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Ultra-Precise Superradiant Atomic Clock from JILA

87Sr (¢) Experimental Optia' @y« Proof-of-principle: ultracold 87Rb atoms
4 I Gy | (N~10) in a bad cavity
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* Actual clock: 8’Sr or !7'YB instead

J.K. Thompson et. al., JILA (2013)



Ultra-Precise Superradiant Atomic Clock from JILA
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Ultra-Precise Superradiant Atomic Clock from JILA

4 87Sr (c) Experimental optical cavity
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Master Equation: p = —u[H, p] + W Z LlGi+|p+rL]a)p
j=1

Lindblad super-operators: £[O]p =



Ultra-Precise Superradiant Atomic Clock from JILA
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Adiabatic elimination: A= G S_, F> o1

(bad cavity limit) K
Bonifacio et. al., Phys. Rev. A (1971)



Ultra-Precise Superradiant Atomic Clock from JILA
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N
Master Equation: 0 = —’L[wgz, ,O] + W Z £[5'j+],0 + FCE[S_],O 3 energy scales
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Master Equation: P = —’L[wgz, pl + W Z ﬁ[&j+]p + FCE[S_],O

2 A
System Size Expansion in 1/vV' N :> Mean-Field Equations, 8 = N<S )
. . 14 1
S = (M — 7)S+ -+ 5323+ % Rotating frame: w — 0
1
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Phase Diagram (1D): Two phases

¢ One parameter (W) — phase diagram is 1D

¢ Single attractor — fixed point



Phase Diagram (1D): Two phases
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G2’ Do atomic clocks synchronize?



Synchronization:

¢ First observed by Huygens in maritime clocks 1665 — “an odd kind
of sympathy”

¢ The opposite swings of the pendulums coincide, when two pendulum
clocks are hung from same support.

Christiaan Huygens

* Anti-phase synchronization
Letters to de Sluse, 1665

¢ Reason: “...imperceptible motion of the beam...”

v" Also observed by J. W. Strutt (34 Baron Rayleigh):
“When two organ-pipes of same pitch stand side by
side...cause the pipes to speak in absolute unison, 1n
spite of inevitable small differences.”

v Frequency Locking Original drawing by Huygens



Two atomic clocks in a bad cavity

Re-pump Laser (W)

- Environment

Two dimensionless parameters: W, 6 = w4 —wp ©T—> 2D phase diagram

/
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Two atomic clocks in a bad cavity

Re-_p_ump Laset (W)

Environment

Experiment: Weiner et. al., PRA (2017)

Theory:

Xu et al., PRL (2014)

Roth & Hammerer, PRA (2016)
L1 et. al., Comm. Non. Sc1 (2017)
Shankar et. al., PRA (2017)

The phase diagram consists of same two phases as for one clock???



Our result: complete, exact nonequilibrium phase diagram

> W » Incredibly rich phase diagram. 5 new phases in
addition to the 2 one-clock phases! Dynamics
extremely rare in other driven-dissipative
L5} : systems.
Normal Phase » Normal phase (no radiation): I
l.p 11

Moo » Monochromatic superradiance: 11

Superrad.
0.5}

0.
0.5 l. 1.5 2.

W — re-pump rate, o - detuning



Our result: complete, exact nonequilibrium phase diagram
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» Incredibly rich phase diagram. 5 new phases in
addition to the 2 one-clock phases! Dynamics
extremely rare in other driven-dissipative
systems.

» Normal phase (no radiation): I

» Monochromatic superradiance: 11

» Amplitude-modulated superradiance: I1I
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Our result: complete, exact nonequilibrium phase diagram

W » Incredibly rich phase diagram. 5 new phases in
addition to the 2 one-clock phases! Dynamics
extremely rare in other driven-dissipative

. systems.

Normal Phase

» Normal phase (no radiation): I

11

Moo » Monochromatic superradiance: 11

Superrad.
» Amplitude-modulated superradiance: I1I

v Symmetric Limit Cycle (green inside III)
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W — re-pump rate, o - detuning



Our result: complete, exact nonequilibrium phase diagram
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W — re-pump rate, o - detuning

» Amplitude-modulated superradiance: I1I
v Symmetric Limit Cycle (green inside I11)

v" Quasiperiodic attractor (dark blue points)

v" Chaos (orange points)

v Red points: synchronized chaos! Extremely
rare with bidirectional coupling. Never seen
or predicted in cavity QED.

