
Vol. 43 (1999) REPORTS ON MATHEMATICAL PHYSICS No. l/2 

INTEGRABLE MAPPINGS FOR NONCOMMUTATIVE OBJECTS 

A. N. LEZNOV 

Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia 
(e-mail: leznov@mx.ihep.ru) 

and 

E. A. YUZBASHYAN 

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 
141980 Dubna, Moscow Region, Russia 

(Received April 1. 1998) 

The method of integrable mappings is generalized to the noncommutative case. Hierar- 
chies of integrable systems corresponding to the noncommutative Darboux-Toda substitution 
in the two-dimensional spaces and superspaces are constructed. 

1. Introduction 

Recently it has become clear [l] that the group of integrable mappings plays a key 
role in the theory of integrable system. But up to now only the case of commutative 
dependent variables has been considered. What happens when the dependent variables 
are noncommutative operators? The goal of the present paper is to give a particular 
answer to this question. 

Each quantum system can be described in many different representations. The 
most known and used are the Schrodinger and Heisenberg representations. The first 
one deals with wave functions (state vectors in the Hilbert space), the second with 
noncommutative Heisenberg operators and equations of motion under appropriate 
initial conditions-commutation relations at a hxed moment of time. 

The operators which we consider in the present paper are not assumed to have 
any concrete nature or properties. Particularly, they can be (s x s)-matrix functions 
or any other operators defined in some representation space. Quantum Heisenberg 
operators are within the scope of this construction. 

The method of integrable mappings seems to be the most suitable tool to solve 
such problems [l]. We consider two concrete examples of integrable mappings for 
noncommutative operators. At the moment, there is no idea about classification of 
all possible integrable mappings for noncommutative operators. 
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2. Noncommutative Darboux-Toda substitution in the two-dimensional space 

2.1. Definitions 

Let u and v be two operators depending on 2 and y coordinates of two-dimen- 
sional space. 

The partial derivatives up to some sufficiently large order and the inverse opera- 
tors u-l and 21-l are assumed to exist. Consider the mapping 

‘;I = w-1, +ii = [vu - (wzw-l)y]v = w[uw - (w-lvy)l], @l) 

where G and L are the final, transformed operators. The case when u and u are 
some s x s matrices (2.1) was considered in [2]. In the classical case u and v are 
commutative functions and (2.1) is the well-known Darboux-Toda substitution. 

Transformation (2.1) is invertible, i.e. the initial operators u and 21 can be ex- 

pressed through the final ones. Denoting by G and G the result of the inverse 
transformation we get 

-1 u=u , z = [uw - (uyu-l)z]u s u[wu - (u-luy)l]. (2.2) 

An s-times directly transformed operator f(u, w) is denoted by 7 = f(y, 7). 
The same s-times transformed operator with the inverse transformation is denoted 

(2.3) 

is a given evolution-type system, the condition of its invariance with respect to the 
transformation (2.1) can be derived by differentiation of (2.1) with respect to some 
parameter and has the form 

El = & = _w-lwtw-l = _w-lF2w-1, 

F, = iit = ([ vu - (w-l),lv)t (2.4) 
= [Fzu + VFl - (F&W -l)y + (7JJF1 F2w3Jw + [vu - (wzw-l),]F2. 

This is the functional symmetry equation for the substitution (2.1). If [Fr(u, w), 
F2(u, v)] is a solution of (2.4), the corresponding evolution-type system (2.3) is in- 
variant with respect to substitution (2.1). The system (2.4) is linear, i.e. if [Fr’, Fa’] 
and [Fr”, F2”] are solutions, then [Fr = aFr’ + ,F1” , F2 = aFz' + ,F2”] (u and b 
are arbitrary numbers) is also a solution. Every symmetry equation possesses a trivial 
solution: [Fl = au, + buy, F2 = uw, + bv,]. A substitution is called integrable if its 
symmetry equation has at least one nontrivial solution. 
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2.2. Solution of the symmetry equation 

