
φ∗ of

j = dφ , j∗ = dφ∗ . (17.2)

Then TΣ = S1 × S1. The global symmetry group G = U(1)×U(1) of the 2d gaussian
model acts by

φ 7→ φ+ g , φ∗ 7→ φ∗ + g∗ , (17.3)

so G acts on TΣ as a principal homogeneous space.
Think of TΣ as the space of equivalent 2d theories built from the 1-forms j, j∗. The

local fields, such as the vertex operators Vp,p∗ = eipφ+ip∗φ∗

, transform in representations of
G which can be represented as functions on TΣ. We can think of the action of G on the
local fields as factoring through its action on TΣ.

On each non-special fiber E∂ξ of E → B there is space of theories all isomorphic to
the (formal analog of the) 2d gaussian model. On a given E∂ξ, the space of isomorphic
theories is the space of solutions φ(ξ) and φ∗(ξ) on E∂ξ – the space of integration constants
for φ and φ∗ on E∂ξ. Write T∂ξ for the space of isomorphic theories on E∂ξ. The space T0
of theories on the special fiber E0 is a single point. Collectively, the isomorphism classes
of theories form a fiber bundle T → B.

The isomorphism class of theories T∂ξ has symmetry group G∂ξ which is isomorphic,
for ∂ξ 6= 0, to the global symmetry group G = U(1)×U(1). The group G∂ξ acts on the
isomorphism class T∂ξ by

φ(ξ) 7→ φ(ξ) + g(∂ξ) , φ∗(ξ) 7→ φ∗(ξ) + g∗(∂ξ) . (17.4)

The symmetry group G0 of the special fiber is the trivial group. Note that g(∂ξ) and
g∗(∂ξ) are 0-forms (functions) on B. They are not necessarily additive functions on the
abelian group B, which is to say that they do not necessarily come from (n−2)-forms on
M .

The isomorphism class T∂ξ is a principal homogeneous space for the group G∂ξ. Col-
lectively, the symmetry groups G∂ξ form a fiber bundle of groups G → B. The sections of
G → B are the local gauge transformations. This construction of local gauge symmetry
over B would make sense for any 2d CFT (or QFT), with any global 2d symmetry group
G, abelian or nonabelian.

Let F∂ξ = Iso(TΣ, T∂ξ) be the space of equivalences, taking the scalars φ, φ∗ on Σ to
the scalars φ, φ∗ on E∂ξ. The space F∂ξ is a principal homogeneous space both for G acting
on the right, and for G∂ξ acting on the left. Collectively, the F∂ξ form the fiber bundle of
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frames F → B, a principal fiber bundle with structure group G. If V is a representation
of G, the fields of charge V on the E∂ξ live in the vector bundle F ×G V → B.

17.2 The reconstruction of the space-time gauge potentials

The group of gauge transformations of the 1-form theory over B is much bigger than the
group of gauge transformations of the n-form theory in space-time. I will attempt to argue
now that there exists a partial gauge fixing in the 1-form theory over B that reduces the
large gauge group over B to the smaller space-time gauge group. The argument seems to
depend crucially on the global symmetry group G = U(1)×U(1) being abelian, in concert
with the abelian group structure of B and of E . Also, the argument is only classical.
So the argument very well might not have any general significance. For 2d theories with
nonabelian global symmetry groups G, there will be the nonabelian local gauge symmetry
over B, but perhaps without any reduction to ordinary local nonabelian gauge symmetry
in space-time.

Suppose φ(ξ), φ∗(ξ) are solutions of dφ = j, dφ∗ = j∗ in each fiber. The goal is to
make a gauge transformation

φ̃(ξ) = φ(ξ) + g̃(∂ξ) , φ̃∗(ξ) = φ∗(ξ) + g̃∗(∂ξ) (17.5)

so that φ̃ and φ̃∗ are additive,

φ̃(ξ1) + φ̃(ξ2)− φ̃(ξ1 + ξ2) = 0 , φ̃∗(ξ1) + φ̃∗(ξ2)− φ̃
∗(ξ1 + ξ2) = 0 . (17.6)

Then φ̃(ξ) and φ̃∗(ξ) will be determined by their values on infinitesimal ξ, so will corre-
spond to (n−1)-forms A, A∗ on space-time. The remaining gauge invariance will be given
by additive functions g(∂ξ), g∗(∂ξ), corresponding to (n−2)-forms A, A∗ on space-time,
which is the space-time gauge invariance of the n-form theory.

Define

C(ξ1, ξ2) = φ(ξ1) + φ(ξ2)− φ(ξ1 + ξ2) (17.7)

C∗(ξ1, ξ2) = φ∗(ξ1) + φ∗(ξ2)− φ
∗(ξ1 + ξ2) . (17.8)

C(ξ1, ξ2) and C
∗(ξ1, ξ2) actually depend only on ∂ξ1 and ∂ξ2, because, if ∂ξ

′
1 = ∂ξ1, then

C̃(ξ′1, ξ2)− C̃(ξ1, ξ2) = [φ(ξ′1)− φ(ξ1)]− [φ(ξ′1 + ξ2)− φ(ξ1 + ξ2)] (17.9)

= j(∂(ξ′1 − ξ1))− j(∂(ξ
′
1 + ξ2 − ξ1 − ξ2)) (17.10)

= 0 , (17.11)

and similarly for ∂ξ′2 = ∂ξ2 and for C∗ in place of C. So we can write

C(ξ1, ξ2) = c(∂ξ1, ∂ξ2) , C∗(ξ1, ξ2) = c∗(∂ξ1, ∂ξ2) . (17.12)

To get the additive condition (17.6), we need the gauge transformation (17.5) to solve

c(∂ξ1, ∂ξ2) = g̃(∂ξ1 + ∂ξ2)− g̃(∂ξ2)− g̃(∂ξ2) (17.13)

c∗(∂ξ1, ∂ξ2) = g̃∗(∂ξ1 + ∂ξ2)− g̃
∗(∂ξ2)− g̃

∗(∂ξ2) (17.14)
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for g̃ and g̃∗. This is a problem in group cohomology. The pair c, c∗ is a 2-cochain on the
abelian group B with coefficients in the group G = U(1)×U(1). Equations (17.13–17.14)
are solvable iff c, c∗ is trivial in the group cohomology. But c(∂ξ1, ∂ξ2) and c

∗(∂ξ1, ∂ξ2) are
symmetric in their arguments, so (17.13–17.14) can be solved if the symmetric 2-cocycles
are trivial in the group cohomology of B. I believe that this is the case, because B and G
are abelian.

18 Connecting the E∂ξ

The extended objects in the free n-form theory are to be described by fields on E . But the
analog 2d theories on the fibers of E → B would seem to give only correlation functions of
fields on the same fiber E∂ξ. What about correlation functions between fields on different
fibers E∂ξ? Such correlation functions will be non-zero only on gauge invariant observables
on the individual fibers — only on observables invariant under the global symmetry of
the fiber. So we need to understand the correlation functions of products of invariant
observables on different fibers.

Here I argue that the invariant observables are the same on every fiber, so correlation
functions of products of invariant observables should be calculable in any one fiber. The
argument is specific to the free n-form theory and is only classical. The argument uses a
natural connection in the bundle E → B, described in the next section. My hope is that
there might be a parallel argument in the general quantum case, using some analogous
natural geometric structure in the bundle Q(M)→ PB(M) of quasi Riemann surfaces.

18.1 The natural connection in Dint
k (M)

∂
−→ ∂Dint

k (M)

Recall that Dint
k (M)

∂
−→ ∂Dint

k (M) is a principal fiber bundle for the additive abelian

group Dint
k (M)0 of integral k-cycles. A connection in Dint

k (M)
∂
−→ ∂Dint

k (M) is a collection
of linear maps lifting tangent vectors v0 in the base at ∂ξ to tangent vectors v in the total
space at ξ, one such linear map for every point ξ in the total space. These linear maps
must be compatible with the bundle structure, i.e., must satisfy ∂∗v = v0 and must be
invariant under translations of ξ in the fiber over ∂ξ.

A tangent vector in the base ∂Dint
k (M) is a perturbation by an infinitesimal element

v0 in ∂Dint
k (M). We have seen that there is a uniquely determined minimal infinitesimal

element v ∈ Dint
k (M) satisfying ∂v = v0. This v is the lift of v0.

Equivalently, v0 corresponds to an infinitesimal integral 1-current η0 in the base at ∂ξ
by

Π0,k−1
∗ ∂η0 = v0 . (18.1)

The pushdown of η0,
v = Π1,k−1

∗ η0 ∈ D
int
k (M) (18.2)

corresponds to an infinitesimal integral 1-current η in the total space Dint
k (M) at ξ, by

Π0,k
∗ ∂η = v , (18.3)
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with η a lift of η0,
∂∗η = η0 . (18.4)

The lift v0 7→ v, or η0 7→ η, is translation invariant in the fiber, since the construction
of the lift makes no mention of ξ. In fact, the construction is translation invariant in the
total space Dint

k (M) of the bundle. The lift v0 7→ v thus is a natural, translation invariant

connection in the principal fiber bundle Dint
k (M)

∂
−→ ∂Dint

k (M), a natural splitting of the
tangent space

TξD
int
k (M) = Vk+1(M)⊕ Vk(M) (18.5)

where the first summand is the vertical subspace and the second summand is the horizontal
subspace, the tangent space in the base ∂Dk(M).

Write Dnat for the covariant derivative of the natural connection. The curvature
tensor (Dnat)2 is a 2-form on the base with values in the translation invariant vertical
vector fields. To calculate the curvature, consider an infinitesimal 2-current η2 in the
base at ∂ξ. Use the natural connection to lift the 1-current η0 = ∂η2 to a 1-current η
in the total space at ξ. Then ∂η is an infinitesimal 0-current in the fiber. This is is the
monodromy around ∂η2, which is the curvature tensor acting on η2 to give the vertical
tangent vector

vc = Π0,k
∗ ∂η = Π1,k−1

∗ (η0) = Π1,k−1
∗ (∂η2) = ∂Π2,k−1

∗ η2 . (18.6)

We can write the curvature as

(Dnat)2η2 = Π2,k−1
∗ η2 (18.7)

which is an infinitesimal element in Dint
k+1(M), whose boundary

vc = ∂Π2,k−1
∗ η2 (18.8)

is an infinitesimal vertical perturbation in the fiber.

18.2 The connection in the bundle of theories over B

Specializing to k = n−1, we have a natural connection in E → B, with covariant derivative
Dnat . The natural connection in E → B combines with the 0-forms j, j∗ to give a
connection in the bundle of theories T → B, as follows. An infinitesimal motion in B,
from ∂ξ to ∂ξ′, lifts to a translation from the fiber E∂ξ to the fiber E∂ξ′, taking 0-currents
on the first fiber to 0-currents on the second, and pulling 0-forms back from the second to
the first. The 1-forms j and j∗ are translation invariant, so the natural connection pulls
back solutions of dφ = j, dφ∗ = j∗ on E∂ξ′ to solutions on E∂ξ. This is the connection in
T → B.

