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1 Introduction

Two-dimensional conformal field theories (CFTs) with boundaries have many applications

to condensed matter systems. They describe critical boundaries, defects, and junctions in

1+1-dimensional quantum critical systems. In string theory, CFTs with boundary describe

the worldsheets of open strings.

Consider a 1-dimensional system of length L with the same boundary condition at

each end. The logarithm of partition function Z(β) = Tr e−βH in the limit L/β → ∞
behaves as

lnZ(β) = c
π

6

L

β
+ 2 ln g . (1.1)

Here β is the inverse temperature and c is the conformal central charge of the bulk CFT.

For a critical boundary condition g is a number characterising the boundary condition—

the universal noninteger ground-state degeneracy [3]. (In equation (1.1) there is a factor 2

multiplying ln g because there is a contribution ln g from each of the two boundaries.) The
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g-theorem conjectured in [3] states that for any renormalization group (RG) flow between

critical boundary conditions for a given fixed bulk CFT, the number g is always smaller at

the IR (final) fixed point than at the UV (initial) fixed point.

For an arbitrary — not necessarily critical — boundary condition on a CFT the bound-

ary entropy s(β) is defined in the same fashion, by subtracting the universal bulk entropy

from the total entropy S(β) in the limit L/β → ∞,

S(β) =

(

1− β
∂

∂β

)

lnZ(β) = c
π

3

L

β
+ 2s(β) . (1.2)

For a critical boundary condition, the boundary entropy is s = ln g, independent of tem-

perature. It was shown in [7] that the boundary entropy s(β) for a general boundary

condition always decreases with decreasing temperature (contingent on certain regularity

assumptions on the ultraviolet properties of the boundary condition). Equivalently, s(β)

decreases under the renormalization group flow. This proved the g-theorem as a corollary.

In order to control the IR behavior of the renormalization group — the low temperature

behavior of the boundary system — it is not enough to have a quantity s(β) that decreases

under the RG flow. A lower bound on s(β) is needed. Without a lower bound, the RG flow

might go on forever towards s(∞) = −∞. A lower bound on s(β) would imply that every

boundary condition becomes critical at zero temperature. No way has yet been found to

put a lower bound on s(β).

A more modest goal is to establish a lower bound on s = ln g for all the conformal

boundary conditions for each given bulk CFT. That would at least exclude the possibility of

flows that end at critical boundary conditions with arbitrarily low values of s. Once we have

a lower bound on the critical values of s, it becomes interesting to look for critical boundary

conditions that saturate the bound. If such minimal conformal boundary conditions exist

and if any of them has a relevant perturbation, the corresponding outgoing RG trajectory

would have to go on forever, to s(∞) = −∞. On the other hand, if such boundary

conditions exist and have no relevant perturbations, it would suggest that the lower bound

on s applies to all boundary conditions, not just the critical ones.

In [8] the present authors demonstrated the existence of a lower bound on the boundary

entropy s = ln g of all conformal boundary conditions for any given unitary bulk CFT

subject to the condition that the lowest scaling dimension ∆1 of the spin-0 bulk fields

satisfies ∆1 > (c − 1)/12. Only CFTs with c ≥ 1 were considered because the conformal

boundary conditions for the c < 1 unitary CFTs are already completely classified. No

attempt was made in [8] to obtain an optimal lower bound. The goal was only to show

existence of a bound.

Once existence of a lower bound is known, the goal becomes to find the best possible

lower bound for any given bulk CFT. Nothing can be assumed about the boundary condi-

tion beyond what is implied by conformal invariance and the general principles of boundary

quantum field theory. On the other hand, all available knowledge of the bulk CFT can be

used. The bound obtained in [8] used only the values of c and ∆1. A sharper lower bound

can be obtained for any given bulk CFT by exploiting more detailed information about the

bulk CFT. Here, we carry out this program for two specific bulk CFTs.
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Our main example is the Monster CFT. The Monster CFT is the direct product of

the right-moving c = 24 chiral Monster CFT with the parity conjugate left-moving c̄ = 24

chiral Monster CFT. The chiral Monster CFT was constructed in [9]. Its internal symmetry

group is the Monster — the largest finite simple group. Its fields are all right-moving

(holomorphic in 2-dimensional euclidean spacetime). The scaling dimensions of the fields of

the chiral theory are 2, 3, 4, . . ., so the Monster CFT has spin-0 (scalar) fields of dimensions

∆k = 4, 6, 8, . . .. All the spin-0 local couplings are irrelevant, which makes the Monster

CFT of interest for constructing critical quantum circuits [10, 11].

A variety of conformal boundary conditions (branes) for the Monster CFT are

known [12]. The lowest value of the boundary entropy among these branes is s=0 (g=1).

The known g=1 branes are the boundary conditions that respect the full chiral alge-

bra. The incoming chiral fields are transformed by an element of the Monster symmetry

group and reflected into outgoing chiral fields. They all have the same boundary spectrum

hj = 2, 3, 4, · · · , with the same multiplicities.

The linear functional (LF) method used in [8] can exploit the complete knowledge

of the primary spin-0 bulk scaling dimensions ∆k. The LF method provides a series of

larger and larger numerical computations, each of which gives a rigorous lower bound on g.

We find that this series of numerically derived lower bounds on g converges spectacularly

closely to 1. We are lead to conjecture that s ≥ 0 (g ≥ 1) is the exact lower bound for the

Monster CFT.

