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We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-
dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-
Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate
Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time
dependence into various quantum integrable models while maintaining their integrability. We also validate
some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
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Quantum coherent dynamics controlled by strong time-
dependent fields can be realized and explored nowadays in
systems of considerable complexity [1–8]. Time-dependent
parameters play a critical role in NMR [9], quantum
information processing [10–20], molecular dynamics
[21–23], and cold atom experiments [24–26]. On the theory
side, the quantum dynamics of time-dependent many-body
Hamiltonians, especially their exact analytical description,
presents considerable challenges. In contrast, exact solu-
tions of significant relevance to experiments inform our
understanding of stationary states, e.g., Bethe’s ansatz
solution of paradigmatic models [27–29]. Nontrivial exact
results have been also obtained for quantum quenches, such
as the generalized Gibbs ensemble description of the
dynamics of the spin-1=2 Heisenberg chain [30] and
quantum quench phase diagrams of BCS superconductors
[31]. Such methods, unfortunately, do not apply to a
Hamiltonian with continuous time dependence.
In this Letter, we propose an approach for solving the

nonstationary Schrödinger equation exactly for a broad
class of time-dependent Hamiltonians. This approach
allows us to make parameters of a quantum integrable
model, e.g., the BCS and generalized Tavis-Cummings
Hamiltonians, vary in time in such a way that the resulting
dynamics are exactly solvable. While here we primarily
focus on the scattering problem for Hamiltonians linear in
time, our method applies to a much broader class of
problems, including Floquet Hamiltonians [32] and models
with other nonpolynomial time dependence.
Important examples of driven systems are matrix

Hamiltonians of the form HðtÞ ¼ Aþ Bt, where A and
B are time-independent Hermitian N × N matrices. The
problem of finding the scattering matrix that relates the
state of the system at t ¼ þ∞ to that at t ¼ −∞ is called

then the multistate Landau-Zener problem. The 2 × 2
problem was solved by Landau, Zener, Majorana, and
Stückelberg in 1932 [33–36]. For N ≥ 3, the solution is
known only for special choices of A and B. The earliest
examples include Demkov-Osherov [37,38], bow-tie [39],
generalized bow-tie [40,41], composite [42], and infinite
chain [43] models. In a more recent work [44], it was
shown that nontrivial solvable models belong to families of
mutually commuting Hamiltonians linear or quadratic in t.
It was therefore conjectured that quantum integrability
understood as the existence of nontrivial time-dependent
commuting partners [45–48] is a necessary condition for
the multistate Landau-Zener solvability. In a parallel
development, empirical methods to solve and search for
new models were discovered [49–51], and since then the
number of such models has grown rapidly [52–55].
However, these results still lack a rigorous justification.
Our approach provides a framework to justify exact

solutions for all these models and to identify and solve new
ones. It also supports the conjecture made in Ref. [44].
Below, we first formulate our approach and then discuss
various many-body and matrix models that fit into it.
To illustrate our technique, we solve the scattering
problem for two nontrivial models—the generalized
Tavis-Cummings Hamiltonian with a linear drive and a
new four-state Hamiltonian linear in t. Moreover, we
present a new class of solvable interacting spin systems
with time-dependent couplings. We conclude with several
general observations and an outline of the idea of the
solution for arbitrary t.
Consider a Hamiltonian Ĥðt; x⃗Þ that, in addition to time,

depends on M real parameters ðx1;…; xMÞ ¼ x⃗. For exam-
ple, in the multistate Landau-Zener problem these can be
certain matrix elements of A and B. The main idea is to
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embed the nonstationary Schrödinger equation for Ĥðt; x⃗Þ
into a set of multitime Schrödinger equations

i∂jΨðxÞ ¼ ĤjΨðxÞ; j ¼ 0; 1;…;M; ð1Þ

where x ¼ ðt; x⃗Þ, ∂j ≡ ∂=∂xj, x0 ¼ t, Ĥ0 ≡ Ĥðt; x⃗Þ, and
Hamiltonians Ĥj are independent. In other words, the first
equation (j ¼ 0) is the original nonstationary Schrödinger
equation, while the rest are auxiliary Schrödinger equations
that help us solve it exactly. Taking the derivative of Eq. (1)
with respect to xk, we derive consistency conditions