Suppose φ, φ∗ is a local section of T → B. That is, φ(ξ) and φ∗(ξ) are solutions in
the fibers over some neighborhood in B, a choice of integration constants in each fiber.
The covariant derivative Dnatφ(ξ), or Dnatφ∗(ξ), is, on each fiber, the difference of two
solutions, thus is a constant on each fiber,

Dnatφ(ξ) = Dφ(∂ξ) , Dnatφ∗(ξ) = Dφ∗(∂ξ) (18.9)
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giving the covariant derivative D of the connection in T → B.
The curvature tensor of the connection in T → B is a 2-form on the base B with values

in the invariant vertical vector fields — the pair of 2-forms on B

(Dnat)2φ = (dφ)(Dnat)2 = j(Dnat)2 (18.10)

(Dnat)2φ∗ = (dφ∗)(Dnat)2 = j∗(Dnat)2 . (18.11)

Here, dφ and dφ∗ are the vertical derivatives in E . When the 1-forms j and j∗ on E∂ξ
come from n-forms F and F ∗ on M ,

j = F Π1,n−1
∗ , j∗ = F ∗Π1,n−1

∗ , (18.12)

then

(Dnat )2φ = F Π1,n−1
∗ (Dnat)2 = F Π2,n−2

∗ (18.13)

(Dnat)2φ∗ = F ∗Π1,n−1
∗ (Dnat)2 = F ∗Π2,n−2

∗ . (18.14)

We might think of the bundle T → B with connection D as an alternate representation
of the 1-form fields j and j∗, or of the n-form fields F and F ∗.

18.3 Transport of observables between fibers E∂ξ

A vertex operator eipφ(ξ)+ip∗φ∗(ξ) transforms under the symmetry group G∂ξ in the one-
dimensional representation labelled by the charges p, p∗. Equivalently, the vertex operator
belongs to the one-dimensional vector space associated to the space T∂ξ of theories on
the fiber and the one-dimensional representation of the global symmetry group G =
U(1)×U(1) labelled by p, p∗. In general, the observables (5.8) on each fiber belong to
vector bundles associated to the G-bundle which is the fiber product

E ×B T → B , (E ×B T )∂ξ = E∂ξ × T∂ξ . (18.15)

The natural connection in E combines with the connection in T to give a connection in
the fiber product, which determines a parallel transport of observables from fiber to fiber.
The observables are invariant under this parallel transport.

One way to see this is by choosing a local section of E → B. This is a choice ξ1 of
a relative (n−1)-cycle in each fiber over a neighborhood N in B. The choice of the ξ1
trivializes E as N × E0 over N ,

∂ξ, ξ ←→ ∂ξ, ξ − ξ1(∂ξ) . (18.16)

This also trivializes T over N by singling out the local section given by the normalization
condition

φ1(ξ1) = φ∗
1(ξ1) = 0 . (18.17)

Now the covariant derivative for the natural connection in E is

Dnat = d+ Anat (18.18)
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where
Anat = Dnatξ1 (18.19)

is a 1-form on B with values in the vertical tangent space Vn. The covariant derivative in
T is

Dφ = (d+ A)φ , Dφ∗ = (d+ A∗)φ∗ , (18.20)

A = Dnatφ1 = jAnat , A∗ = Dnatφ∗
1 = (∗j)Anat . (18.21)

The total covariant derivative in the fiber product, acting on an observable of charges p,
p∗ is

Dtot = d+ AnatdV − ipA− ip
∗A∗ , (18.22)

where dV is the vertical derivative in the trivialization of E .
The covariant constancy of the observables implies that the observables are annihilated

by the curvature tensor (Dtot)2. This is just j = dφ, ∗j = dφ∗. Thus the gauge structure
– the bundle T → B and its connection D – encodes the classical theory of extended
objects of the free n-form.

The charged observables are associated to nontrivial representations of the symmetry
group G and live in vector bundles associated to the fiber product bundle E ×B T . The
connection that transports the charged observables between fibers is dynamical. But
neutral observables — observables that areG-invariant, that are associated to the trivialG
representation — do not see the gauge bundle T . The neutral observables are transported
from fiber to fiber by the natural connection in E , which is independent of the dynamics,
i.e., kinematical. The neutral observables are, essentially, the products of vertex operators
with zero total charges,

eip1φ(ξ1)+ip∗1φ
∗(ξ1) · · · eipNφ(ξN )+ip∗Nφ∗(ξN ) ,

∑

pi =
∑

p∗i = 0 . (18.23)

Assume that the gauge symmetry is unbroken, so that only the gauge invariant ob-
servables have non-zero expectation values. Gauge invariant observables are products of
neutral observables on fibers. Neutral observables can be transported from fiber to fiber,
independent of the dynamics. So expectation values of gauge invariant observables can
be calculated entirely on any single fiber.

This argument might seem to imply that all calculations can be done in a single fiber,
for example in the distinguished fiber over 0 ∈ B. But this is too extreme. Certainly, in
a 2d quantum field theory there is interesting information to obtain about the charged
observables. In the space E of extended objects, the algebra of charged observables will
depend on the fiber. On the other hand, products of charged observables from different
fibers will always have zero expectation values. So the theory of extended objects can be
considered as the collection of theories on the fibers.

19 Explorations

In this section, for simplicity, the imaginary parts of the quasi Riemann surfaces are
omitted, and all quasi Riemann surfaces are assumed connected. And the conjecture is
presumed to hold.
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19.1 The Q(M)Z∂ξ

As described in section 12.2, each of the quasi Riemann surfaces Q = Q(M)Z∂ξ shares a
common core,

Qint
1 = Dint

n (M) , (Qint
0 )0 = D

int
n−1(M)0 = ∂Dint

n (M) . (19.1)

The last identity expresses the connectedness of the quasi Riemann surfaces,

H0(Q) = Hn−1(M) = 0 . (19.2)

Consider the restriction of Π1,1
∗ to the space of integral 1-cycles in the space of integral

1-cycles of Q,
Π1,1

∗ : Dint
1 ((Qint

1 )0)0 → Q
int
2 , (19.3)

which satisfies
∂Π1,1

∗ = 0 , (19.4)

so
Π1,1

∗ D
int
1 ((Qint

1 )0)0 = (Q2)0 = ∂Q3 ≃ Z . (19.5)

Define
Λ(Z∂ξ)int = KerΠ1,1

∗ ⊂ D
int
1 ((Qint

1 )0)0 . (19.6)

Then
Dint

1 ((Qint
1 )0)0/Λ(Z∂ξ)

int = (Q2)0 = ∂Q3 ≃ Z . (19.7)

The subgroup Λ(Z∂ξ)int is a co-line in Dint
1 ((Qint

1 )0)0, where a co-line is defined to be a
minimal subgroup among those whose quotient is Z.

The map Π1,1
∗ acts in two stages

Dint
1 ((Qint

1 )0)0 = D
int
1 (Dint

n (M)0)0 → D
int
n+1(M)0 → (Q2)0 . (19.8)

Write the first stage

Π1,1
∗ (M) : Dint

1 (Dint
n (M)0)0 → D

int
n+1(M)0 , (19.9)

and define the subgroup

Λint
M = KerΠ1,1

∗ (M) ⊂ Dint
1 ((Qint

1 )0)0 . (19.10)

Then
Λint

M ⊂ Λ(Z∂ξ)int . (19.11)

In fact, any co-line inDint
1 ((Qint

1 )0)0 that contains Λ
int
M is Λ(Z∂ξ)int for some Z∂ξ ∈ PB(M),

PB(M) =
{

co-lines Λint : Λint
M ⊂ Λint ⊂ Dint

1 ((Qint
1 )0)0

}

. (19.12)
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19.2 Reconstruct Q from Q1

All of the considerations of the previous section up to the introduction of ΛM apply to
any quasi Riemann surface Q. Every quasi Rieman surface Q has a distinguished co-line

Λint = KerΠ1,1
∗ ⊂ D

int
1 ((Qint

1 )0)0 . (19.13)

Conversely, every co-line in Dint
1 ((Qint

1 )0)0 corresponds to a quasi Riemann surface. That
is, any quasi Riemann surface Q can be reconstructed from the data on its 1-subspace
Qint

1 . The core of the quasi Riemann surface is Qint
1 , with the skew-hermitian form and

the J-operator, and with the two subgroups of boundaries and cycles,

∂Qint
2 ⊂ (Qint

1 )0 ⊂ Q
int
1 . (19.14)

From the core data we reconstruct

(Qint
0 )0 = Q

int
1 /(Qint

1 )0 (19.15)

and
Qint

2 /(Qint
2 )0 = ∂Qint

2 . (19.16)

Only one line’s worth of data is left to specify in order to reconstruct all of Q.
Define

Z(Qint
1 ) = Dint

1 ((Qint
1 )0)0 (19.17)

The last piece of data is a co-line

Λint ⊂ Z(Qint
1 ) . (19.18)

Now we reconstruct
(Qint

2 )0 = Z(Q
int
1 )/Λint (19.19)

and we finish the construction of Qint
0 using duality under the skew-hermitian intersection

form. The map Π1,1
∗ is given by

Π1,1
∗ : Z(Qint

1 )→ Z(Qint
1 )/Λint = Qint

2 . (19.20)

So a quasi Riemann surface Q is specified by the 1-space Qint
1 along with the core data

• the skew-hermitian form on Qint
1 ,

• the J-operator on Q1,

• the subgroups ∂Qint
2 ⊂ (Qint

1 )0 ⊂ Qint
1 ,

plus

• a co-line Λint ⊂ Z(Qint
1 ).
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19.3 Augment Σ

Now we want to use the conjecture to equate the Q(M)Z∂ξ with the quasi Riemann surface
Q(Σ) associated to a two-dimensional conformal space Σ. We want to do this in a way
that preserves the commonality of the cores of all the Q(M)Z∂ξ.