Moreover, the LF method can pin down the low-lying spectrum of boundary scaling

dimensions and their multiplicities, for any g=1 boundary condition, i.e., any boundary

condition that saturates the lower bound. We show that there are no relevant boundary

perturbations — that the lowest nonzero boundary scaling dimension is greater than 1.

This suggests that the bound s ≥ 0 holds for all boundary conditions and that the generic

boundary RG flows ends at a g=1 conformal boundary condition. We find strong evidence

that the low-lying boundary spectrum for g=1 branes — including multiplicities — is

uniquely determined, matching the boundary spectrum of the known g=1 branes. This

suggests that the known examples comprise all possible g=1 branes.

The second bulk CFT we study is a certain c = 2 Gaussian model — a nonlinear model

with a particular two-torus as target manifold. Again, we know the complete spectrum of

bulk scaling dimensions and can use the linear functional method with that knowledge to

get a succession of numerical lower bounds on g that converge rapidly to a limit. In this

case, no known brane saturates the lower bound. Moreover, we show that no such minimal

conformal boundary condition can exist, because the LF method fixes the multiplicity of

the lowest lying boundary dimension to lie in a range of real numbers that does not include

an integer. We conclude that the success of the linear functional method for the Monster

CFT is exceptional.

The method is described in sections 2 and 3. Section 4 presents the results for the

Monster CFT. Section 5 presents the results for the c = 2 Gaussian model. In section 6

we discuss possible improvements on the linear functional method that might give strict

lower bounds on g and consistent boundary spectra for minimal boundary conditions for

the general bulk CFT.
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2 The linear functional method

The linear functional method of producing bounds on quantities in conformal field theories

was originated in [1, 2] (see appendix A in particular) where it was used to constrain

operator dimensions and state degeneracies in a two-dimensional CFT. Similar methods

are used in CFTs in higher dimensions, starting from [5], and the method was later applied

in two dimensions in particular in [4]. Here we briefly summarize the use of the method

in [8] to get bounds on the boundary entropy.

2.1 The modular duality equation

Consider a given bulk CFT with bulk central charge c > 1. A conformal boundary condition

is described by a certain bulk state |B〉. The partition function of the boundary system

can be calculated in a second way, as a matrix element in the bulk state. The equivalence

of the two calculations gives the modular duality equation [14]

Z(β) = Tr e−βHbdry = 〈B|e−(2π/β)Hbulk |B〉 . (2.1)

Here Hbulk is the hamiltonian for the CFT on a circular space of length 2π, without

boundary. Hbdry is the hamiltonian for the CFT on a line interval of length L = 1 with the

same boundary condition at each end. The two sides of the duality equation are the two

operator interpretations of the partition function of the euclidean CFT on a 2-dimensional

annulus. On the lhs, the annulus is the product of the spatial interval of length L = 1

with the circle of periodic euclidean time of length β. On the rhs, the annulus is the

conformally equivalent product of the euclidean time interval of length 2π/β with spatial

circle of length 2π.

Expanding both sides of equation (2.1) in Virasoro characters and eliminating the

common factor of 1/η(iβ) in all the characters (see [8] for details, with slightly different

notation), we obtain

f0 − f1 +
∑

j

N(hj)fhj
= g2(f̃0 − f̃1) +

∑

k

b2(∆k)f̃ 1
2
∆k

(2.2)

where

fh = β
1
4 qh−γ , q = e−2πβ , γ =

c− 1

24
, f̃h̃ = β̃

1
4 q̃h̃−γ , β̃ = β−1 , q̃ = e−2πβ̃ , (2.3)

and

• The ∆k are the distinct scaling dimensions of the primary spin-0 bulk fields besides

the identity, ordered so that 0 < ∆1 < ∆2 < · · · .

• The hj are the distinct scaling dimensions of the primary boundary fields besides the

identity, ordered so that 0 < h1 < h2 < · · · .

• N(hj), an integer ≥ 1, is the multiplicity of hj .

• g = 〈B|0〉 is the overlap between the boundary state and the bulk ground state |0〉.
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• b2(∆k) =
∑

α〈B|α〉2 where the sum is over all primary spin-0 bulk fields of dimension

∆k, and |α〉 is the bulk state corresponding to the primary field φα.

The numbers hj , N(hj), g
2, and b2(∆k) are properties of the boundary condition, so we

assume nothing about them besides the basic constraints from unitarity

• hj > 0,

• N(hj) integer ≥ 1,

• g2 ≥ 0,

• b2(∆k) ≥ 0.

On the other hand, we do use the knowledge we have of the ∆k, which are properties of

the bulk CFT.

2.2 Bounds from linear functionals

A linear functional ρ acting on functions F (β) is a distribution

ρ(F ) =

∫ ∞

0
dβ ρ̂(β)F (β) . (2.4)

Applying a linear functional ρ to both sides of (2.2) we obtain

ρ(f0 − f1) +
∑

j

N(hj)ρ(fhj
) = g2ρ(f̃0 − f̃1) +

∑

k

b2(∆k)ρ(f̃ 1
2
∆k

) (2.5)

If we can choose ρ so that

ρ(fh) ≥ 0 ∀h > 0 , (2.6)

ρ
(

− f̃ 1
2
∆k

)

≥ 0 ∀∆k (2.7)

we get an inequality

g2ρ(f̃0 − f̃1) ≥ ρ(f0 − f1) . (2.8)

It was shown in [8] that condition (2.6) implies ρ(f̃0 − f̃1) > 0, so the inequality is a lower

bound on g2. Equations (2.5)–(2.8) are indifferent to positive rescalings of ρ, so we might

as well impose the normalization condition

ρ(f̃0 − f̃1) = 1 . (2.9)