∂jĤk − ∂kHj − i½Ĥk; Ĥj� ¼ 0; k; j ¼ 0;…;M: ð2Þ

These conditions are sufficient and necessary for system (1)
to possess a joint solution for any initial condition [56,57].
We may view them as a generalization of the notion
of integrals of motion for time-dependent quantum
Hamiltonians.
A formal solution of Eq. (1) along a path in the space of

real parameters x that starts at a reference point x0 is an
ordered exponential:

ΨðxÞ ¼ T exp

�
−i

Z
P
Ĥjdxj

�
Ψðx0Þ; ð3Þ

where we assume summation over repeated indices.
Treating Hamiltonians Ĥj as matrix components of a
non-Abelian gauge field AðxÞ, Aj ¼ −iĤj, we interpret
Eq. (2) as the zero curvature condition F jk ≡
∂jAk − ∂kAj − ½Aj;Ak� ¼ 0, so that ΨðxÞ in Eq. (3) is
independent of the integration path P as long as its end
points are fixed. It is precisely this freedom to choose a
suitable path that enables us to explicitly solve the
scattering problem. A similar zero curvature integrability
condition is also well known in soliton physics [58].
Furthermore, consider a path Pτ parametrized by a

variable τ:

Pτ∶ xjðτÞ ¼ vjτ þ xj0; j ¼ 0;…;M; ð4Þ

where vj and xj0 are constants. The state vector ΨðτÞ ¼
Ψ½xðτÞ� along this path satisfies

i
dΨðτÞ
dτ

¼ ĥðτÞΨðτÞ; ð5Þ

ĥðτÞ ¼
X
j

vjĤj½xðτÞ�: ð6Þ

Solutions of Eq. (5) follow from those of Eq. (1). Therefore,
ĥðτÞ—an arbitrary linear combination of Ĥj—is also a
solvable time-dependent model just like a linear combina-
tion of integrals of motion of a time-independent model is

also an integral. Note, however, that the coefficients vj of
this linear combination dictate the time dependence of ĥðτÞ.
More generally, one can choose nonlinear xjðτÞ instead of
the linear path in Eq. (4), leading to, e.g., integrable
Hamiltonians ĥðτÞ with an exponential or oscillatory
behavior of the couplings.
An important observation is that complex-looking

Eq. (1) simplifies considerably when the matrix elements
of the Hamiltonians are real. Then, the real and imaginary
parts of Eq. (2) yield two separate conditions:

½Ĥj; Ĥk� ¼ 0; ð7Þ

∂jĤk − ∂kĤj ¼ 0; j; k ¼ 0; 1;…;M: ð8Þ

These equations suggest a strategy for identifying solvable
time-dependent models. First, we note that Eq. (7) is to be
supplemented with a notion of a nontrivial commuting
partner that weeds out trivial partners (e.g., projectors onto
the eigenstates of Ĥ). One way is to consider parameter-
dependent Ĥj and to fix their dependence on the parameter
[59]. This leads to a systematic classification and explicit
construction of commuting families of parameter-
dependent matrix Hamiltonians [44–47], which are inter-
esting candidates for our approach. More generally, any
quantum integrable model that contains two or more real
parameters is a potential candidate. Such models have an
extensive number of integrals of motion that satisfy Eq. (7).
If no initial subset of integrals satisfies Eq. (8), we attempt
to redefine them by taking various combinations and
similarly redefine the parameters to make Eq. (8) work
for at least M ¼ 1. Note that, once we declare one of the
variables xj to be the physical time, commuting partners Ĥj

cease to be integrals of motion.
For example, take the generalized Tavis-Cummings

model

ĤTC ¼
XNs

j¼1

εjŝ
z
j − ωâ†âþ g

XNs

j¼1

ðâ†ŝ−j þ âŝ†jÞ; ð9Þ

where â is the boson annihilation operator and ŝzj and ŝ
�
j are

spin-1=2 operators. Its commuting partners are [60]