Appearance, disappearance (via quasiperiodic
route to chaos) and restoration of synchronization.

Three different kinds of synchronized dynamics.



Our result: complete, exact nonequilibrium phase diagram
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Two atomic clocks in bad cavity: equations of motion

W . 1 ct. one clock
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Two coupled Landau-Lifshitz
equations + pumping



Two atomic clocks in bad cavity: equations of motion

W, . 1
z|— (Zw] 9 )Si— + 283 l‘|‘
éj:W(l—sj)—lsl —lsjl
Z Z 4 ST 4 +
j=AB l=s%"4+s"

Two coupled Landau-Lifshitz
equations + pumping

Symmetries:
v’ Axial symmetry about z-axis

—3Q

J J _ip J J
st —sle®, s —sle

v Z, symmetry (similar to particle hole)
In a frame rotating with mean frequency
wa = —wp =0/2

S <7 —S

A B A B A
x z Y

B
< 8;, S ”

v' Steady states (attractors, phases) can brake
one symmetry or both



Synchronization of atomic clocks

¢ Clocks A & B are synchronized when the steady state is Z, symmetric. Then, spins
corresponding to the two atomic ensembles follow one another

A_ B A_ B A _ B
Sy = Szps Sy = —S,, S, =S5,

¢ Compare with anti-phase synchronization of classical clocks. The pendula are at opposite
apexes at the same time.

For atomic clocks we replace pendula with spins and
the median (dashed line) with the xz-plane.



This talk: synchronized chaos

v" Origin
v Experimental signature
v" Applications



Chaotic synchronization: Origin

¢ Chaotic phases (orange and red). Maximum Lyapunov exponent is positive.

¢ Ordinary chaotic trajectories do not posses Z, symmetry. They occupy 6D regions of the 6D

0.25 : phase space.
I
,' & Z, symmetry is restored for the chaotic trajectories in
0.2} : the red part of the phase diagram. They occupy 3D
- regions.
0.15 :
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Chaotic synchronization: Origin

To determine the origin we study the equations of motion restricted to the Z,-symmetric

synchronization submanifold, 6D — 3D 5 W
Spg = — =Sy — =Sz T 8,8
l T 9 Y 9 T A
0 4%
A B _ s — g
S, = S, = Sy %y T 5% T 5%
. 2
sﬁz—sfzsy S =W(l—s;)—s;
A B __ » Distinct from one clock equations: 2 parameters
Oz — 52 = 9z instead of 1

» The phase diagram is 2D



Chaotic synchronization: Origin

To determine the origin we study the equations of motion restricted to the Z,-symmetric

synchronization submanifold, 6D — 3D b 1%
Sp = —=8y — — 8 - 88
- T 9 Y 9 T z29ox
- , 0 W
Sy = =8y — —S8
0.20] . 5
s, =W({I1 —s,)— s

» Distinct from one clock equations: 2 parameters
instead of 1

0.10} | | |

» The phase diagram is 2D, but with fewer phases

than without Z,: fixed point, limit cycle & chaos
0.05}

» Synchronized chaos originates directly from the
Z, symmetric limit cycle

0.10 0.30



We determine the nature of the transition from the Z, symmetric limit cycle to synchronized
chaos via Floquet stability analysis

dASs., ) W

0.95 ks —§Asy — 7Asx + AS,S, + 5,AS,
dAs 0 |44
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As,i1 =M- As, 3 Floquet multipliers:

0.10+
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We determine the nature of the transition from the Z, symmetric limit cycle to synchronized
chaos via Floquet stability analysis

1.0
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dA ) |44
oy _ —As, — —As,
dt 2 2
dAs.
oz _ —WAs, —2s,As,
5 dt
0.108 0.113 0.118 As,i1 =M- As, 3 Floquet multipliers:
(Tla ra, TB)
r1 = 1, because rs < 1 (numerical ro — 1 changes sign

As = § is a solution

observation) across the transtion



We determine the nature of the transition from the Z, symmetric limit cycle to synchronized
chaos via Floquet stability analysis

r;| o I [ro| o= |1
10 ~
0.5/ :> Tangent Bifurcation
0.0 —":“—é“’ ================= —
| | 0
0.108 0.113 0.118 As, .1 =M-As, 5 lloust muliigiies
(’rla T2, TB)
r1 = 1, because rs < 1 (numerical ro — 1 changes sign

As = s is a solution observation) across the transtion



Chaotic synchronization: Origin - Tangent Bifurcation Intermittency

¢ Synchronized chaos originates directly from the Z,-symmetric limit cycle

¢ Near transition, synchronized chaotic dynamics stay close to the Z, symmetric limit cycles.