Equation (2.5) becomes

g2 = ρ(f0 − f1) +
∑

j

N(hj)ρ(fhj
) +

∑

k

b2(∆k)ρ(−f̃ 1
2
∆k

) (2.10)

and the lower bound is

g2 ≥ ρ(f0 − f1) . (2.11)
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Maximizing over all distributions ρ subject to the positivity conditions (2.6) and (2.7) and

the normalization condition (2.9), we obtain the optimal linear functional bound

g2 ≥ g2B = maxρ ρ(f0 − f1) . (2.12)

The lower bound g2B depends on the bulk central charge c and on the entire bulk spin-0

spectrum ∆k. In [8], the goal was to show the existence of a lower bound on g for as general

a class of bulk CFTs as possible, so condition (2.7) was replaced by the stronger condition

ρ
(

− f̃ 1
2
∆

)

≥ 0 , ∀∆ ≥ ∆1 , (2.13)

which gives a lower bound that depends only on c and ∆1. It was shown that condi-

tions (2.6) and (2.13) can be satisfied together if and only if ∆1 > 2γ = (c− 1)/12.

2.3 Practical calculations

In practice, the method is to maximize over larger and larger finite dimensional subspaces

of linear functionals of the form

ρ(F ) = DF (β) , (2.14)

where D is a polynomial differential operator in β of order 2n− 1, and DF is evaluated at

some fixed value of β. The order of the differential operator must be odd because of the

positivity conditions. For each n, we maximize over the 2n-dimensional space of differential

operators of order 2n− 1.

It is impractical to enforce the positivity condition (2.7) for the infinite collection of

∆k. Instead, we enforce the stronger condition

ρ(−f̃ 1
2
∆) ≥ 0 for ∆ = ∆1, ∆2, . . . ,∆N−1, and for ∆ ≥ ∆N . (2.15)

For each value of n and N , we get a lower bound on g. As we increase n or N , the lower

bound gets larger. The limit N → ∞ will realize the positivity condition (2.7). The limit

n → ∞ will exhaust the space of linear functionals because any linear functional on real

analytic functions can be approximated by a differential operator D acting at a single point

β. The combined limit N,n → ∞ gives the optimal LF bound.

In practice, we solve the maximization problem numerically for various values of the

parameters n,N , limited by computational resources. We use a more or less arbitrary

value of β. The numerical solution of each maximization problem is of course not an exact

solution. The numerical solution does provide a concrete linear functional ρn,N . We verify

that ρn,N satisfies the positivity conditions. Then we calculate a rigorous lower bound

on g2 using equation (2.8). Thus each numerical maximization provides a rigorous lower

bound on g2.

2.4 Integrality constraints

Note that the linear functional method makes no use of the fact that the boundary multi-

plicities N(hj) must be integers ≥ 0. The linear functional bound is a necessary condition

for the existence of a solution to equation (2.2) with real N(hj) > 0, which of course is

also a necessary condition for a solution with integer N(hj) > 0. We comment in the

final section on the possibility of finding better lower bounds on g that take account of the

integrality constraints.
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2.5 The existence of solutions to the modular duality equation

The optimal linear functional bound is a necessary and sufficient condition for existence of a

solution to equation (2.2) with N(hj) real, by a small variation of an argument used in [19].

Let F be the space of functions of β > 0 (suitably defined). For any real non-negative

measure N(h) on h > 0, and any collection of numbers b2(∆k) ≥ 0 define f [N, b2] ∈ F by

f [N, b2] =

∫ ∞

0
dhN(h)fh +

∑

k

b2(∆k)
(

−f̃ 1
2
∆

)

. (2.16)

The functions f [N, b2] form a convex cone C in F

C =

{

f [N, b2]

}

. (2.17)

Define a vector v 6= 0 in F
v = g2(f̃0 − f̃1)− (f0 − f1) . (2.18)

There exists a real solution of equation (2.2) iff v ∈ C. The Generalized Farkas

Lemma [20] says

v ∈ C iff there is no hyperplane separating v from C or, equivalently, iff ρ(v) > 0

for all linear functionals ρ satisfying ρ(C) ≥ 0.

The condition ρ(C) ≥ 0 is exactly conditions (2.6) and (2.7). The condition ρ(v) > 0

is exactly equation (2.11). Therefore there exists a real solution of equation (2.2) iff g2

satisfies the optimal linear function bound.

3 Map to an SDP problem

We next recast the maximization problem as a semidefinite programming (SDP) problem,

following [5, 6]. An SDP problem is an optimization over a set of positive-semidefinite

matrices — the SDP variables. The problem is to minimize an objective function O which

is linear in the SDP variables, subject to a collection of equality constraints also linear in

the SDP variables. Effective codes are available for solving SDP problems numerically.

The general differential operator D of equation (2.14) can be written D = D(−4β∂β)

for D(z) a polynomial of degree 2n− 1. Recall that D is acting at a specific fixed value of

β. Maximizing over differential operators D is equivalent to maximizing over polynomials

D(z). Now define two polynomials p(x) and p̃(x), each of degree 2n− 1, by

p(x) = x−
1
4 ex/4D(−4x∂x)

(

x
1
4 e−x/4

)

, p̃(x) = −x−
1
4 ex/4D(4x∂x)

(

x
1
4 e−x/4

)

. (3.1)

We will see shortly that the map from polynomials D(z) to polynomials p(x) is invertible,

as is the map from D(z) to p̃(x). Thus we can maximize over polynomials p(x), or over

polynomials p̃(x). Actually, we will maximize over pairs of polynomials p(x), p̃(x) subject

to the constraint that they come from the same differential operator D.