First, however, we have to construct Q(Σ). As pointed out in section 12.4, there is a
flaw in the straightforward construction of a quasi-Riemann surface

0← Qint
−1

∂
←− Qint

0
∂
←− Qint

1
∂
←− Qint

2
∂
←− Qint

3 ← 0 (19.21)

from an ordinary Riemann surface Σ, as the augmented de Rham complex

0← Z
∂
←− Dint

0 (Σ)
∂
←− Dint

1 (Σ)
∂
←− Dint

2 (Σ)
∂
←− Z← 0 . (19.22)

The problem is that we need the maps Πj,k
∗ on the currents in the (Qint

k )0 to induce
isomorphisms of homology,

H2((Q
int
0 )0) = H1((Q

int
1 )0) = H2(Q

int) = 0 . (19.23)

However, the homology groups Hj(Dint
k (Σ)0) are isomorphic to the homology groups

Hj+k(Σ) of the un-augmented de Rham complex,

H2(D
int
0 (Σ)0) = H1(D

int
1 (Σ)0) = H2(Σ) = Z . (19.24)

That is, there exist

µ1,1 ∈ D
int
1 (Dint

1 (Σ)0)0 , µ2,0 ∈ D
int
2 (Dint

0 (Σ)0)0 (19.25)

with
Π1,1

∗ µ1,1 = Σ , Π2,0
∗ µ2,0 = Σ (19.26)

so neither µ1,1 nor µ2,0 can be a boundary. They generate the non-trivial homology groups.
We need to construct an “augmentation”, Σ+, of Σ such that the ordinary de Rham

complex of Σ+ is

0← Dint
−1(Σ+)

∂
←− Dint

0 (Σ+)
∂
←− Dint

1 (Σ+)
∂
←− Dint

2 (Σ+)
∂
←− Dint

3 (Σ+)← 0 , (19.27)

with
Dint

−1(Σ+) ≃ Z , Dint
3 (Σ+) ≃ Z (19.28)

and homology
H1(Σ+) = H1(Σ) , Hk(Σ+) = 0 , k 6= 1 . (19.29)

In some sense, we want to make Σ+ from Σ by adding three new integral currents,

Dint
3 (Σ+) = Zη3 (19.30)

Dint
2 (Dint

1 (Σ+)0) = D
int
2 (Dint

1 (Σ)0)⊕ Zµ2,1 (19.31)

Dint
3 (Dint

1 (Σ+)0) = D
int
3 (Dint

0 (Σ)0)⊕ Zµ3,0 (19.32)
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satisfying
∂η3 = Σ , ∂µ2,1 = µ1,1 , ∂µ3,0 = µ2,0 (19.33)

Π2,1
∗ µ2,1 = η3 , Π3,0

∗ µ3,0 = η3 . (19.34)

Now Σ, µ1,1, and µ2,0 are boundaries. The bothersome homology groups are killed. I will
have to suppose that a precise construction of Σ+ can be made.

The de Rham complex of Σ+ now gives an actual quasi-Riemann surface Q(Σ+). The
defining co-line is

Λ(Σ+)
int = KerΠ1,1

∗ = ∂Dint
2 (Dint

1 (Σ)0) ⊂ ∂Dint
2 (Dint

1 (Σ+)0) = D
int
1 (Dint

1 (Σ+)0)0 . (19.35)

19.4 Isomorphisms of the Q(M)Z∂ξ to Q(Σ+)

Pick a point Z∂ξ ∈ PB(M). Pick an isomorphism

f : Q(M)Z∂ξ → Q(Σ+) (19.36)

which is determined by its isomorphism of the core structures,

f1 : Q(M)int
Z∂ξ,1 → Q(Σ+)

int
1 , (19.37)

of the defining co-lines,
f1∗ Λ(Z∂ξ)

int = Λ(Σ+)
int . (19.38)

Now consider another point Z∂ξ′ ∈ PB(M). The core structures of Q(M)Z∂ξ′ are the
same as those of Q(M)Z∂ξ, so f1 is also an isomorphism

f1 : Q(M)Z∂ξ′,1 → Q(Σ+)1 , (19.39)

preserving the core structures. However, the defining co-lines of Q(M)Z∂ξ′ and Q(M)Z∂ξ
are different, so

f1∗ Λ(Z∂ξ
′)int 6= Λ(Σ+)

int , (19.40)

so f1 does not give an isomorphism of quasi Riemann surfaces between Q(M)Z∂ξ′ and
Q(Σ+). Its image is a quasi Riemann surface that has the same core as Q(Σ+), but a
different defining co-line.

19.5 The universal bundle Q(0)→ PB(0) of quasi Riemann surfaces

Define
Z = Dint

1 ((Q(Σ+)1)0)0 (19.41)

and
PB(0) = {co-lines Λ ⊂ Z} (19.42)

so
Λ(Σ+)

int ∈ PB(0) (19.43)
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is a distinguished point. Let Q(0)Λ be the quasi Riemann surface with the same core
structure as Q(Σ+) but with defining co-line Λ. Then

Q(0) = ∪
Λ∈PB(0)

Q(0)Λ (19.44)

forms a bundle of quasi Riemann surfaces

Q(0)→ PB(0) . (19.45)

19.6 Embed Q(M)→ PB(M) in the universal bundle Q(0)→ PB(0)

Consider again the isomorphism f : Q(M)Z∂ξ → Q(Σ+) of section 19.4. Now

f1 : Q(M)int
Z∂ξ′,1 → Q(0)

int
Λ′,1 , Λ′ = f1∗Λ(Z∂ξ

′)int (19.46)

preserves the defining co-lines, so gives an isomorphism

f : Q(M)Z∂ξ′ → Q(0)Λ′ . (19.47)

Thus we have the embedding

Q(M)
f
>Q(0)

PB(M)
∨

f1∗
> PB(0)

∨
(19.48)

which is natural, up to the choice of the point Z∂ξ ∈ PB(M) to be mapped to Λ(Σ+)
int ∈

PB(0), and up to the choice of the isomorphism f .
In terms of the subgroup

f1∗Λ
int
M ⊂ Z , (19.49)

the embedding of PB(M) is

f1∗PB(M) =
{

co-lines Λ ⊂ Z : f1∗Λ
int
M ⊂ Λ

}

(19.50)

and the embedding of Q(M) is the restriction of Q(0). So M is characterized by the
subgroup f1∗Λ

int
M ⊂ Z, again up to the choice of Λ(Σ+)

int and f .

19.7 Homogeneity of Q(0)→ PB(0)

Let
G(Σ+) = Aut(Q(Σ+)

int
1 ) (19.51)

be the group of automorphisms of the core structure of Q(Σ+), the continuous abelian
group automorphisms that preserve the skew-hermitian form, the J-operator, and the
subspaces of cycles and boundaries.

Assuming that the conjecture holds, all of the quasi Riemann surfaces Q(0)Λ in the
universal bundle are isomorphic as quasi Riemann surfaces. Every isomorphism between
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Q(0)Λ and Q(0)Λ′ is given by an element of G(Σ+). Therefore G(Σ+) acts transitively
on PB(0). The subgroup of G(Σ+) that fixes Λ is Aut(Q(0)Λ). Therefore PB(0) is the
homogeneous space

PB(0) = G(Σ+)/Aut(Q(Σ+)) (19.52)

And the universal bundle Q(0)→ PB(0) is the bundle on G(Σ+)/Aut(Q(Σ+)) associated
to the action of Aut(Q(Σ+)) on Q(Σ+).

20 Mathematical questions

This section is simply a list of the main mathematical questions that the project depends
on, with references to the relevant sections of the paper where some background can be
found. Apart from these more or less specific questions, all of the mathematical arguments
in the paper need tightening. For the most part, I have not specified topologies on vector
spaces of currents, or domains of definition of forms on spaces of currents. I have supposed
the context to determine what is appropriate.

Recall from section 1.1 thatM is a compact, real, oriented manifold of even dimension
d = 2n, endowed with a conformal class of Riemannian metrics — or at least with a Hodge
∗-operator acting in the middle dimension, on n-forms.

Recall from section 1.5 that Dint
k (M) is the space of integral k-currents in M .

20.1 Does the Hodge ∗-operator act on T0Dint
n−1(M)0 ?

Dint
n−1(M)0 is the space of integral (n−1)-cycles in M . Its tangent space at 0 can be

identified with a subspace of the flat n-currents in M ,

T0D
int
n−1(M)0 = Vn ⊂ D

flat
n (M) . (20.1)

The Hodge ∗-operator acts on the flat n-currents. Does it preserve Vn?
Appendix A contains what I believe is the germ of a proof that the answer is ‘yes’. I

think that only some detail needs to be filled in.
This question was asked in section 3, based on definitions in section 2. The project

depends on an affirmative answer.
The space E∂ξ = Dint

n−1(M)∂ξ is the fiber over ∂ξ of the bundle

Dint
n−1(M)

∂
−→ ∂Dint

n−1(M) ⊂ Dint
n−2(M) . (20.2)

All of the vertical tangent spaces in the fibers are the same,

TξE∂ξ = T0D
int
n−1(M)0 = Vn ⊂ D

flat
n (M) . (20.3)

The action of the Hodge ∗-operator on the tangent spaces of E∂ξ is used in sections 7 and
9 to define an operator J = ǫn∗, J2 = −1, on the tangent spaces that makes E∂ξ — or its
complexification EC∂ξ when n is even — into an almost-complex space.
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20.2 Are quasi Riemann surfaces classified by their homology data?

In section 7, the intersection form on currents in M is modified slightly to become a
skew-hermitian form IM 〈 ξ̄1, ξ2 〉. In sections 11 and 12, the skew-intersection intersection
form is pulled up to EC∂ξ. The almost-complex structure J and the skew-hermitian form

on currents in EC∂ξ have exactly the properties of the almost-complex structure and the
skew-hermitian intersection form on currents in a Riemann surface. This structure is
codified in the definition of quasi Riemann surface in section 12.

The quasi Riemann surface associated to an ordinary Riemann surface is written
Q(Σ). The quasi Riemann surface associated to the EC∂ξ are written Q(M)Z∂ξ. They form
a bundle Q(M)→ PB(M) over the integral projective space PB(M) of the space B.

In section 14, a ‘wishful” conjecture is proposed: that quasi Riemann surfaces are
classified up to isomorphism by their homology data, and that each isomorphism class
contains the quasi Riemann space Q(Σ) of a two dimensional conformal space Σ. The
space Σ is a Riemann surface when the homology data is that of a Riemann surface.

For the connected case, which is H0(Dint
n−1(M)) = Z, the homology data consists of the

integral homology group Hn(M) in the middle dimension, with the skew-hermitian form
derived from the intersection form and with the almost-complex structure.

If the conjecture should fail, there would still be the question, do quasi-holomorphic
curves exist? A quasi-holomorphic curve would be a morphism of quasi Riemann surfaces
from some Q(Σ) to Q(M)Z∂ξ .

When the homology data is not that of a Riemann surface, the conjecture supposes a
two-dimensional conformal space Σ whose integral currents form a quasi Riemann surface
with that homology data. What are these two-dimensional conformal spaces?

If the conjecture holds, is there any possibility, say in the basic case, M = Sd, Σ = S2,
of actually writing an isomorphism between Q(M) and Q(Σ).

If the conjecture holds, then the automorphism group Aut(Q) of a quasi Riemann
surface Q depends only on the homology data of Q. What can be said about Aut(Q),
beyond the elementary comments made in section 12.7?