Ĥj ¼ ðεjþωÞŝzj þ gðâ†ŝ−j þ âŝ†jÞþ 2g2
X
k≠j

ŝj · ŝk
εj− εk

: ð10Þ

Equations (7) and (8) hold with M ¼ Ns, Ĥ0 ¼ ĤTC, and
x ¼ ðω; ε1;…; εNs

Þ. To derive a new solvable time-
dependent model, consider the BCS Hamiltonian. In terms
of Anderson pseudospin-1=2 operators, it reads

PHYSICAL REVIEW LETTERS 120, 190402 (2018)

190402-2



ĤBCS ¼
XNs

j¼1

2εjŝ
z
j −

1

2B

X
j;k

ŝþj ŝ
−
k ; ð11Þ

where ð2BÞ−1 stands for the BCS coupling constant. Its
commuting partners are Gaudin magnets [27,61]:

Ĥj ¼ 2Bŝzj −
X
k≠j

ŝj · ŝk
εj − εk

: ð12Þ

Now Ĥ0 ¼ ĤBCS and x0 ¼ B. Thus, the BCS Hamiltonian
with coupling ∝ 1=t fits into our construction. Similarly,
using the commuting partners derived in Ref. [44], we
verified that many known solvable models, including the
Demkov-Osherov, bow-tie, and generalized bow-tie as well
as Landau-Zener-Coulomb models [62–65], also fit into
our construction.
A key point of this Letter is that zero curvature condition

(1) leads to an explicit exact solution of the scattering
problem. Consider, e.g., the multistate Landau-Zener
model Ĥðt; x⃗Þ ¼ Âðx⃗Þ þ tB̂ðx⃗Þ for which we need to
determine the matrix of transition probabilities P with
elements Pnn0 ≡ Pn0→n ≡ jSnn0 j2. Here S is the scattering
matrix between eigenstates at t ¼ −∞ and t ¼ þ∞ at some
fixed values of the parameters, x⃗ ¼ c⃗ [38]. As discussed
above, we are free to choose any path in the space x ¼ ðt; x⃗Þ
that connects the points ð−∞; c⃗Þ and ðþ∞; c⃗Þ. It is
convenient to choose a path P∞, such that jxj is always
large and the time evolution is adiabatic everywhere, except
the neighborhood of isolated points, where scattering takes
place. The corresponding scattering problem is typically
simple thanks to a large jxj; e.g., it reduces to a 2 × 2
Landau-Zener problem in the two nontrivial examples we
consider below. In general, Eqs. (7) and (8) enable one to
construct a multidimensional version of WKB with simple
scattering matrices connecting adiabatic (WKB) solutions
in different adiabatic regions [66].
Our first example is the Tavis-Cummings model (9) with

linear drive, ω ¼ t. Let ε1 > ε2 > � � � > εNs
. We are

interested in the evolution along the path Pω shown in
Fig. 1. On this path εj ¼ const, while ω changes from −R
to R. At the end, we take the limit R → ∞. This scattering
problem was solved in Ref. [53] under the assumption that
εj are well separated, i.e., ε1 ≫ ε2 ≫ � � � ≫ εNs

. It was
further conjectured in Ref. [53] that this is the general
solution. We are now in the position to prove this
conjecture. To do so, consider the path P∞ in Fig. 1 that
has the same end points as Pω. On the first vertical leg of
P∞, εj evolve, keeping the ordering of εj, until the
condition ε1 ≫ ε2 ≫ � � � ≫ εNs

is met. On the second
vertical leg, they evolve back to their initial values.
Since jωj is large and εj are distinct, this evolution is
purely adiabatic and does not affect the transition proba-
bilities. On the horizontal leg of P∞, the problem is

precisely the one solved in Ref. [53]. This proves the
above conjecture.
In our second example, we take a previously solved

4 × 4multistate Landau-Zener problem [51,52], which was
originally introduced to describe hysteresis in molecular
nanomagnets [67], and derive from it a new, more general
Hamiltonian by the prescription outlined below Eq. (6). We
then proceed to determine the transition probabilities for
this new model. Let