– 7 –
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The definitions of p(x) and p̃(x) were designed so that

Dfh = P (h)fh , where P (h) = p(x(h)) , x(h) = 8πβ(h− γ) , (3.2)

Df̃h̃ = −P̃ (h̃)fh̃ , where P̃ (h̃) = p̃(x̃(h̃)) , x̃(h̃) = 8πβ̃(h̃− γ) , (3.3)

so the positivity conditions (2.6) and (2.15) on the differential operator D are equivalent

to positivity conditions on the polynomials p(x) and p̃(x),

p(x) ≥ 0 for x ≥ x(0) (3.4)

p̃(x̃) ≥ 0 for x̃ = x̃1, . . . , x̃N−1 and x̃ ≥ x̃N , where x̃k = x̃
(

1
2∆k

)

. (3.5)

Equation (2.5) — which is D applied to both sides of the modular duality equation (2.2)

— now reads

P (0)f0−P (1)f1+
∑

j

N(hj)P (hj)fhj
= g2[P̃ (1)f̃1−P̃ (0)f̃0]−

∑

k

b2(∆k)P̃

(

1

2
∆k

)

f̃ 1
2
∆k

.

(3.6)

The normalization condition (2.9) becomes

− P̃ (0)f̃0 + P̃ (1)f̃1 = 1 , (3.7)

giving

g2 = g2B[p, p̃] +
∑

j

N(hj)P (hj)fhj
+
∑

k

b2(∆k)P̃

(

1

2
∆k

)

f̃ 1
2
∆k

(3.8)

where

g2B[p, p̃] = P (0)f0 − P (1)f1 (3.9)

is the lower bound to be maximized over pairs of polynomials p(x), p̃(x) to get the optimal

bound for each n,N ,

g2n,N = maxp,p̃ [P (0)f0 − P (1)f1] . (3.10)

Again following [5], we write the general solution of the continuum positivity con-

straints on the polynomials p(x) and p̃(x̃) in terms of positive semidefinite n×n matri-

ces Yα [6],

p(x) =
2n−1
∑

k=0

pkx
k = xtY1x+ (x− x(0))xtY2x (3.11)

p̃(x) =
2n−1
∑

k=0

p̃kx
k = xtY3x+ (x− x̃N )xtY4x .

where x is the n-vector with components (1, x, x2, . . . , xn−1). Note that the polynomial

coefficients pk and p̃k are linear functions of the matrix elements of the Yα. The remaining

positivity constraints are

p̃(x̃k) ≥ 0 , k = 1, . . . , N − 1 . (3.12)

– 8 –
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These are solved by introducing N − 1 auxiliary 1×1 positive semidefinite matrices yk
subject to the N − 1 equality constraints

yk = p̃(x̃k) , k = 1, . . . , N − 1 . (3.13)

Finally, we need to impose the condition that the polynomials p(x) and p̃(x̃) come from

the same differential operator D = D(−4β∂/∂β). The differential operator D = D(−4β∂β),

D(z) =
2n−1
∑

l=0

dlz
l , (3.14)

is determined by the coefficients of either of the two polynomials by the equations

dl =
∑

k≥l

glkpk = −
∑

k≥l

(−1)lglkp̃k (3.15)

where the numbers glk — which depend only on n —- are calculated in appendix A.

Therefore the condition that the two polynomials come from the same differential operator

is expressed by 2n equality constraints

∑

k≥l

[glkpk + (−1)lglkp̃k] = 0 , l = 0, 1, . . . , 2n− 1 (3.16)

which are linear constraints on the matrix elements of the semidefinite matrices.

The maximization problem is now re-formulated as an SDP problem:

• The SDP variables are the semidefinite matrices Yα, α = 1, . . . , 4 and yk, k =

1, . . . , N − 1. The Yα are n×n matrices. The yk are 1×1 matrices.

• There are 2n equality constraints given by equation (3.16) and N − 1 equality con-

straints given by equation (3.13).

• The objective function to be maximized is O = g2B[p, p̃] given by equation (3.9).

The equality constraints and the objective function are all linear functions of the matrix

elements of the semidefinite matrices.

Following the lead of [6], we used the arbitrary precision SDP solver SPDA-GMP [15],

which calculates using the GMP arbitrary precision arithmetic libraries. We found it

necessary to calculate using extended precision floating point arithmetic in order to obtain

stable numerical solutions to the SDP problems. In practice, we found it useful and feasible

to solve our SDP problems with 400 decimal digits of precision.

We prepare the SPDA-GMP problem specifications in the Sage symbolic mathematics

program [16]. The input for each run consists of

• the central charge c and the list of the low-lying ∆k, k = 1, . . . , N in the bulk CFT,

• the integer n specifying the rank of each of the semidefinite matrices Yα and the order

2n− 1 of the differential operator.

We scan increasing values of n and N to the limits of our computational resources.

– 9 –
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3.1 Verification of numerical solutions

For each choice of n and N , the SDP solver returns a set of semidefinite matrices Yα that

solves the optimization problem approximately. The solver is a black box to us, so we

cannot take the solution at face value. We verify that the SDP solution actually provides

a rigorous lower bound on g2.