First of all, let us take F2 = sow and Fl = uPo. From (2.8) we find 

po = -20 

acZY = (CYO - Go,& + To(a0 - 4) + BQoy, --cyoy& 
(2.5) 

where TO = wu and 8 = v,v~. This system has an obvious particular solution aa = 
-,OoCo) = 1 which gives the first term of the hierarchy: [Fl = -IL, F2 = II]. The 
following two relations are important for farther calculations: 

To, = eTo - Toi, ey =To-Fo. (2.6) 

In fact, (2.6) is the substitution (2.1) rewritten in terms of TO and 19. Let us take now 

c% = a,%0 + TopI. This can be treated as an analog of the vector decomposition by 
the basic vectors. Substituting this into the second equation of the system (2.5) and 

expressing $0, and TO, from the first relation of (2.6), we find 

((yla: + Lo - a0 + G - eal)To + ~~(p~, + Z. - Qo + p,e - ip1) = 0, 

from which it follows that if the coefficients before Fc and after TO equal zero the 
system (2.5) is satisfied. We have 

QlX = a0 - iTo + ecu1 - &, 
pl, = a0 - Z. + Zp, - pie. 

(2.7) 

The second relation can obviously be rewritten as 

&, = -tao - Zo) + eZ, - Lie 

We see that the system (2.7) possesses a particular solution of the form F, = -Q1. 
Differentiating the equation for al with respect to y we have for that solution 

Pl = 4, 
airy = (~1 - &)?t + To& -iii) + e%, - %$ 

(2.8) 

This system is completely analogous to (2.5). It also has a particular solution cyl = 
-Pi = 1 which gives the next solution of the symmetry equation (2.4) 00(l) = 

,[@a - To)dy. Taking air, = c~z;;o’ + To/32 we can find other terms of the hierarchy 
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using the same scheme. The system for a2 and p2 has the same structure as the 
previous systems. Its particular solution cy2 = -p2 = 1 gives 

By induction it can be proved that in the general case the equations for Q, and ,& 
are 

A = -G, 

CX,,y = (a, - z,)+GJ1) + Tc(a, - G) + ea,y - oI,Y7?, 
(2.9) 

with a particular solution on = -p,, = 1. The formula for oacn) can be written in the 
symbolical form as the sum of 2” terms 

where exp(d,) shifts on unity the argument of the p-th integral 

J J 
+(p+l) . . . dy?: 4 . . . dy To . . . 

and L, transpose terms in the r-th brackets 

(Al(.. .(A,.[. . .I).. .)) --+ (Al(. . . ([. . .]A,.). . .)). 

The multiplication rule for these operators is the following: 

Li exp[. . .]lLj exp[. . .]2 = LiLj exp [[. . .]I + [. . .]2]. 

2.3. Examples 

i)n=O 

ii) n = 1 

iii) n = 2 

Vt = 21, Ut = --u. 

vt = %, Ut = uz. 

vt = v,, - 2 (vu),dy x v, J ut = -u,, + 2~ J (vu),dy. 

This is the matrix Davey-Stewartson system described in [3]. 

(2.10) 
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iv) 72 = 3 

Zlt = v,,, - 3 
I 

(vu)& x v, - 3 
s 

(v,u),dy x 21 

-3~[v~~(i’~~~-~(v~~xv~]~~xv, 

Ut = -U,,, - 3U, (vv),dy - 3u (vzu)zdy 

-3u/ [vzlSdy(vu), - (pYw,> vu] dY. 

In the commutative case, this will be the Veselov-Novikov system. 

3. Noncommutative Darboux-Toda substitution in the two-dimensional superspace 

3.1. Definitions 

Now let us analyse a situation when the operators under consideration depend on 
the Grassmann variables 13+ and 8_ in addition to the spatial coordinates z and y. 
Consider the mapping 

;I = v-l, 5 = -[D_(D+v x v-l) + vu]v = v[D+(v-lD_v) - uv], (3.1) 

where 

d d 
D_=ae_+fLay, D: = & DT = _!? 

dY’ 

The notation in this section is the same as in the previous one. The inverse trans- 
formation has the form 

; = u-1, ii = -[D+(D_u x u-l) + uv]u E u[D_(u-lD+u) - vu]. (3.2) 

The symmetry equation for (3.1) is the following: 

Fl = -v-lF&, 

& = Fz[D+(vdD_v) - uv] (3.3) 

+v[D+(-v-~F~,-~ D-v) + D+(v-lD_F2) - Flu - uF& 

3.2. Solution of the symmetry equation 

Here we get the hierarchy of solutions of the symmetry equation (3.3). For this 
we use the same general method as in the previous section. But there is some 
difference. As we will see below, particular solutions of (3.3) can be found only at 
even steps when the unknown operators are the bosonic-like whereas at odd steps 
they are fermionic-like. 