Lyapunov exponents:
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Poincare sections:
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Synchronized chaos

Chaotic synchronization: Origin - Tangent Bifurcation Intermittency
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Back to 6D: stability of synchronized chaos

At inception, synchronized chaos is unstable in the full 6D phase space.
Compare the full 6D and Z,-restricted dynamics.

0.25 0.25

0.20} 0.20 ¢

0.15}

0.10} 0.10+F
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On-off intermittency

As we decrease o keeping W fixed, chaos synchronizes via on-off intermittency

W = 0.055,5 = 0.08021 023
A B
0.5} %z T %2 0.2}
0.0 0.15¢
—0.9] 10* Time 01
3.0 5.0 7.0 9.0
0.05}
sf — 82 = 0 for synchronized chaos




On-off intermittency

As we decrease o keeping W fixed, chaos synchronizes via on-off intermittency

W = 0.055, 8 = 0.08010 0-25

0.2}

0.0 N 0.15}

—0.5 0.1}

10* Time
3.0 5.0 7.0 0.0

0.05}
The frequency and magnitude of chaotic
outbursts progressively decrease with o




On-off intermittency

As we decrease o keeping W fixed, chaos synchronizes via on-off intermittency

W = 0.055,5 = 0.08000 023
A B
LS, — S,
0.5F7=2 ~ 0.2
0.0 e 0.15¢
—0.9] 10* Time o
3.0 5.0 7.0 9.0
0.05}
The frequency and magnitude of chaotic
outbursts progressively decrease with o




Stable synchronized chaos

As we decrease o keeping W fixed, chaos synchronizes via on-off intermittency

W =0.055,0 = 0.08000

0.02
Ac
0.01}
0
hj,ﬂs\&,ﬂ. _________________
001l ——QP
0.01 C
10* Time = SC
—0.02 ' ' ' '
1 2 3 4 H

The conditional Lyapunov exponent (maximum Lyapunov exponent for
directions transverse to the synchronization manifold) 1s negative



Chaotic synchronization: Experimental Signature

Observable: Power spectrum of radiated electric field. Measured with Michelson interferometry.
Proportional to || _ ( f) |2

» Each phase leaves a unique signature in the radiated power spectrum



Chaotic synchronization: Experimental Signature

Observable: Power spectrum of radiated electric field. Measured with Michelson interferometry.
Proportional to [ ( f) |2

Synchronized chaos: 0 = 0.080, W = 0.055

60.0
1L-(f)] v" Chaos: continuous spectrum

40.0¢ v" Synchronization (Z, symmetry):

reflection symmetry about the origin
20.0} Zo symmetry = 1, (t) =0
= [_(t) - real
(). () b ! sh=—sB 1, =s2+sB=0

—-0.12 -0.06 0.0 0.06 0.12 & yr Y Y Y



Chaotic synchronization: Experimental Signature

Observable: Power spectrum of radiated electric field. Measured with Michelson interferometry.
Proportional to [ ( f) |2

Synchronized chaos:

60.0
- ()]

No peak at the origin — leftover from the
Z, symmetric limit cycle, which only has
odd harmonics

40.0+

20.0+

0.0

—1.0 0.0 1.0



Compare synchronized (left) and unsynchronized (right) chaos

Observable: Power spectrum of radiated electric field. Measured with Michelson interferometry.
Proportional to |[_ ( f) |2

Synchronized chaos: Ordinary chaos:
60.0 60.0
_(f)] - (f)]

40.0

40.0+

20.0+ 20.0

0.0 0.0

—1.0 0.0 1.0 —1.0 0.0 1.0

No reflection symmetry and peak at the origin for ordinary chaos



Chaotic synchronization: Applications - Steganography

The purpose of steganography is to hide the very existence of the message, not just its meaning
as 1n cryptography.

1. Add message (small perturbation) to one of the chaotic temporal pattern from one ensemble

2. Subtract synchronized output from the transmitted signal. Retrieve the message

Transmitter JUuuL + W - W

Ensemble A Message Chaotic Carrier Signal

Receiver — —Pp [ULUL
Picture from A. Uchida.

Ensemble B
NSEMDIC B eceived Signal Orlgigal Chaotic  pecoded Message
arner
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