From the solution matrices Yα provided by the solver, we calculate the polynomials p(x)

and p̃(x) by equation (3.11). From each of the two polynomials, we calculate the coefficients

of the corresponding differential operator D. This gives us two slightly different differential

operators, because the solver does not impose the equality constraints exactly. Then we

reverse the calculation for each of the two differential operators. From the differential

operator we calculate the corresponding polynomials p(x) and p̃(x) and check that they

satisfy the positivity constraints. We check p̃(xk) ≥ 0 for k = 1, . . . , N by direct calculation.

We check positivity in the half-line, p(x) ≥ 0 for x ≥ x1 and p̃(x) ≥ 0 for x ≥ x̃N , in two

ways. First, we find all real roots of p(x) numerically (in Sage) to check that all are less

than than x1. We do the analogous check for p̃(x). Second, we check that the absolute

minimum of p(x) for x ≥ x1 is nonnegative by finding all real roots of p′(x) with x ≥ x1
and then finding the minimum value of p(x) at those roots of p′(x). We do the analogous

check for p̃(x).

Sometimes the positivity checks fail, presumably because the SDP solver enforces the

positivity constraints with too much tolerance. When the positivity constraints are satisfied

for at least one of the two differential operators reconstructed from the Yα, the resulting

lower bound on g2 is rigorous, since it derives from a specific linear functional given as a

specific differential operator acting at a specific value of β. The calculated lower bound is

not the best possible bound for the given values of n and N , but it is a rigorous bound.

Strictly speaking, we should control the rounding errors by using rigorous interval arith-

metic in the calculations to check the validity of the solutions. We do not go to such

lengths. Instead, we do the numerical calculations with a floating point precision of 400

decimal digits, which is far more than enough to allow us to disregard rounding errors.

We have checked that Sage calculates the roots of polynomials accurately to within a few

digits of the floating point precision, and that the positivity checks are passed by tolerances

which are hundreds of orders of magnitude larger than our floating point precision.

4 Numerical results for the Monster CFT

The c = 24 chiral Monster CFT [9] is the algebra of right-moving (holomorphic) fields HM

constructed as the chiral Z2 orbifold of the holomorphic vertex operator algebra associated

to the 24-dimensional self-dual Leech lattice (see e.g. [13] or [12] section 2 for details of

the construction). The Monster group — the largest finite simple group — is the internal

symmetry group of the chiral Monster CFT. Each element γ of the Monster group acts on

the fields of the chiral Monster CFT by φ(z) 7→ φγ(z). All we use from this construction

is the spectrum hk = 2, 3, 4, . . . of distinct non-zero primary conformal weights.

The Monster CFT is made by tensoring together the right-moving chiral Monster CFT

with its left-moving conjugate Hbulk = HM⊗H̄M . Each primary field of the Monster CFT
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has the form φ(z, z̄) = φR(z)φ̄L(z̄), with scaling dimension ∆ = h + h̄ and spin h − h̄,

where h and h̄ are the conformal weights of the chiral primaries φR and φL. So the distinct

scaling dimensions of the spin-0 primary fields are

∆k = 2k + 2 , k ≥ 1 . (4.1)

We took β = 0.93 for all our Monster calculations. This is approximately the value of β

which maximizes the n = 1, N = 1 lower bound on g.

The Monster branes [12] with the smallest known value g=1 are in one-to-one corre-

spondence with the elements γ of the Monster group. The brane is given by a bulk state

〈γ| on the unit circle |z| = 1 satisfying

〈γ|φ(z)(dz)h = 〈γ| φ̄γ(1/z̄)(d(1/z̄))h (4.2)

for all the primary chiral fields φ(z). For each of these branes, the partition function of the

unit interval is the same

Z = J(iβ) = j(iβ)− 744 = q−1 + 196884q + 21493760q2 + 864299970q3 +O(q4) (4.3)

where j(τ) is the j-invariant. Since j(τ) = j(−1/τ), each of these branes has g=1. To

find the boundary primary dimensions hj and their multiplicities N(hj), we expand the

partition function in the c = 24 Virasoro characters

Z =
(1− q)q−1 +

∑

j N(hj)q
hj−1

∏

n=1(1− qn)
(4.4)

to get
∑

j

N(hj)q
hj−1 = 196883q + 21296876q2 + 842609326q3 +O(q4) . (4.5)

So the spectrum is hj = 2, 3, 4, . . . with multiplicities N(2) = 196883, N(3) = 21296876,

N(4) = 842609326, . . . .

4.1 Lower bounds on g

Let us write the rigorous lower bounds in the form

g2 ≥ g2n,N = 1− ǫn,N . (4.6)

The following table gives the values of ǫn,N we found for SDP solutions that passed the

positivity tests:

N

15 31 41

n

15 1.93×10−4

24 1.08×10−9

30 1.12×10−10 6.23×10−11

36 7.25×10−13

42 6.03×10−19

(4.7)
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Our best lower bound is

g2 ≥ g242,31 = 1− 6.03×10−19 (4.8)

which gives a lower bound on the boundary entropy

s ≥ −3.02×10−19 . (4.9)

This is a rigorous bound, since it is derived from a specific differential operator that satisfies

the positivity constraints.

It seems reasonably clear that the lower bounds shown in table 4.7 are converging

to the optimal bound g2 ≥ 1, s ≥ 0. Given that the smallest value of g for the known

conformal boundary conditions [12] is g = 1, our numerically derived bounds give very

strong indication that g ≥ 1 is the exact lower bound for all possible Monster branes.