If the conjecture holds, what can be said about the bundle of quasi Riemann surfaces
Q(M) → PB(M) associated to M? It will have structure group Aut(Q(Σ)) where Σ is
the Riemann surface, or two-dimensional conformal space, with the same homology data
as M . The homotopy groups of the bundle E → B are given by the homology groups
of M [6]. Presumably there are analogous results on the homotopy groups of the bundle
Q(M)→ PB(M).

20.3 Can a Riemann surface be augmented?

In section 12.4, it is pointed out that there is an obstacle to forming a quasi Riemann
surface from the currents in a Riemann surface Σ. The homology groups Hj of the spaces
Dint

k (Σ)0 of integral cycles in Σ are not isomorphic to the homology groups Hj+k of the
augmented de Rham complex of Σ.

In section 19, it is supposed that a Riemann surface Σ — or, more generally, one of
the conjectured two-dimensional conformal spaces — can be augmented to a space Σ+
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whose de Rham complex of integral currents is the augmented de Rham complex of the
original space Σ, which has homology only in the middle dimension, dimension 1,

0← Dint
−1(Σ+)

∂
←− Dint

0 (Σ+)
∂
←− Dint

1 (Σ+)
∂
←− Dint

2 (Σ+)
∂
←− Dint

3 (Σ+)← 0 , (20.4)

with
Dint

−1(Σ+) ≃ Z , Dint
3 (Σ+) ≃ Z (20.5)

and homology
H1(Σ+) = H1(Σ) , Hk(Σ+) = 0 , k 6= 1 . (20.6)

The augmentation would kill the homology of Σ in dimension 2 by adding an integral
3-current η3 whose boundary is Σ, ∂η3 = Σ. This would have to be done in such a way
as to kill the homology groups H1(Dint

1 (Σ)0) and H2(Dint
0 (Σ)0).

Does a Riemann surface Σ have such an augmentation Σ+?

20.4 What can be said about the universal bundle of quasi Riemann surfaces?

The “explorations” of section 19 lead to a universal bundle of quasi Riemann surfaces
Q(0) → PB(0) for each value of the homology data, where PB(0) is a homogeneous
space,

PB(0) = G(Σ+)/Aut(Q(Σ+)) , (20.7)

and Q(0) is the bundle over PB(0) associated to the action of Aut(Q(Σ+)) on the quasi
Riemann surface Q(Σ+). The group G(Σ+) is the group of automorphisms of Dint

1 (Σ+)
— the continuous abelian group automorphisms that preserve the skew-hermitian form
and the J-operator, and the subgroups of cycles and boundaries.

The homogeneous space PB(0) is also described as the space of integral co-lines in

Z = Dint
1 (Dint

1 (Σ)0)0 . (20.8)

The conjecture leads to the association of a subgroup of Z to the manifold M , and
identifies PB(M) with the subset of integral co-lines in Z that contain that subgroup.
So PB(M) is embedded in PB(0), and the bundle of quasi Riemann surfaces Q(M) →
PB(M) is the restriction of Q(0)→ PB(0).

This is to be the universal setting for extended conformal quantum field theory and per-
haps, eventually, extended non-conformal quantum field theory. Anything about its struc-
ture could be useful. In particular, the group of conformal symmetries of M , Conf(M),
acts on Q(M)→ PB(M). Is Conf(M) a conjugacy class of subgroups of G(Σ+)?

20.5 How much function theory can be done on a quasi Riemann surface?

This is a vague question. Two-dimensional conformal field theory uses a fair amount of
the the theory of functions — and conformal tensors — on Riemann surfaces. How much
of that can be done on a quasi Riemann surface? Extended conformal field theory on
quasi Riemann surfaces will presumably have need of it. The Schwinger-Dyson equations
(10.5–10.6) on EC∂ξ would seem to be a starting point.
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20.6 Are there mathematical applications?

This is presumptuous, considering the amount of conjecture and supposition. Still, if all
can be made rigorous, there should be mathematical applications. The setting is rather
general — a space M that has forms and currents, of even dimension d = 2n, with a ∗-
operator acting in the middle dimension. The association of the bundle Q(M)→ PB(M)
of quasi Riemann surfaces to each such M should offer opportunities for constructing
invariants of M and for investigating the geometry of M . The embedding in a universal
bundle of quasi Riemann surfaces might offer opportunities for studying the space of such
spaces M .

21 Further steps

This section lists some possible further steps. The project depends on answers to at
least the first three of the mathematical questions listed in section 20. However, it might
be possible to make some progress — in particular, constructing extended conformal field
theories on quasi Riemann surfaces — without resolving the conjecture on the equivalence
of quasi Riemann surfaces. And it might be possible to take some additional formal steps
assuming the conjecture, without having the actual isomorphisms in hand and without
knowing the automorphism groups of the quasi Riemann surfaces.

21.1 Extended CFT on quasi Riemann surfaces

A 2d extended conformal field theory (2d ECFT) is an ordinary 2d CFT on Riemann
surfaces Σ extended to the quasi Riemann surfaces Q(Σ). As discussed in section 15, the
observables are to be extended from products of local fields over finite sets of points in Σ
to products over integral 0-currents in Σ. The extension should use only the geometric
structures of the quasi Riemann surface, so that the resulting ECFT will be invariant
under the automorphism group Aut(Q(Σ)) of the quasi Riemann surface.

One might start by trying to extend the 2d gaussian model on Σ = S2, where we have
explicit expressions for the correlation functions of the ordinary vertex operators. The
0-form fields φ± are linear functionals on 0-currents. Vertex operators Vi(z), which are
exponentials of the φ±, give ordinary observables of the form

Φ(η) = V1(z1)V2(z2) · · ·VN(zN) , η =
∑

i

δzi . (21.1)

associated to the 0-current η. The extension to V (η) defined at arbitrary integral 0-
currents η will be an observable of a novel sort in the 2d CFT. It will be a product of
ordinary 2d vertex operators at a fractal set of points in the Riemann surface Σ.

Then one might try to carry out on the extended 2d gaussian model the usual con-
structions that are performed on the ordinary CFT, such as the Z2 orbifold and the
SU(2)× SU(2) symmetry in the R = 1 model.
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In the end, we want a general construction of a 2d ECFT from an ordinary 2d CFT.
The space of extended observables should be some kind of limit

H = lim
N→∞

⊕
{z1,...,zN}

(

⊗
z∈{z1,...,zN}

Hz

)

(21.2)

where Hz is the vector space of local fields at the point z ∈ Σ, including the identity field,
such that the extended observables have the form of functions Φ(η) on Dint

0 (Σ). Among
the questions that arise — what is the role of the abelian group structure of Dint

0 (Σ) in
the general ECFT?

It might be possible to describe the extended observables on Q(Σ) by their manifesta-
tions on the local q-h curves. The local q-h curves in Q(Σ) are given, conjecturally, by the
local coordinate neighborhoods in Σ, up to automorphisms of Q(Σ). For each q-h curve
C, an extended observable will appear as a state ψ(C) in the state space of the radial
quantization of the 2d CFT on the unit complex disk. The collection of states ψ(C),
subject to coherence conditions, might serve to characterize the extended observables.

The stress-energy tensor T (z), T̄ (z̄) of the 2d CFT on the Riemann surface Σ has to
be lifted to Q(Σ). In the free n-form/2d gaussian model, they lift to fields on EC∂ξ,

T++(ξ) = −
1

2
j†+(ξ̄)j+(ξ) , T−−(ξ) = −

1

2
j†−(ξ̄)j−(ξ) , (21.3)

where j± are the chiral 1-form fields on EC∂ξ. Pulled back along a q-h curve, T++ and T−−

become the analytic and anti-analytic stress-energy tensors on the unit disk. For each
local q-h curve, the usual pair of Virasoro algebras will act on the states. Collectively,
these should form a large Lie algebra acting on the space of extended observables. An
operator product algebra of the extended observables should be built from a product
of the operator product algebras on the q-h curves. And perhaps there should be an
inner product on the space of extended observables, so that there is a representation
by operators on Hilbert space. Eventually, there might be an axiomatic formulation of
extended conformal field theory.

21.2 Gauge invariance

If the conjecture holds, the ECFT on Q(Σ) is to be transported by isomorphisms to each
of the fibers of the bundle of quasi Riemann surfaces Q(M) → PB(M). That bundle is
embedded in the universal bundle Q(0) → PB(0). The core of each fiber is the same.
The 1-spaces in each fiber are the same,

Q(M)Z∂ξ,1 = D
int
n (M) , Q(0)λ,1 = D

int
1 (Σ+) . (21.4)

The 0-cycles in each fiber are the same,

(Q(M)int
Z∂ξ,0)0 = D

int
n−1(M)0 , (Q(0)intλ,0)0 = D

int
0 (Σ+)0 , (21.5)

as are the dual spaces of 2-currents. For convenience, I am omitting the complexifications
that are needed when n is even.
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The remaining data of the quasi Riemann surfaces, that distinguishes the fibers, is the
orientation of the integral co-line in Z = Dint

1 (Dint
1 (Σ)0)0 which determines the integral

line of 2-cycles
(Q(M)intZ∂ξ,2)0 or (Q(0)intλ,2)0 (21.6)

and its dual line

Q(M)intZ∂ξ,0/(Q(M)intZ∂ξ,0)0 or Q(0)intλ,0/(Q(0)
int
λ,0)0 . (21.7)

We might call the extended observables on the core of a quasi Riemann surface the
core of the ECFT. The cores of the ECFTs on the fibers of Q(M) → PB(M) must be
all the same, because they are the same fields of extended objects in M . It is natural
to require the same in the universal bundle Q(0) → PB(0). For the 2d gaussian model,
the core ECFT is the algebra generated by the integrals of the 1-forms j± over integral
1-cycles.

On each fiber, there will be some freedom in the extension of the core ECFT to an
ECFT on the entire quasi Riemann surface. The is the local gauge symmetry over PB(M)
or, universally, over PB(0). In the free n-form/2d gaussian model, this is the freedom to
choose the zero-modes of the 0-form fields φ±, as described in section 17 for the classical
theory. We get a bundle of theories T (M) → PB(M) or, universally, T (0) → PB(0),
which are the ECFTs extending the core ECFT.

It seems, then, that extended CFT will have additional structure beyond what is given
in ordinary 2d CFT. There should always be a core ECFT and a set of extensions to the
full quasi Riemann surface. Consider for example the 2d gaussian model at R = 1, where
the two 1-form fields j± of the U(1)×U(1) current algebra grow to the six 1-form fields of
a SU(2)× SU(2) current algebra. The core ECFT of the 2d gaussian model is generated
by the integrals of j± over 1-cycles. The space of extensions is a principal homogeneous
space for the global symmetry group U(1) × U(1). But, at R = 1, the core ECFT can
be expanded to the algebra generated by integrals of the SU(2) × SU(2) 1-form fields
over 1-cycles. The space of extensions will be a principal homogeneous space for the
global symmetry group SU(2)×SU(2). Different ECFTs can be produced from the same
ordinary CFT, depending on how the core of the ECFT is chosen.