212 A. N. LEZNOV and E. A. YUZBASHYAN 

Substituting Fr = u,& and Fz = QOZ, into (3.3) we find 

PO = -Gl> 
D+D_ao = (& - c&o + TO(QO - Gy)) + eD-ao + D-aoe, 

(3.4) 

where To = vu and 0 = D+v x v- l. This system has the particular solution QO = 
--@a = 1 which gives [FI = -u, F2 = v]. 

The transformation (3.1) can be rewritten in terms of TO and 0, 

D+To = eTo -Toe, D-e = -To - Fo. (3.5) 

Taking now D_ao = (YI& + TopI, for al and PI we have 

D+cq = &I - CxfJ + eal + cu,;, 

D+/~I = a() - & + zpl + pie. 

For F, = al, the second equation directly follows from the first one. Acting on the 
equation for cyl with D_, we get 

Pl = G, 
-D+D_al = (cq + &)%; - To(cq + 21) + D-&i - eD-al. 

(3.6) 

This is a typical system for odd steps. Comparing it with (2.8) we notice that the dif- 
ference between these systems is that (3.6) has no numerical particular solutions (aI 
and PI are fermionic-like). However, it is possible to continue the reduction by using a 

decomposition: D-al = az?‘: + T&. We have 

Taking z, = -cr2 after simple calculations we find 

I32 = 47 

D+D_a2 = (L2 - cx2)5: + To(a2 - z2) + D-r~~c8~ + eD_cr2. 
(3.7) 

The particular solution of this system aa = -,& = 1 corresponds to the trivial system 
[FI = uuz + bu,, F2 = au2 + bug]. All systems derived at even steps will be similar to 
(3.7). The particular solution of each system of that kind gives a nontrivial and nonlinear 
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evolution-type system invariant with respect to the transformation (3.1) (see the k = 2 
example). By induction one can easily prove that for arbitrary 72 = 2k + 1 we have 

Using the d!ak = 1 particular solution of system (3.8) we construct the k-th term of 
the hierarchy. The final result can be represented in the following form: 

Q!oCk) = (-1)” 6 (1- (-l)iLiexp [idi + i=$+i&]) 
i=l 

xP(ToD3GP(. . . D_-l’“;o)-. . .))), (3.9) 

The notation here is the same as in (2.10). 

3.3. Examples 

i) k=O 

ii) k = 1 

iii) k = 2 

vt = v, Ut = -u. 

vt = v,, ut = u,. 

vt = zi,, - 2P(vu),D+v - 2P( v +u x v + 2X1 [vuD~‘(vu), + D?(VU), x vu.] , D ) 

Ut = -u,, + ~+uP(vu), -2uD3D+vu), -2uEl [vuP(vu), + P(vu), x vu] 

4. Conclusion 

The main concrete results of the paper are the constructed hierarchies of inte- 
grable systems (2.10) and (3.9) invariant with respect to the corresponding noncom- 
mutative Darbowr-Toda transformation. 

Note that the scheme of our calculations is similar to a computer program algo- 
rithm-there are many identical operations which can be interrupted at an arbitrary 
step. The structure of the group of integrable mappings is coded in this scheme. If it 
were possible to translate it into the group-theoretical language, we would be closer 
to the classification theorem for integrable mappings. 

It is well known that quantum integrable systems are closely connected with the 
quantum algebras [4]. We hope that future investigations will allow to find a connec- 
tion between the method described in the present paper and the sufficiently developed 
formalism of quantum algebras. 
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