4.2 The boundary spectrum for minimal branes

Let us call a conformal boundary condition minimal if it saturates the optimal linear

functional lower bound, g = gB. Equation (3.8) for an optimal linear functional is

g2 = g2B +
∑

j

N(hj)Popt(hj)fhj
+
∑

k

b2(∆k)P̃opt

(

1

2
∆k

)

f̃ 1
2
∆k

(4.10)

where Popt and P̃opt are nonnegative. Thus g = gB requires the hj to lie at zeros of the

function Popt(h)fh. (It also follows that the b2(∆k) can be non-vanishing only when ∆k/2

is at a zero of P̃opt(h̃)f̃h̃, but we do not pursue this point.)

For each of the solutions returned by the SDP solver, we calculated the local minima of

the function P (h)fh for h ≥ 0. As n and N increase, successively more of the local minima

approach the values 2, 3, 4, . . . and the values of P (h)fh at those local minima approach

zero. For our best solution, with n = 42, N = 31, the first 8 local minima are presented in

the table below.

h P (h) P (h)fh

2− 1.014107×10−17 2.547717×10−23 5.685816×10−26

3 + 3.532221×10−16 8.126899×10−23 5.258071×10−28

4− 3.099596×10−15 7.080475×10−22 1.328079×10−29

5 + 2.776280×10−14 1.063502×10−20 5.783089×10−31

6 + 1.070319×10−14 2.274723×10−19 3.585999×10−32

7− 1.168940×10−12 6.281304×10−18 2.870723×10−33

8− 2.778270×10−11 2.108470×10−16 2.793631×10−34

9− 3.057268×10−10 8.266698×10−15 3.175364×10−35

The evidence seems reasonably strong that Popt(h)fh will have zeros for h > 0 exactly

at h = 2, 3, 4, · · · , so any g=1 brane must have boundary spectrum hj = 2, 3, 4, · · · .
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4.3 Stability of g=1 branes

Our numerical results prove that any g=1 brane must be stable, i.e. that the lowest bound-

ary scaling dimension of a g=1 brane satisfies h1 > 1.

For the n = 42, N = 31 solution, equation (3.8) becomes

(g2 − 1) + 6.03×10−19 =
∑

j

N(hj)P (hj)fhj
+
∑

k

b2(∆k)P̃

(

1

2
∆k

)

f̃ 1
2
∆k

(4.11)

When g = 1, this implies

6.03×10−19 > P (h1)fh1
(4.12)

since N(h1) ≥ 1. We check that P (h)fh > 6.03×10−19 for 0 < h ≤ 2 − 2.1×10−7, so we

conclude that

h1 > 2− 2.1×10−7 . (4.13)

Therefore any g=1 brane must be stable.

4.4 Boundary multiplicities

A small modification of the SDP problem gives upper and lower bounds on the bound-

ary multiplicities N(hj) for any g=1 brane with boundary spectrum hj = 2, 3, 4, . . .. The

multiplicities must be integers, so sufficiently tight bounds fix them precisely. We find

N(2) = 196883, N(3) = 21296876, N(4) = 842609326 in exact agreement with the bound-

ary multiplicities of the known g=1 branes as given by equation (4.5).

When g = 1, equation (3.6) becomes

∑

j

N(hj)P (hj)fhj
+
∑

k

b2(∆k)P̃

(

1

2
∆k

)

f̃ 1
2
∆k

= −[P̃ (0)f̃0 − P̃ (1)f̃1+P (0)f0−P (1)f1]

(4.14)

which gives an inequality

N(h1)P (h1)fh1
≤ −[P̃ (0)f̃0 − P̃ (1)f̃1 + P (0)f0 − P (1)f1] (4.15)

if we enforce the positivity conditions

P (hj) ≥ 0 for j = 2, 3, . . . (4.16)

P̃

(

1

2
∆k

)

≥ 0 for k = 1, 2, 3, . . . . (4.17)

Using the normalization condition P (h1)fh1
= 1 we get an upper bound

N(h1) ≤ −[P̃ (0)f̃0 − P̃ (1)f̃1 + P (0)f0 − P (1)f1] , (4.18)

while using the normalization P (h1)fh1
= −1 gives a lower bound

P̃ (0)f̃0 − P̃ (1)f̃1 + P (0)f0 − P (1)f1 ≤ N(h1) . (4.19)

For both normalizations, we want to maximize the objective function

O = P̃ (0)f̃0 − P̃ (1)f̃1 + P (0)f0 − P (1)f1 (4.20)

to get the optimal bounds on N(h1).

– 13 –



J
H
E
P
0
7
(
2
0
1
3
)
0
9
9

For computability, as before, we replace the infinite series of positivity conditions with

the stronger conditions

P (h) ≥ 0 for h = hj , j = 2, 3, . . . , N − 1 and h ≥ hN (4.21)

P̃ (h̃) ≥ 0 for h̃ =
1

2
∆k, k = 1, 2, . . . , N − 1 and h̃ ≥ 1

2
∆N . (4.22)

Some numerical results are given in the table below.

n N bounds on δ = N(2)− 196883

8 5 −0.79< δ < 0.74

10 10 −2.7×10−5< δ < 4.8×10−4

12 8 −3.6×10−6< δ < 8.3×10−5

12 10 −2.9×10−7< δ < 6.2×10−6

15 20 −1.3×10−10< δ < 5.5×10−12

(4.23)

The n = 8, N = 5 bounds are enough to fix N(2) = 196883, since the multiplicities N(hj)

must be integers. The additional results illustrate convergence to a sharp optimal bound.

These calculations were done at β = 1.0.

