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Abstract
I discuss recent work with Anatoly Konechny proving a gradient formula
for the boundary beta function of the general supersymmetric one-dimensional
quantum system with boundary that is critical in the bulk but not at the boundary.
I concentrate on some unanswered questions about which Aliosha expressed
curiousity.

PACS numbers: 11.10.Hi, 11.10.Kk, 11.10.Wx, 11.25.Uv, 64.60.fd

One-dimensional quantum systems with boundary that are critical in the bulk but not at the
boundary are characterized by their boundary coupling constants λa . The renormalization
group leaves the bulk properties fixed, while the effective boundary coupling constants flow
according to the boundary renormalization group equation

−T
∂λa

∂T
= βa(λ) (1)

(using the temperature T as the scale parameter).
Anatoly Konechny and I have proved a couple of general gradient formulae for the

boundary beta functions βa(λ) [1, 2]. The gradient formula for the general boundary system
is

∂s

∂λa
= −gab(λ)βb(λ), (2)

where s is the so-called boundary entropy, and gab(λ) is a certain positive-definite metric on
the space of boundary systems, constructed from the two-point correlation functions (response
functions) of the operators localized in the boundary. As a corollary,

−T
∂s

∂T
= βa ∂s

∂λa
= −βagab(λ)βb � 0 (3)

establishing the second law of boundary thermodynamics—that the boundary entropy
decreases with temperature, as it does in an isolated system whose entropy is S =
(1 + T ∂/∂T ) ln tr(e−H/T ),H being the Hamiltonian.

* In memory of Aliosha Zamolodchikov.
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The second gradient formula pertains to the general supersymmetric one-dimensional
system with boundary, critical in the bulk. The Hamiltonian of a supersymmetric system is of
the form H = Q̂2, where Q̂ is the supersymmetry generator. The supersymmetric boundary
systems are characterized by the boundary coupling constants that preserve supersymmetry.
We continue to write these as λa , in the context of supersymmetric systems. Changing scale
preserves the supersymmetry, so the boundary beta functions are supersymmetric. The second
gradient formula is

∂ ln z

∂λa
= −gS

ab(λ)βb(λ), (4)

where z is the so-called boundary partition function, and gS
ab(λ) is a certain positive-definite

metric on the space of supersymmetric boundary systems (not the same as the restriction of
the first metric gab(λ) from the space of all boundary systems). As a corollary,

−T
∂ ln z

∂T
= βa ∂ ln z

∂λa
= −βagab(λ)βb � 0, (5)

so the boundary energy T 2∂ ln z/∂T of the supersymmetric system is non-negative, as
it is in an isolated supersymmetric system (whose thermodynamic energy is given by
T 2∂ ln Z/ ln T = T 2∂ ln tr(e−Q̂2/T )/∂T = 〈Q̂2〉 � 0).

These gradient formulae should give some general control over the boundary rg flow,
since they provide functions—s and ln z—that decrease under the flow, and whose critical
manifolds are the fixed points of the rg flow.

The gradient formulae are easily generalized to arbitrary quantum circuits that consist of
bulk-critical quantum wires. A boundary is the simplest kind of junction in such a circuit. I
have argued that such quantum circuits are ideal physical systems for asymptotically large-
scale quantum computers [3]. The gradient formulae might be useful for general analysis of
the computational power of such circuits.

The technical details of the proofs can be found in the papers [1, 2]. Here, I will only
bring up some questions about the significance of the assumptions that the proofs rest on.

The boundary partition function z was constructed by Affleck and Ludwig [4, 5] by taking
the full partition function ZL = tr(e−HL/T ) of a one-dimensional system of length L, in the
limit of large L, then dividing by the universal partition function of the bulk system:

ZL ∼ eLT πc/6 zz′, (6)

where c is the conformal central charge of the bulk-critical system. The remaining L-
independent factors z and z′ are the boundary partition functions of the two boundaries.
They actually did this construction in the special circumstances where the boundary is also
scale invariant, in which case the boundary partition function is a number independent of T,
which they called g. The construction generalizes directly to boundaries that are not scale
invariant. Affleck and Ludwig emphasized that z = g is not the partition function of an
isolated quantum system, pointing out that a genuine partition function in the limit T → 0
goes to a positive integer, the ground state degeneracy, while, for critical boundaries, z = g is
typically not an integer, and can be less than 1.