Is the set of extensions always a homogeneous space for a group? That group would
be the global symmetry group. Is the set of extensions always a principal homogeneous
space for the global symmetry group? Some examples might clarify.

Is there some general method to gauge-fix over PB(M), partially, so that the remaining
gauge symmetry is a local gauge symmetry in the space-timeM , as described in section 17
for the classical n-form theory?

21.3 Connecting the Q(M)∂ξ

We need a general picture of how the ECFTs on the fibers ofQ(M)→ PB(M) fit together
to make one quantum field theory. Or perhaps we can fit together all the ECFTs on the
fibers of the universal bundle Q(0) → PB(0) to form a single universal quantum field
theory that specializes to any space-time M with the appropriate homology data. The
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conformal symmetry group of space-time, Conf(M), will act on Q(M) → PB(M), and
perhaps on Q(0)→ PB(0), so we certainly need a single theory on which Conf(M) will
be represented.

I am not sure how to adapt the argument of section 18 to the general case. In section 19,
PB(0) is described as the homogeneous space G(Σ+)/Aut(Q(Σ)), and Q(0)→ PB(0) is
described as an associated fiber bundle, with G(Σ+) acting as a symmetry group on the
fiber bundle. The action of G(Σ+) should provide a natural connection in Q(0)→ PB(0).
But I do not see that it fixes the common core of the fibers, so I do not see how it will give
a connection in the bundle T (0)→ PB(0) of theories. And I am not sure what the result
should look like. The result of section 18 for the n-form theory is that gauge invariant
observables in the bundle can be transported to any one single fiber. Perhaps a better
statement would be that gauge invariant observables can be transported to the common
core of all the fibers — that the non-zero correlation functions of the space-time theory
are the correlation functions of the core ECFT.

21.4 The local fields in space-time

Given an extended CFT, there should be a general way to identify the local fields on
the space-time M , acted on by the conformal symmetry group Conf(M). Taking M =
Sd, it should be possible to derive the spectrum of scaling dimensions from the data
of the underlying 2d CFT. Perhaps the local fields can be identified from the extended
observables on the infinitesimally small integral currents.

21.5 Partition functions and variation of conformal structure

If the conjecture holds, then it seems reasonable to suppose that not only the correlation
functions but also the partition function of the space-time conformal field theory will
be given by the corresponding 2d CFT. If in fact there does exist a two-dimensional
conformal space Σ for every set of homology data, the partition function of each theory
will be a function of the homology data – or a section of a line bundle over the space of
homology data. The identity between the partition functions of the two theories can be
demonstrated by showing that they have the same variations with respect to the homology
data, and then showing that they have the same behavior at transition singularities where
the homology group changes.

In the two-dimensional conformal space, a variation of the homology data is given
by an infinitesimal perturbation of the almost-complex structure J , which is expressed
by a Beltrami differential, which is a (-1,1)-tensor hzz̄. Somehow, if there is to be a two-
dimensional conformal space for every set of homology data, the usual conditions on the
Beltrami differentials on a Riemann surface must be modified, because the homology data
has more directions of variation than there are moduli of the Riemann surface. Perhaps
the augmentations Σ+ of Riemann surfaces Σ discussed in section 19.3 might have different
moduli.

The variation of the partition function is given by the integral over Σ of the (1,1)-
form 〈 Tzzhzz̄ 〉dzdz̄ where Tzz is the holomorphic (2, 0)-component of the stress-energy
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tensor. The considerations of section 16 might be used to equate this variation of the 2d
partition function with the variation of the space-time partition function with respect to
the homology data of M .

21.6 Non-conformal extended quantum field theory

If extended CFTs in space-time can be built successfully from 2d CFTs, next will be
to extend the correspondence to non-conformal quantum field theories by establishing an
equivalence between renormalized perturbation theory around an extended CFT in space-
time and renormalized perturbation theory around the corresponding 2d CFT. Space-time
will be M = Rd. The corresponding two-dimensional space will be, presumably, Σ = R2.
Perturbation theory in space-time will be renormalized with respect to the euclidean
metric on Rd in order to construct a quantum field theory with euclidean symmetry, to
be Wick-rotated to Minkowski space R1,d−1.

Some way is needed to transfer the euclidean metric on Rd to the two-dimensional
space Σ. Perhaps the simplest route is to put a specific metric space structure on the
quasi Riemann surface Q(M)Z∂ξ using the euclidean metric on Rd, then transfer the met-
ric space structure to Q(Σ) via an isomorphism of quasi Riemann surfaces (assuming
the conjecture). I do not know of any guarantee that the induced metric space struc-
ture on Q(Σ) would come from a Riemannian metric on Σ. So it would be necessary
to investigate the renormalization of perturbations of an ECFT with respect to a metric
space structure on Q(Σ). A very naive hope would be that this is the same as renor-
malization of perturbations of the underlying 2d CFT on Σ with respect to a metric on
Σ, giving a correspondence between non-conformal 2d quantum field theories on Σ and
non-conformal quantum field theories of extended objects in Rd. Then one might wonder
how the operator representation of the 2d QFT is related to the operator representation in
the Minkowski space-time QFT, how the 2d S-matrix might be related to the space-time
S-matrix, how 2d integrability might be manifested in the space-time QFT.

A fanciful prospect is an integrable, asymptotically free 2d QFT with nonabelian global
symmetry corresponding to an asymptotically free 4d quantum field theory of extended
objects with nonabelian local gauge symmetry.

22 Questions about history and references

I would appreciate advice on the history of ideas germane to this work, and on their
proper citation. To be safe, I have cited the basic works on the free 2-form in d=4
dimensions [1–3].

The proximate influences on the present work were

• G. Moore’s frequent comments that a QFT cannot be understood without under-
standing its extended objects,

• N. Seiberg’s September 23, 2014 Rutgers seminar on his paper with Gaiotto, Ka-
pustin, and Willett on generalized charges in quantum field theory, Generalized
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global symmetries [8].

• many conversations with S. Thomas and C. Keller about conformal field theory in
dimensions d > 2, and

• especially a comment of S. Thomas suggesting that nonabelian structure might be
found in the extended objects, after the realization [9] that nonabelian operator
algebras of self-dual n-forms were impossible in d > 2 dimensions,

• a search of the World Wide Web for ‘spaces of cycles’, which yielded a number of
pointers to geometric measure theory, especially Gromov’s 2015 note Morse Spectra,
Homology Measures, Spaces of Cycles and Parametric Packing Problems [10].

In statistical mechanics, the 2d gaussian model as the free 1-form with compact sym-
metry group U(1)×U(1) should perhaps be attributed to Mermin-Wagner-Hohenberg and
Berezinskii-Kosterlitz-Thouless.

In string theory, the free 1-form in 2d was the basic tool of the world-sheet technology.
The decomposition of the free 1-form into chiral components and the vertex operator
representation of the “extended objects” were done in string theory. The compactification
of the target to a circle of radius R was the implementation of Kaluza-Klein theory.

I am not sure where the name 2d gaussian model came from. Free massless scalar field
theory is known in statistical mechanics as the gaussian model. In 2d, the logarithmic
infrared divergence forces compactification of the target space to a circle of radius R.
Maybe I learned to call this the 2d gaussian model from Leo Kadanoff in the early 1980s.

Who first noted the analogy between the free 1-form in 2d and Maxwell’s theory in
4d and the generalization to the free n-form in d = 2n dimensions? The line integrals
of gauge potentials in nonabelian gauge theory are called Wilson loop operators. Where
was it noticed that these are the operators describing extended objects in the free n-form
theory?

There is a large mathematics and physics literature on the free n-form theories in
d = 2n dimensions with n odd, especially the theories of self-dual n-forms — in particular,
Hopkins and Singer, Quadratic functions in geometry, topology, and M-theory [11] and
Freed, Moore, and Graeme Segal, Heisenberg groups and noncommutative fluxes [12].
These papers are too far over my head for me to tell if they are germane to the present
work. I do notice that the latter paper discusses the analogy between the free n-form
theory and the 2d gaussian model, and some of its calculations seem to resemble those on
gauge invariance in section 17. In any case, if the present project works out, there will
surely be points of contact.

Geometric measure theory
I have cited what I understand to be the basic references for geometric measure theory

[4–6], but my grasp of the subject is weak and superficial.
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Appendices

A Construction of a path of integral currents a la Game of Thrones

This section gives a construction that should be the germ of a proof that the Hodge ∗-
operator acts on the tangent spaces of the space Dint

n−1(M)0 of integral (n−1)-cycles in a
conformal manifold M of dimension d = 2n.

As in section 3 above, we consider the path of singular 1-cycles in R4,

ξ(ǫ) = ∂
[

δ(x1)δ(x2)θ[0,1](x
3)θ[0,ǫ](x

4)ê3 ∧ ê4
]

, (A.1)

where θ[a,b] is the characteristic function of the interval [a, b] ⊂ R. The 1-cycles ξ(ǫ) are
the boundaries of rectangles in the 3-4 plane in R4, shrinking to the interval [0, 1] in the
3-axis. The tangent vector to the path ξ(ǫ) at ǫ = 0 is the flat 2-current

ξ̇ = δ(x1)δ(x2)θ[0,1](x
3)δ(x4)ê3 ∧ ê4 . (A.2)

The Hodge ∗-operator on ξ̇ is

∗ ξ̇ = δ(x1)δ(x2)θ[0,1](x
3)δ(x4)ê1 ∧ ê2 . (A.3)

The flat 2-current ∗ξ̇ is not tangent to any path of singular 1-cycles.
Here, a path ξint1 (ǫ) of integral 1-cycles is constructed whose tangent vector is

ξ̇int1 = ∗ξ̇ . (A.4)

The rest of the proof might then go:

1. Use the rotations in R4 that leave the 3-axis fixed to get paths of integral cycles
with tangent vectors of the form

δ(x1)δ(x2)θ[0,1](x
3)δ(x4) tµν (A.5)

for arbitrary 2-vector tµν .

2. Scale and rotate in R4 to get paths with tangent vectors θIt
µν , where θI is the

characteristic 0-current of any interval I in R4, arbitrarily small, and where tµν is
any 2-vector. This space of flat 2-currents is manifestly closed under the action of
the Hodge ∗-operator.

3. Using coordinates in M , take limits of linear combinations of the paths constructed
in the previous step to get paths of integral 1-currents with tangent vector any flat
2-current in M that is supported on an integral 1-current in M .

4. Thus the tangent space at 0 of the space of integral 1-cycles in M is exactly the
space of flat 2-currents in M that are supported on the integral 1-currents in M .
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5. The Hodge ∗-operator manifestly acts as a bounded operator on the space of flat
2-currents that are supported on the singular 1-crrents, so it acts on the tangent
space.