Now we can substitute N(2) = 196883 into equation (4.14) to get bounds on N(3).

n N bounds on δ = N(3)− 21296876

8 5 −38< δ < 61

10 5 −2.6< δ < 4.4

10 8 −8.5×10−3< δ < 8.1×10−3

(4.24)

So we have N(3) = 21296876 and can calculate bounds on N(4).

n N bounds on δ = N(4)− 842609326

10 10 −8.3×10−2< δ < 2.2×10−2

10 12 −8.3×10−2< δ < 3.6×10−3

15 15 −1.2×10−9< δ < 7.0×10−9

(4.25)

So N(4) = 842609326.

At this point we extrapolate to the conclusion that any g=1 brane must have the same

spectrum and multiplicities as the known g=1 branes.

5 c = 2 Gaussian model

Our second example is a certain c = 2 Gaussian model — a nonlinear model whose target

space is a 2-torus whose radii are both equal to R =
√
2Rsd where Rsd is the self-dual

radius. There is no B-field in this example. All known conformal boundary conditions for

this CFT have g ≥ 0.5 [17].

We show in appendix B that the spin-0 scaling dimensions of the Virasoro primary

fields are

{∆k} =

{

m

4
: m > 0,m ≡ 0, 1, 2, 4, 5 (mod 8)

}

(5.1)
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Using this list of scaling dimensions, we calculated lower bounds on g2 as before, only with

a different value of c and a different list of ∆k. For n = 36, N = 40 (using β = 1.0) we

obtained the lower bound

g2 > 0.1009 . (5.2)

The bound did not improve appreciably when we increased n from 24 to 30 and then to

36. This linear functional bound is well below the smallest known value g2 = 0.25.

We next explored the possibility of a minimal brane, that saturates the linear functional

bound. For a minimal brane, the boundary scaling dimensions hj must lie among the zeros

of the function Popt(h)fh, as in section 4.2. For the n = 36, N = 40 solution, the first ten

local minima of the function P (h)fh are shown in the following table.

h P (h)fh

2.527099 1.801512×10−64

4.281833 9.260807×10−65

5.802231 5.951241×10−65

7.160648 3.699803×10−65

8.443321 2.115923×10−65

9.768486 1.235336×10−65

11.03488 8.684430×10−66

12.33631 5.141452×10−66

13.67932 3.325586×10−66

15.06931 2.052798×10−66

(5.3)

The low-lying hj should be from this list.

With these values for the low-lying hj , we determined the boundary multiplicities as

in section 4.4. Using n = 10, β = 1.0, and taking account of the first N = 24 of the bulk

∆k, we obtained the bounds

6.30974 < N(h1) < 6.30978 . (5.4)

But N(h1) is an integer. Therefore the linear functional bound on g cannot be saturated.

The true lower bound on g must be higher than the linear functional bound.

6 Conclusions

We have proved by numerical computation (1) a lower bound on the boundary entropy s of

a Monster brane, (2) the stability of branes saturating the bound, and (3) the uniqueness

of the low-lying boundary spectrum of such extremal branes. Our numerical results give

strong evidence for the exact s=0 (g=1) lower bound on the boundary entropy of Monster

branes and for the uniqueness of the boundary spectrum of such extremal branes. The

lower bound on s and the stability of the extremal branes suggests that s ≥ 0 for all

boundary conditions, conformal or not.
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The c = 2 example shows that this situation is exceptional, that in general the optimal

linear function bound may not be the true lower bound. It would be interesting to have

some clues as to when the LF method provides the true bound. In such situations we

expect that the method of sections 4.2, 4.4 can be used to constrain the spectrum of the

extremal boundary conditions. One speculation is the LF bound is the true bound when

the bulk CFT is itself an extremal solution to the bulk modular invariance equations. It

would be interesting to check this by numerical calculations.

It might be possible to improve the LF method so as to produce true lower bounds

on s for CFTs such as the c = 2 example or for CFTs with ∆1 ≤ (c − 1)/12 where the

present LF method gives no bound at all. One could try to incorporate the constraint that

the boundary multiplicities N(hj) are nonnegative integers. This does not seem possible

with the SDP technique, but one could instead generate from the modular transform equa-

tion a linear programming problem as was done for the three and four-dimensional CFT

bootstrap equations [18, 19]. In our case since the modular duality equation (2.2) contains

both positive integer variables N(hi) and real positive variables b2(∆k) we get a mixed

integer linear programming (MIP) problem. Software packages are available for solving

such problems. A disadvantage of the MIP technique is that unlike the SDP method it

does not produce rigorous bounds. First one has to make assumptions about the spectrum

of dimensions (in our case about hj) e.g. putting them on a grid [18, 19]. Second, one

has to have faith in the MIP solver when it says that there exists no solution to the MIP

problem. There is no way to verify the non-existence. On a practical level, the extended

numerical precision that we have needed with the SDP technique is not currently available

in MIP software packages.
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A Coefficients glk

The polynomials

D(z) =
2n−1
∑

l=0

dlz
l , p(x) =

2n−1
∑

k=0

pkx
k , p̃(x) =

2n−1
∑

k=0

p̃kx
k (A.1)

are related by equation (3.1)

p(x) = x−
1
4 ex/4D(−4x∂x)

(

x
1
4 e−x/4

)

, p̃(x) = −x−
1
4 ex/4D(4x∂x)

(

x
1
4 e−x/4

)

(A.2)
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Define polynomials

gk(z) =
∑

l

glkz
l (A.3)

by

xk = x−
1
4 ex/4gk(−4x∂x)

(

x
1
4 e−x/4

)