The boundary entropy s is constructed from the entropy of the one-dimensional system
by subtracting the universal bulk entropy per unit length:

SL ∼
(

1 + T
∂

∂T

)
ln ZL = L

πcT

6
+ s + s ′. (7)

It is not obvious that this quantity s can be interpreted as the entropy of the boundary as a distinct
sub-system. The second law of boundary thermodynamics, which follows from the gradient

2



J. Phys. A: Math. Theor. 42 (2009) 304015 D Friedan

formula, gives some support to such an interpretation. In [3], I gave a general argument in
support of this interpretation by writing a local, conserved entropy current operator which
describes the flow of entropy in reversible processes within the quantum system. The change
in s during such a reversible process is then given by the net entropy flow into the boundary.
My hope is that the quantum entropy density and current operators will be useful tools for
studying the information theoretic properties of large-scale quantum computers made from
these near-critical quantum circuits.

The boundary second law and the entropy current formalism deal only with changes in
the entropy s associated with the boundary. We have no handle on the total value of s. From
Affleck and Ludwig’s original observations, it is obviously not the case that s � 0. What is
more disturbing, we cannot even say that s is bounded below. We cannot prove a universal
lower bound on s, or a lower bound over the boundary conditions for a given bulk system, or
even a lower bound on s as a function of temperature T for a given boundary system. Some
partial results were found in [6]. It is implausible that an infinite amount of entropy could be
extracted from the boundary of a one-dimensional quantum system at low temperature, but
we have been unable to prove it. A lower bound on s is needed for control over asymptotic
behavior of the rg flow. Without a lower bound on s, there is no way to be sure that the rg flow
necessarily ends.

There is clearly a supersymmetric analog of the entropy flow formalism in which the
super-partner of the entropy density is the super-charge density divided by T. Again, we
can only control changes. We cannot put a global lower bound on ln z for supersymmetric
boundary systems any more that we can on s for general boundary systems. We lack physical
insight into the nature of s and ln z.

The proofs of the gradient formulae depend on two technical assumptions: (1) bulk
scale invariance, which implies bulk (super-)conformal invariance, and (2) a certain degree of
ultraviolet regularity in response functions of operators at the boundary. I will display these
assumptions in a direct proof of the positivity of the boundary thermodynamic energy.

The Hamiltonian and the super-charge are given by space integrals of the energy density
and the super-charge density:

H =
∫ L

0
dx H(t, x) Q̂ =

∫ L

0
dx ρ̂(t, x). (8)

These local fields are super-partners (components of the super-energy–momentum tensor):

[Q̂, ρ̂(t, x)]+ = 2H(t, x). (9)

The local densities can be used to construct the boundary energy operator,

h(t) = lim
ε→0

∫ ε

0
dx H(t, x), (10)

and the boundary super-charge operator,

q̂(t) = lim
ε→0

∫ ε

0
dx ρ̂(t, x), (11)

which are super-partners:

[Q̂, q̂(t)]+ = 2h(t). (12)

The boundary thermodynamic energy is given by

T 2 ∂ ln z

∂T
= 〈h〉. (13)

We can separate the super-charge Q̂ into boundary and bulk parts at x = ε just outside the
boundary:
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q̂ε(t) =
∫ ε

0
dx ρ̂(t, x) Q̂bulk(t) =

∫ L

ε

dx ρ̂(t, x) (14)

Q̂ = q̂ε(t) + Q̂bulk(t). (15)

Locality implies

[Q̂bulk(0), q̂(0)]+ = 0 (16)

so

〈2h〉 = 〈[Q, q̂(0)]+〉 = 〈[q̂ε(0), q̂(0)]+〉 (17)

but this equation is useless at ε = 0 (where it formally implies positivity of the boundary
energy), because 〈[q̂(t), q(0)]+〉 is ultraviolet divergent at t = 0.