Generalizing the construction of the path ξint1 (ǫ) to arbitrary d = 2n will be straightfor-
ward, and the rest of the proof is the same as in d = 4 dimensions.

The construction of the path ξint1 (ǫ) takes place within R
3 ⊂ R

4. First, an integral
2-current ξint2 is constructed, supported in the unit cube ([0, 1])3 ⊂ R3. Then a path of
integral 2-currents ξint2 (ǫ) is constructed by scaling ξint2 in the 1-2 plane, under

(x1, x2, x3) 7→ (ǫ
1

2x1, ǫ
1

2x2, x3) . (A.6)

As ǫ → 0, the original 2-current ξint2 is squashed onto the interval [0, 1] in the 3-axis.
The construction is designed so that limǫ→0 ξ

int
2 (ǫ) = ∗ξ̇. So the path of integral 1-cycles

ξint1 (ǫ) = ∂ξint2 (ǫ) has tangent vector ξ̇int1 = ∗ξ̇.
The integral 2-current ξint2 is a fractal. Its construction is illustrated in the attached

animations GOT1.gif and GOT2.gif, which are also available at
http://www.physics.rutgers.edu/pages/friedan/GOT/.

Animated gifs can be viewed in most web browsers. The animated gifs were made
with Sagemath [13] and ImageMagick [14]. The visualized construction bears a slight
resemblance to a part of the title sequence animation of the television show Game of
Thrones [15].

Define the 2-current S(y1, y2, y3; a) to be the square in the 1-2 plane with corner at
~y = (y1, y2, y3) and side a,

S(~y; a) = θ[y1,y1+a](x
1)θ[y2,y2+a](x

2)δ(x3 − y3) ê1 ∧ ê2 . (A.7)

Define an operator R(b) on such squares that splits the square into 4 quadrants and lifts
the quadrants in the 3-direction, not lifting the first quadrant, lifting the second quadrant
by b/4, lifting the third quadrant by 2b/4, and lifting the fourth quadrant by 3b/4,

R(b)S(~y; a) =

4
∑

i=1

S(~yi; a/2) (A.8)

where

~y4 = ~y +
a

2
ê2 +

3b

4
ê3 , ~y3 = ~y +

a

2
(ê1 + ê2) +

2b

4
ê3 (A.9)

~y1 = ~y , ~y2 = ~y +
a

2
ê1 +

b

4
ê3 . (A.10)

Then extend R(b) to sums of squares by linearity over the integers.
Let ξint2,0 be the square in the 1-2 plane of side 1 with corner at the origin,

ξint2,0 = S(~0; 1) (A.11)
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Define a sequence of integral 2-currents ξint2,0, ξ
int
2,1, ξ

int
2,2 , . . . by

ξint2,k+1 = R(4−k)ξint2,k , (A.12)

so ξint2,k is a sum of 4k squares in the 1-2 plane, each of area 4−k, at heights

x3 = j4−k, j = 0, 1, 2, . . . , 4k − 1 . (A.13)

The total area is left unchanged by R(b), so

‖ξint2,k‖flat = 1 . (A.14)

The operator R(b) acting on a square sweeps out a 3-chain in the shape of a 4-step spiral
staircase with square steps of heights 0, b/4, 2b/4, and 3b/4. Let S3 be the 3-current
representing the staircase and let S2 be the 2-current representing the vertical sides of the
staircase, so

R(b)S(~y; a)− S(~y, a) = ∂S3 − S2 (A.15)

The volume of the staircase is

M3(S3) =
b

4

(a

2

)2

+
2b

4

(a

2

)2

+
3b

4

(a

2

)2

=
3

8
ba2 . (A.16)

The vertical sides consist of 24− 6 = 18 rectangles of vertical side b/4 and horizontal side
a/2, so the area of the vertical sides is

M2(S2) = 18
b

4

a

2
=

9

4
ba (A.17)

Therefore

‖R(b)S(~y; a)− S(~y, a)‖flat ≤M2(S2) +M3(S3) =
9

4
ba+

3

8
ba2 (A.18)

In ξint2,k, there are 4k squares, each with a = 2−k, so

‖ξint2,k+1 − ξ
int
2,k‖flat ≤ 4k

[

9

4
4−k2−k +

3

8
4−k(2−k)2

]

=
9

4
2−k +

3

8
4−k , (A.19)

so ξint2,k is a Cauchy sequence. The space of integral currents with bounded norm and
bounded support is compact, so Cauchy sequences converge. Let

ξint2 = lim
k→∞

ξint2,k . (A.20)

Scale ξint2 and the ξint2,k by ǫ
1

2 in the 1-2 plane to get

ξint2 (ǫ) = lim
k→∞

ξint2,k(ǫ) (A.21)
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with
‖ξint2 ‖flat = ‖ξ

int
2,k‖flat = 1 . (A.22)

The integral 2-current ξint2,k(ǫ) consists of the square [0, ǫ
1

2 ]× [0, ǫ
1

2 ] in the 1-2 plane divided

into a checkerboard of 4k squares each of area 4−kǫ, each small square raised to one of the
evenly distributed heights,

x3 = j4−k, j = 0, 1, 2, . . . , 4k − 1 . (A.23)

As ǫ→ 0, each of the 4k small squares is squashed onto the 3-axis. For ω a smooth 2-form,

∫

ξint
2

(ǫ)

ω = lim
k→∞

∫

ξint
2,k

(ǫ)

ω ≈ lim
k→∞

4k−1
∑

j=0

4−kǫ ω12(0, 0, 4
−kj) ≈ ǫ

∫ 1

0

dx3 ω12(0, 0, x
3) , (A.24)

so

lim
ǫ→0

ξint2 (ǫ)

ǫ
= δ(x1)δ(x2)θ[0,1](x

3) ê1 ∧ ê2 = ∗ξ̇ . (A.25)

Therefore the tangent vector at ǫ = 0 to the path of integral 1-cycles

ξint1 (ǫ) = ∂ξint2 (ǫ) (A.26)

is
ξ̇int1 = ∗ξ̇ . (A.27)

B The free complex n-form on euclidean Rd

In this section, the Schwinger-Dyson equations are written for the chiral fields F±(x) and
A±(x) of the free complex n-form quantum field theory on euclidean Rd, d = 2n. The S-D
equations on M = Rd determine the S-D equations on any manifold M , by dimensional
analysis. There are some arbitrary choices: (1) the overall normalization of the two-point
functions, and (2) the contact terms in the two-point functions. The overall normalization
is fixed by matching to a standard convention in the 2d theory. The contact terms are
fixed by imposing symmetry.

The notation is as in sections 1.1, 1.2, and 7.

B.1 Adjoints of F and F ∗

Wick rotate to Minkowski space. Write xi, i = 1, . . . , d − 1 for the spatial coordinates.
Write xd for euclidean time and x0 for Minkowski space time, with xd = ix0.

The magnetic field (up to normalization) is Fi1...in(x). The electric field (up to nor-
malization) is Fi1...in−10(x) = iFi1...in−1d(x). For real F , the magnetic and electric fields
are self-adjoint, so, for complex F ,

F †
i1...in

(x) = F̄i1...in(x) , F †
i1...in−1d

(x) = −F̄i1...in−1d(x) . (B.1)
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The Hodge ∗-operator acts by

∗Fµ1...µn
=

1

n!
ǫµ1...µn

ν1...νnFν1...νn (B.2)

so

∗Fi1...in =
1

(n− 1)!
ǫi1...in

j1...jn−1dFj1...jn−1d , ∗Fi1...in−1d =
1

n!
ǫi1...in−1d

j1...jnFj1...jn (B.3)

so
(∗Fi1...in)

† = −∗F̄i1...in , (∗Fi1...in−1d)
† = ∗F̄i1...in−1d (B.4)

so, if we define the dual n-form

F ∗ = δni
−1∗F , δn = ±1 , (B.5)

then F ∗ has the same self-adjointness properties as F . That is, in Minkowski space,

F †(x) = F̄ (x) , F ∗†(x) = F̄ ∗(x) = −F ∗(x) . (B.6)

The choice of δn = ±1 will be left arbitrary in this section. In the body of the paper,
δn = 1 is used.

B.2 Notation: adjoints of euclidean fields

Define the adjoint of a euclidean field to be the Wick-rotate of the adjoint of the Minkowski
field:

F †(x) = F̄ (x) , F ∗†(x) = F̄ ∗(x) = −F ∗(x) . (B.7)

Reflection positivity of the euclidean correlation functions is then

〈F †(Rx)F (x) 〉 > 0 , Rx 6= x , (B.8)

where R is the reflection xd → −xd.

B.3 The chiral fields F± and A± and their adjoints

The chiral components of F and A and their adjoints are

F± =
1

2

(

1± i−1J
)

F =
1

2

(

1± i−1ǫn∗
)

F =
1

2
(F ± ǫnδnF

∗) , (B.9)

A± =
1

2
(A± ǫnδnA

∗) (B.10)

F †
± =

1

2
(F † ± ǭnδnF

∗†) =
1

2
(F̄ ∓ ǭnδn F

∗) = F∓ , (B.11)

A†
± = A∓ . (B.12)
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B.4 The two-point functions and the Schwinger-Dyson equations

F (x) has scaling dimension n, so its two-point functions are linear combinations of two
invariants, one of which is a pure contact term. The non-contact invariant is

G(ξ̄1, ξ2) =

∫

dnx

∫

dny
1

n!
ξ̄µ1...µn

1 (x)G(x, y)µ1...µn;ν1...νn

1

n!
ξν1...νn2 (y)

G(x, y)µ1...µn;ν1...νn =

∫

ddp

(2π)d
eip(x−y)G(p)µ1...µn;ν1...νn (B.13)

G(p)µ1...µn;ν1...νn =
1

p2
1

(n− 1)!
AltµAltν(pµ1

pν1δµ2ν2 · · · δµnνn) .