(A.4)

so

D(z) =
∑

k

pkgk(z) , D(−z) = −
∑

k

p̃kgk(z) . (A.5)

Now calculate

gk+1(−4x∂x)
(

x
1
4 e−x/4

)

= xk+1x
1
4 e−x/4 (A.6)

= xkx
1
4 (−4x∂x) e

−x/4

= (−4x∂x + 4k + 1)xkx
1
4 e−x/4

so

g0(z) = 1 , gk+1(z) = (z + 4k + 1) gk(z) (A.7)

so

g00 = 1 , g0,k+1 = (4k+1)g0,k , gl,k+1 = gl−1,k+(4k+1)gl,k , l = 1, 2, . . . , k+1 . (A.8)

Equation (A.5) now gives equation (3.15)

dl =
∑

k≥l

glkpk = −
∑

k≥l

(−1)lglkp̃k . (A.9)

B Scaling dimensions in the c = 2 Gaussian model

We need a list of the scaling dimensions ∆k of the spin-0 Virasoro primary fields. The

vertex operators — the primary fields for the U(1)×U(1) current algebra — have confor-

mal weights

h = p2 = p21 + p22 , h̄ = p̄2 = p̄21 + p̄22 (B.1)

pµ =
1

2
(mµR+ nµR

−1) , p̄µ =
1

2
(mµR− nµR

−1) , mµ, nµ ∈ Z , µ = 1, 2 . (B.2)

Let Nh,h̄ be the multiplicity of the Virasoro representation with weights h, h̄. The partition

function tr
(

qL0 q̄L̄0
)

(stripped of the factor q−c/24q̄−c/24)

∑

p,p̄

qp
2

q̄p̄
2

∏

n |1− qn|4
=

|1− q|2 +∑

Nh,0q
h(1− q̄) +

∑

N0,h̄(1− q)qh̄ +
∑

h,h̄ 6=0Nh,h̄q
hq̄h̄

∏

n |1− qn|2
.

(B.3)

can be expanded in the characters of the U(1)×U(1) current algebra (on the left) or in the

characters of the two Virasoro algebras (on the right). Multiply by the denominator on

the right and rearrange to get

∑

h,h̄ 6=0

Nh,h̄q
hq̄h̄ =

∑

p,p̄

qp
2

q̄p̄
2

∏

n |1− qn|2
− |1− q|2 −

∑

Nh,0q
h(1− q̄)−

∑

N0,h̄(1− q)qh̄ (B.4)
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Write Ps=0 for the projection on the spin-0 part of a sum over powers of q and q̄ — the

terms with the same power of q and q̄, and apply it to both sides of the above identity.

∑

h=h̄ 6=0

Nh,h̄q
hq̄h̄ = Ps=0

∑

p,p̄

qp
2

q̄p̄
2

|∏n(1− qn)|2
− 1− qq̄ +N1,0qq̄ +N0,1qq̄ (B.5)

Look at the q and q̄ terms in (B.4). There are no p, p̄ with p2 = 1, p̄ = 0 or p2 = 0, p̄ = 1, so

0 = q + q −N1,0q (B.6)

0 = q̄ + q̄ −N0,1q̄

so N1,0 = N0,1 = 2. Equation (B.5) becomes

∑

h=h̄ 6=0

Nh,h̄q
hq̄h̄ = Ps=0

∑

p,p̄

qp
2

q̄p̄
2

|∏n(1− qn)|2
− 1 + 3qq̄ . (B.7)

By inspection, Nh,h = N(∆) 6= 0 exactly for all ∆ = 2h of the form

∆ = p2 + p̄2 + |p2 − p̄2|+ 2r , r = 0, 1, . . . (B.8)

which is

∆ = m2
1 +m2

2 +
1

4
(n2

1 + n2
2) + |m1n1 +m2n2|+ 2r , r = 0, 1, . . . (B.9)

or

4∆ = 4(m2
1 +m2

2 + |m1n1 +m2n2|) + n2
1 + n2

2 + 8r , r = 0, 1, . . . (B.10)

Consider the cases

(m1,m2, n1, n2) = (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1) (B.11)

to get

N(∆) 6= 0 for 4∆ ≡ 0, 1, 2, 4, 5 (mod 8) (B.12)

Finally, we show that N(∆) = 0 for 4∆ ≡ 3, 6, 7 (mod 8) which is to say for (1) 4∆ ≡
−1 (mod 4), and (2) 4∆ ≡ 6 (mod 8).

For (1), note that 4∆ ≡ n2
1 + n2

2 (mod 4). If n1 and n2 are both even, then 4∆ ≡
0 (mod 4). If both are odd, 4∆ ≡ 2 (mod 4). If one is even and the other is odd, 4∆ ≡
1 (mod 4). So 4∆ 6≡ −1 (mod 4).

For (2), suppose that 4∆ ≡ 6 (mod 8) then 4∆ ≡ 2 (mod 4) so n1 and n2 must both be

odd, say n1 = 2k1 + 1, n2 = 2k2 + 1. Then

4∆ = 4(m2
1+m2

2+ |2m1k1+m1+2m2k2+m2|)+4k1(k1+1)+4k2(k2+1)+2+8r (B.13)

so m2
1 +m2

2 + |2m1k1 +m1 + 2m2k2 +m2| must be odd, so m2
1 +m2

2 +m1 +m2 must be

odd, which is impossible. So 4∆ 6≡ 6 (mod 8).

Therefore

{∆k} =

{

m

4
: m > 0,m ≡ 0, 1, 2, 4, 5 (mod8)

}

. (B.14)
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