We need a more subtle separation of the boundary from the bulk. We use the bulk
super-conformal invariance to accomplish the separation. Define the Fourier transform

gε(ω) =
∫ ∞

−∞
dt eiωt 〈[q̂ε(t), q̂(0)]+〉 (18)

and define response functions

G±
ε (ω) = ±

∫ ±∞

0
dt eiωt 〈[Q̂bulk(t), q̂(0)]+〉 (19)

analytic in the upper (resp. lower) half-plane. Now we have

2πδ(ω)〈2h〉 = gε(ω) + G+
ε (ω) + G−

ε (ω). (20)

It can be shown [2] that the bulk super-conformal invariance implies vanishing formulae:

G+
ε (iπT ) = 0 = G−

ε (−iπT ). (21)

The vanishing formulae, along with the analyticity of the response functions, allow us to derive
sum rules ∫

dω

2π

π2T 2

ω2 + π2T 2
G±

ε (ω) = 0 (22)

as long as the G±
ε (ω) grow slow enough at large ω to allow us to deform the contour of

integration to infinity. Applying the sum rule to equation (20) gives

〈2h〉 =
∫

dω

2π

π2T 2

ω2 + π2T 2
gε(ω). (23)

Now we can take ε → 0:

g(ω) =
∫ ∞

−∞
dt eiωt 〈[q̂(t), q̂(0)]+〉 (24)

as long as ω−2g(ω) is integrable at large ω. Finally, we obtain

β
∂ ln z

∂β
= −β〈h〉 = −β

2

∫
dω

2π

π2T 2

ω2 + π2T 2
g(ω). (25)

We have g(ω) � 0 so

T
∂ ln z

∂T
� 0. (26)

The ultraviolet conditions—on the large ω behavior of the correlation function g(ω) and of the
response functions G±

ε (ω)—are satisfied if the boundary physics is canonical in the ultraviolet.
Then q̂(t) has ultraviolet scaling dimension �1/2, so g(ω) and G±

ε (ω) have ultraviolet scaling
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dimensions �0. The boundary behavior will certainly be canonical in the ultraviolet if the
rg trajectory goes back to a fixed point at short distance. It is curious that the proof still
works with ultraviolet behavior somewhat worse than canonical. We only need q̂(t) to have
ultraviolet scaling dimension <1.

In the full proof of the gradient formula, ultraviolet regularity is similarly required in the
two-point function of boundary operators. In particular, it is needed to construct the metric
that appears in the gradient formula. In the supersymmetric case, the metric is given by

gS
ab =

∫
dω

πT

ω2 + π2T 2
fab(ω), (27)

where

fab(ω) =
∫ ∞

−∞
dt eiωt 〈[φ̂b(t)φ̂a(0)]+〉 (28)

is the super-response function of the fermionic boundary operators. We need fab(ω)/ω2 to be
integrable at large ω. Again, canonical ultraviolet behavior is more than sufficient. The φ̂a(t)

then have scaling dimensions �1/2, so fab(ω) = O(1) at large ω.
The boundary second law expresses a separation between the boundary sub-system and

the bulk. The vanishing formulae (21) expressing bulk super-conformal invariance are infrared
in character. The infrared vanishing formulae and the ultraviolet regularity of the response
functions play purely technical roles in the proof. Why should the bulk (super-)conformal
invariance be necessary for this separation of the boundary physics from the bulk? Perhaps it is
not far-fetched that ultraviolet properties of the boundary should be relevant to the separation,
but we do not understand in physical terms how this works. Again, there is a lack of physical
insight into the separation of the boundary sub-system from the bulk.
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