The pure contact invariant is given in terms of the intersection form,

I(ξ̄1, ∗ξ2) =

∫

dnx
1

n!
ξ̄µ1...µn

1 (x)Altµ(δµ1ν1 · · · δµnνn)
1

n!
ξν1...νn2 (x) . (B.14)

They satisfy
G(ξ̄1, ξ2) = G(ξ̄2, ξ1) , IM(ξ̄1, ∗ξ2) = IM(ξ̄2, ∗ξ1) , (B.15)

G(ξ̄1, ∂ξ2) = 0 , G(∂ξ1, ξ2) = 0 , (B.16)

G(ξ̄1, ξ2) +G(∗ξ1, ∗ξ2) = IM(ξ̄1, ∗ξ2) . (B.17)

A simple way to derive the last equation, (B.17), is by calculating

G(p)1,2,...,n;1,2,...,n =
1

p2

n
∑

i=1

p2i , G(p)n+1,n+2,...,d;n+1,n+2,...,d =
1

p2

d
∑

i=n+1

p2i . (B.18)

Equation (B.17) is equivalent to

G(P+ξ1, P+ξ2) =
i

2
IM〈 ξ̄1, P+ξ2 〉 , G(P−ξ1, P−ξ2) = −

i

2
IM〈 ξ̄1, P−ξ2 〉 (B.19)

The first S-D equations are imposed by fiat,

〈F †(ξ̄1)F (∂ξ2) 〉 = 0 , 〈F ∗†(ξ̄1)F
∗(∂ξ2) 〉 = 0 . (B.20)

These determine two of the two-point functions,

〈F †(ξ̄1)F (ξ2) 〉 = BnG(ξ̄1, ξ2) , 〈F ∗†(ξ̄1)F
∗(ξ2) 〉 = BnG(ξ̄1, ξ2) (B.21)

where Bn is a real constant. By (B.18), reflection positivity implies

Bn > 0 . (B.22)

The remaining two-point functions have the form

〈F ∗†(ξ̄1)F (ξ2) 〉 = Bni
−1δn

[

G(∗ξ1, ξ2) + bnIM(ξ̄1, ξ2)
]

(B.23)

〈F †(ξ̄1)F
∗(ξ2) 〉 = Bni

−1δn
[

G(ξ̄1, ∗ξ2) + b̄nIM(ξ2, ξ̄1)
]

(B.24)
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for some complex constant bn. The two-point functions of the chiral components are then

〈F †
+(ξ̄1)F−(ξ2) 〉 = Bn

[

−
i

4
(1 + bn + b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.25)

〈F †
−(ξ̄1)F+(ξ2) 〉 = Bn

[

i

4
(1 + bn + b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.26)

〈F †
+(ξ̄1)F+(ξ2) 〉 = Bn

[

G(P−ξ1, ξ2) +
i

4
(1− bn + b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.27)

= Bn

[

G(ξ̄1, P+ξ2)−
i

4
(1 + bn − b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.28)

〈F †
−(ξ̄1)F−(ξ2) 〉 = Bn

[

G(P+ξ1, ξ2)−
i

4
(1− bn + b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.29)

= Bn

[

G(ξ̄1, P−ξ2) +
i

4
(1 + bn − b̄n)IM〈 ξ̄1, ξ2 〉

]

(B.30)

The most symmetric choice is bn = −1
2
, giving

〈F †
+(ξ̄1)F−(ξ2) 〉 = 0 (B.31)

〈F †
−(ξ̄1)F+(ξ2) 〉 = 0 (B.32)

〈F †
+(ξ̄1)F+(ξ2) 〉 = Bn

[

G(P−ξ1, ξ2) +
i

4
IM〈 ξ̄1, ξ2 〉

]

(B.33)

= Bn

[

G(ξ̄1, P+ξ2)−
i

4
IM〈 ξ̄1, ξ2 〉

]

(B.34)

〈F †
−(ξ̄1)F−(ξ2) 〉 = Bn

[

G(P+ξ1, ξ2)−
i

4
IM〈 ξ̄1, ξ2 〉

]

(B.35)

= Bn

[

G(ξ̄1, P−ξ2) +
i

4
IM〈 ξ̄1, ξ2 〉

]

(B.36)

The S-D equations follow immediately,

〈F †
+(ξ̄1)F+(∂ξ2) 〉 = Bn

i

4
I〈 ξ̄1, ∂ξ2 〉 = −Bn

i

4
IM〈 ∂ξ̄1, ξ2 〉 (B.37)

〈F †
+(∂ξ1)F+(ξ2) 〉 = −Bn

i

4
IM〈 ∂ξ̄1, ξ2 〉 = Bn

i

4
IM〈 ξ̄1, ∂ξ2 〉 (B.38)

〈F †
−(ξ̄1)F−(∂ξ2) 〉 = −Bn

i

4
IM〈 ξ̄1, ∂ξ2 〉 = Bn

i

4
IM〈 ∂ξ̄1, ξ2 〉 (B.39)

〈F †
−(∂ξ1)F−(ξ2) 〉 = Bn

i

4
IM〈 ∂ξ̄1, ξ2 〉 = −Bn

i

4
IM〈 ξ̄1, ∂ξ2 〉 . (B.40)
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These S-D equations are compatible with dA± = F±. Integrate them to get

〈A†
+(ξ̄0)F+(∂ξ2) 〉 = −Bn

i

4
IM〈 ξ̄0, ξ2 〉 (B.41)

〈F †
+(∂ξ2)A+(ξ0) 〉 = Bn

i

4
IM 〈 ξ̄2, ξ0 〉 (B.42)

〈A†
−(ξ̄0)F−(∂ξ2) 〉 = Bn

i

4
IM 〈 ξ̄0, ξ2 〉 (B.43)

〈F †
−(∂ξ2)A−(ξ0) 〉 = −Bn

i

4
IM〈 ξ̄2, ξ0 〉 (B.44)

The normalization constants Bn are fixed by matching to a standard convention in d = 2
dimensions, as described in section B.6 below,

Bn = 8π . (B.45)

B.5 Summary

The Schwinger-Dyson equations for the chiral fields are

〈F †
ᾱ(ξ̄1)Fβ(∂ξ2) 〉 = 2πiγᾱβIM〈 ξ̄1, ∂ξ2 〉 = −2πiγᾱβIM〈 ∂ξ̄1, ξ2 〉 (B.46)

〈A†
ᾱ(ξ̄0)Fβ(∂ξ2) 〉 = −2πiγᾱβIM〈 ξ̄0, ξ2 〉 (B.47)

and the complex conjugate equations

〈F †

β̄
(∂ξ2)Fα(ξ1) 〉 = −2πiγβ̄αIM〈 ∂ξ̄2, ξ1 〉 = 2πiγβ̄αIM〈 ξ̄2, ∂ξ1 〉 (B.48)

〈F †

β̄
(∂ξ2)Aα(ξ0) 〉 = 2πiγβ̄αIM〈 ξ̄2, ξ0 〉 (B.49)

where
γ+̄+ = 1 , γ+̄− = 0 , γ−̄+ = 0 , γ−̄− = −1 . (B.50)

In terms of the fields F , F ∗, A, A∗,

F = F++F− , F ∗ =
1

ǫnδn
(F+−F−) , A = A++A− , A∗ =

1

ǫnδn
(A+−A−) , (B.51)

the nontrivial S-D equations are

〈F ∗†(ξ̄1)F (∂ξ2) 〉 = 4πiδnIM (ξ̄1, ∂ξ2) = 4πiδn(−1)
nIM(∂ξ1, ξ2) (B.52)

〈F †(ξ̄1)F
∗(∂ξ2) 〉 = 4πiδn(−1)

nIM(ξ̄1, ∂ξ2) = 4πiδnIM(∂ξ1, ξ2) (B.53)

〈A∗†(ξ̄0)F (∂ξ2) 〉 = 4πiδn(−1)
nIM(ξ̄0, ξ2) (B.54)

〈A†(ξ̄0)F
∗(∂ξ2) 〉 = 4πiδnIM (ξ̄0, ξ2) (B.55)

and their complex conjugates (recalling that F † = F̄ , F ∗† = −F ∗),

〈F †(∂ξ2)F
∗(ξ1) 〉 = 4πiδnIM (ξ1, ∂ξ2) = 4πiδn(−1)

nIM(∂ξ1, ξ̄2) (B.56)

〈F ∗†(∂ξ2)F (ξ1) 〉 = 4πiδn(−1)
nIM(ξ1, ∂ξ2) = 4πiδnIM(ξ1, ∂ξ2) (B.57)

〈F †(∂ξ2)A
∗(ξ0) 〉 = 4πiδn(−1)

nIM(ξ0, ξ̄2) (B.58)

〈F ∗†(∂ξ2)A(ξ0) 〉 = 4πiδnIM (ξ0, ξ̄2) . (B.59)
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B.6 d = 2

In d = 2 dimensions, on R2, using coordinates z = x1 + ix2, w = y1 + iy2, a standard
convention is

F+ = j(z)dz , F †
+ = j†(z)dz , F− = ̄(z̄)dz̄ , F †

− = ̄†(z̄)dz̄ (B.60)

〈 j†(z)j(w) 〉 =
−2

(z − w)2
, 〈 ̄†(z̄)(w̄) 〉 =

−2

(z̄ − w̄)2
. (B.61)

The identity

∂z̄

(

1

z − w

)

= πδ2(z − w) (B.62)

is
1

z − w
=

∫

d2p

(2π)2
eip(x−y) (−4πi)pz

p2
(B.63)

where
p(x− y) = pz(z − w) + pz̄(z̄ − w̄) , p2 = 4pzpz̄ . (B.64)

So
−2

(z − w)2
= 2∂z

(

1

z − w

)

=

∫

d2p

(2π)2
eip(x−y) 8πpzpz

p2
. (B.65)

Comparing to equation (B.13) gives

〈 j†(z)dz j(w)dw 〉 = 8πG(x, y)µ;νdx
µdxν . (B.66)

Comparing to equation (B.34) — away from coincident points so the contact terms can
be ignored — gives the normalization

Bn = 8π . (B.67)

C Vertex operators and the Dirac quantization condition

C.1 The vertex operators

The vertex operators for the complex scalar on EC∂ξ are, in terms of φ and φ∗,

Vp,p∗(η) = eip·φ(η)+ip∗·φ∗(η) , η ∈ Dint
0 (EC∂ξ) , (C.1)

p · φ(η) =
1

2

[

p̄φ(η) + pφ†(η̄)
]

, p∗ · φ∗(η) =
1

2

[

p∗ φ∗(η) + p∗φ∗†(η̄)
]

. (C.2)

The reality condition is p = p̄, p∗ = p∗. In terms of the chiral fields, the vertex operators
are

Vp+,p−(η) = eip
+·φ+(η)+ip−·φ−(η) , (C.3)

p+·φ+(η) =
1

2

[

p+ φ+(η) + p+φ†
+(η̄)

]

, p−·φ−(η) =
1

2

[

p− φ−(η) + p−φ†
−(η̄)

]

, (C.4)
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p+ = p+ ǫnp
∗ , p− = p− ǫnp

∗ . (C.5)

The vertex operators satisfy the operator product equations

Vp+,p−(η0)jβ(∂η2) = −πi p
α γᾱβIM〈 η̄0, η2 〉 Vp+,p−(η0) (C.6)

j†
β̄
(∂η2)Vp+,p−(η0) = πipαγβ̄αIM〈 η̄2, η0 〉 Vp+,p−(η0) (C.7)

expressing the generalized U(1) charges [8] of the extended objects.

C.2 The Dirac quantization condition

The Dirac quantization condition is derived from the requirement that the correlation
functions of the vertex operators be single-valued on E∂ξ.

Let ξ0 be a point in E∂ξ and let η0 = δξ0 be the 0-current in E∂ξ representing ξ0. Let
η2 represent a 2-disk in E∂ξ such that the (n−1)-current ξ0 = Π∗η0 and the (n+1)-current
Π∗η2 have intersection number 1 in M ,

Π∗IM(η0, η2) = 1 . (C.8)

Then the skew-hermitian M-intersection form has values

Π∗IM〈 η̄0, η2 〉 = ǫn , Π∗IM〈 η̄2, η0 〉 = −ǭn . (C.9)

Consider the product of vertex operators

Vp+,p−(δξ0) Vq+,q−(δξ1) (C.10)

as ξ1 moves around the boundary ∂η2 of the disk in E∂ξ represented by η2. The monodromy
will be

e−〈 p+·φ+(η0) q+·j+(∂η2) 〉−〈 p−·φ−(η0) q−·j−(∂η2) 〉 . (C.11)

The S-D equations combined with (C.9) give

〈 p+·φ+(η0) q
+·j+(∂η2) 〉 = −

1

2
πi

(

ǭn p
+ q+ + ǫnp

+ q+
)

(C.12)

〈 p−·φ−(η0) q
−·j−(∂η2) 〉 =

1

2
πi

(

ǭn p
− q− + ǫnp

− q−
)

(C.13)

so the Dirac quantization condition — the condition that the correlation function be
single-valued, that the monodromy equal 1 — is

1

4

[

p+ q+ǭn + p+ q+ ǫn − p
− q−ǭn − p

− q− ǫn

]

∈ Z (C.14)

which can be written
1

2
(ǫnp

+)·q+ −
1

2
(ǫnp

−)·q− ∈ Z , (C.15)
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where the euclidean inner product on complex charges is

p·q =
1

2
(p̄q + pq̄) . (C.16)

Substituting the electric and magnetic charges, the Dirac quantization condition becomes

p·q∗ + (−1)n−1p∗·q ∈ Z . (C.17)

The Dirac quantization condition in the real case, p, p∗, q, q∗ ∈ R, is

pq∗ + (−1)n−1p∗q ∈ Z . (C.18)

The charges lie in real lattices

p =
m

R
, q =

n

R
, p∗ =

m∗

R∗
, q∗ =

n∗

R∗
(C.19)

so the Dirac quantization condition is RR∗ = 1. In the complex case, the charges p, q lie
in a two-dimensional lattice L ⊂ C and the p∗, q∗ lie in a two-dimensional lattice L∗ ⊂ C.
The Dirac quantization condition (C.17) is the condition that L and L∗ are dual lattices
— the euclidean inner-product between an element of L and an element of L∗ is always
an integer.

C.3 d = 2

We can check the Dirac quantization condition in d = 2 using the explicit formulas of
section B.6. The scalar fields are given by

∂φ+(z) = j(z), , ∂̄φ−(z̄) = j(z̄) . (C.20)

Their two-point functions are

〈 φ†
+(z)φ+(w) 〉 = −2 ln(z − w) , 〈 φ†

−(z̄)φ−(w̄) 〉 = −2 ln(z̄ − w̄) . (C.21)

The vertex operators
Vp+,p−(z, z̄) = eip

+·φ+(z)+ip−·φ−(z̄) (C.22)

have two-point functions

〈 Vp+,p−(z, z̄) Vq+,q−(w, w̄) 〉 = (z − w)p
+·q+(z̄ − w̄)p

−·q− (C.23)

which are single-valued iff
p+·q+ − p−·q− ∈ Z . (C.24)

The reality condition for d = 2 is p± = p±, giving

p+·q+ = p+q+ , p−·q− = p−q− . (C.25)

The usual sign choices in d = 2 are ǫ1 = 1, δ1 = 1, for which

p± =
1

2
(p± p∗) (C.26)

so the Dirac quantization condition is

pq∗ + p∗q ∈ Z (C.27)

which, for p = m
R
, p∗ = m∗

R∗ , q =
n
R
, p∗ = n∗

R∗ , gives RR
∗ = 1.
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D Complex conjugation and reality conditions

The difference between n even and n odd shows up in the class of 2d quantum field theories
that live on the quasi-holomorphic curves. The S-D equations on the quasi-holomorphic
curves, written in terms of J and the skew-hermitian M-intersection form, are equations
on complex fields j and φ. For n odd, both J and IM〈 η̄1, η2 〉 are real and E∂ξ can remain a
real space. The quasi-holomorphic curve C is a real map from Σ as a real two-dimensional
manifold to E∂ξ. The reality condition F = F̄ on the n-form field becomes the reality
condition j = j̄, φ = φ̄ on the 2d fields. The 2d quantum field theory is the gaussian
model of a single real 1-form j. For n even, both J and IM〈 η̄1, η2 〉 are imaginary and E∂ξ
must be complexified to EC∂ξ. The quasi-holomorphic curve C will be a map from Σ to

EC∂ξ. The fields j and φ on the q-h curve remain complex. The 2d quantum field theory is
a two-component gaussian model of a complex 1-form j. The reality condition F = F̄ on
the n-form field becomes invariance under a Z2 symmetry of the 2d quantum field theory
on the quasi-holomorphic curve, that combines complex conjugation on the fields and
orientation reversal on the Riemann surface. Any construction on 2d field theories will
preserve this Z2 symmetry, so, for n even, the general class of 2d quantum field theories
to be considered are the 2d theories with this symmetry.

D.1 Complex conjugation on the fields

Because the almost complex structure is given by J = ǫn∗ with ǫ2n = (−1)n−1, and
P± = 1

2
(1± i−1J), complex conjugation acts differently for n odd and n even:

J̄ =

{

J , n odd,

−J , n even,
P̄± =

{

P∓ , n odd,

P± , n even.
(D.1)

So, for F a complex n-form field onM , using equations (B.11–B.12) for the adjoint fields,

for n odd : F †
±(ξ̄) = F∓(ξ̄) = F̄±(ξ̄) , A†

±(ξ̄) = A∓(ξ̄) = Ā±(ξ̄) , (D.2)

for n even : F †
±(ξ̄) = F∓(ξ̄) = F̄∓(ξ̄) , A†

±(ξ̄) = A∓(ξ̄) = Ā∓(ξ̄) . (D.3)

D.2 Reality conditions on the fields

The condition that F is a real field, F = F̄ , is

for n odd : F †
± = F± , A†

± = A± , (D.4)

for n even : F †
± = F∓ , A†

± = A∓ . (D.5)

As a check, re-write these relations in terms of the the usual fields F and F ∗ = i−1∗F ,

F = F+ + F− , A = A+ + A− , (D.6)

ǫnF
∗ = F+ − F− , ǫnA

∗ = A+ − A− ,
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getting, for real F ,

F † = F , F ∗† = F ∗ , A† = A , A∗† = A∗ , (D.7)

which is indeed self-adjointness of the magnetic and electric fields and the gauge potentials.
The reality condition on the 1-form field j and the 0-form field φ on EC∂ξ is the tran-

scription,

for n odd : j†± = j± , φ†
± = φ± , (D.8)

for n even : j†± = j∓ , φ†
± = φ∓ . (D.9)

The 1-form and 0-form fields pulled back along a quasi-holomorphic curve C to the Rie-
mann surface Σ,

j+(z) = j+(C∗δz) , φ+(z) = φ+(C∗δz) , (D.10)

j−(z̄) = j−(C∗δz) , φ−(z̄) = φ−(C∗δz) , (D.11)

will satisfy the same reality condition (D.8–D.9).
For n odd, the reality condition (D.8) is the reality condition satisfied by a real 1-form

on the Riemann surface. So the 2d conformal field theory on a q-h curve is the theory of
a free real 1-form.

For n even, the reality condition (D.9) is not the reality condition of a real 1-form field
on the Riemann surface Σ. The 2d conformal field theory on the q-h curve is the free
complex 1-form. The reality condition on M becomes a symmetry condition, j†± = j∓,

φ†
± = φ∓. This is an anti-linear symmetry that reverses the 2d orientation. The fields in

the real theory on the space-time M correspond to the invariant subalgebra of fields in
the complex 1-form theory on the Riemann surface Σ.

D.3 Reality conditions on the vertex operators

For the vertex operators
Vp+,p−(η) = eip

+·φ+(η)+ip−·φ−(η) , (D.12)

p+·φ+(η) =
1

2

[

p+ φ+(η) + p+φ†
+(η̄)

]

, p−·φ−(η) =
1

2

[

p− φ−(η) + p−φ†
−(η̄)

]

, (D.13)

p+ = p+ ǫnp
∗ , p− = p− ǫnp

∗ , (D.14)

The reality condition p = p̄, p∗ = p∗ becomes

for n odd : p± = p± , (D.15)

for n even : p± = p∓ . (D.16)

For n odd, the vertex operators of the real n-form on space-time are exactly the vertex
operators of the real 1-form on the Riemann surface. For n even, the space-time vertex
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operators of the real n-form theory correspond to the subalgebra of the vertex operators
of the 2d theory,

{

Vp+,p− : p− = p+
}

. (D.17)

The Dirac quantization condition on M is

1

2

[

(ǫnp
+)·q+ − (ǫnp

−)·q−
]

∈ Z . (D.18)

The Dirac quantization condition on Σ is

1

2

(

p+·q+ − p−·q−
)

∈ Z . (D.19)

For n odd, these are the same, so the real theory on M corresponds to the real theory on
Σ. For n even, the Dirac quantization conditions (D.18) and (D.19) are different. Writing
pΣ, p

∗
Σ for the magnetic and electric charges on Σ, and writing pM , p∗M for the charges on

M (formerly p, p∗),

pΣ =
1

2
(p+ + p−) = pM , ǫ1p

∗
Σ =

1

2
(p+ − p−) = ǫnp

∗
M . (D.20)

For n even, real magnetic charges on M become imaginary magnetic charges in the com-
plex 1-form theory on Σ. The real charges pM , p∗M on M lie in dual lattices L ⊂ R and
L∗ ⊂ R. The corresponding charges in the complex 1-form theory on Σ lie in L ⊂ C and
iL∗ ⊂ C. So the full lattice of electric charges pΣ on Σ must be L⊕ iL ⊂ C, and the full
lattice of magnetic charges p∗Σ must be L∗ ⊕ iL∗ ⊂ C,

pΣ =
m1 + im2

R
, p∗Σ =

m∗
1 + im∗

2

R∗
(D.21)

Complex conjugation on M is

pΣ 7→ p̄Σ , p∗Σ 7→ − p
∗
Σ . (D.22)

All of the vertex operators with charges (D.21) are well-defined on Σ, but only those
invariant under complex conjugation on M are well-defined on E∂ξ and on M . The q-h
curve lies not in E∂ξ but in EC∂ξ, so vertex operators can have well-defined correlation
functions on the q-h curve, yet not be well-defined on E∂ξ.
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