Hðt; eÞ ¼

0
BBB@

b1tþ e 0 g −γ
0 −b1tþ e γ g

g γ b2t 0

−γ g 0 −b2t

1
CCCA; ð13Þ

where b1, b2, e, g, and γ are constants. To determine if this
Hamiltonian fits into our approach, we first search for a
nontrivial commuting partnerH1 linear in t. This reduces to
a set of linear algebraic equations for parameters of H1

[47]. We find three linearly independent commuting
operators. Two of them are trivial—the unit matrix and
H itself. Therefore, there is a single nontrivial commuting
partner, which we determine explicitly. When bothH0 ≡H
and H1 are linear in t, Eq. (7) implies that their time-
dependent parts are diagonal in the same basis. So, to
satisfy (8), the parameter x1 must be constructed from
diagonal time-independent elements of H. A natural
candidate is x1 ¼ e. Searching then for H1 that satisfies
(8) in the form of a linear combination of the three
commuting operators, we find

H1ðt; eÞ ¼

0
BBBBBB@

tþ b1e
b2
1
−b2

2

0 g
b1−b2

−γ
b1þb2

0 t− b1e
b2
1
−b2

2

−γ
b1þb2

−g
b1−b2

g
b1−b2

−γ
b1þb2

− b2e
b2
1
−b2

2

0

−γ
b1þb2

−g
b1−b2

0 b2e
b2
1
−b2

2

1
CCCCCCA
: ð14Þ

Let the evolution path be

FIG. 1. Paths in the space of parameters εj and time used to
evaluate transition probabilities for the driven generalized Tavis-
Cummings model (9), ω ¼ t. On Pω, ω changes from −R to þR,
and all εj are fixed. Since this model is a part of a commuting
family of Ĥj that satisfies the zero curvature condition, we can
deform Pω into a new path P∞ without modifying the scattering
matrix.
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Pτ∶ t ¼ τ; e ¼ vτ þ e0; ð15Þ

with constant v and e0. The Hamiltonian (5) for Pτ is

hðτÞ ¼

0
BBB@

β1τ þ e1 0 gð1þ xÞ −γð1þ yÞ
0 β2τ þ e2 γð1 − yÞ gð1 − xÞ

gð1þ xÞ γð1 − yÞ β3τ þ e3 0

−γð1þ yÞ gð1 − xÞ 0 β4τ þ e4

1
CCCA;

ð16Þ

x ¼ v
b1 − b2

; y ¼ v
b1 þ b2

;

β1;2 ¼ 2v� b1ð1þ xyÞ; β3;4 ¼ �b2ð1 − xyÞ;
e1;2 ¼ e0ð1� b1xy=vÞ; e3;4 ¼ ∓e0b2xy=v: ð17Þ

This is a new, previously unsolved model more general than
(13); e.g., off-diagonal matrix elements in (16) are distinct.
We proceed to solve it with our method.
Let b1 > b2 > 0 and v > 0. We are interested in the

evolution matrix for hðτÞ along the path Pτ from τ ¼ −R to
τ ¼ R [see Fig. 2(a)] in the limit R → ∞. Because H0ðt; eÞ
and H1ðt; eÞ satisfy the zero curvature condition, the
evolution matrix is the same as that for the path P∞.
The latter has two pieces. In the vertical one, we set t ¼ −R
and vary e from −vRþ e0 to vRþ e0. In the horizontal
piece, we fix e ¼ vRþ e0 and vary t from −R to R.
According to Eq. (3), only H1 contributes on the first piece
and only H0 on the second. Along P∞, diagonal matrix
elements ofH0 and H1 (diabatic levels) are large compared
to the couplings. Therefore, the levels are well separated,
except on disjoined small segments of P∞ near points
where a pair of the diagonal elements is degenerate. These
segments connect adiabatic parts of P∞ where the adiabatic
approximation is exact in the limit R → ∞. Let us write the
state of the system as Ψðt; eÞ ¼ P

kakjki, where jki are the

eigenstates of the diagonal parts of H0 and H1 (diabatic
eigenstates). Diabatic and adiabatic (instantaneous) eigen-
states coincide in adiabatic parts of P∞ when R → ∞. In
the adiabatic approximation, absolute values of ak remain
the same, while their phases evolve with t and e.
In the vicinity of degeneracy points, two levels come

close and transitions between them become locally pos-
sible. The other two levels, however, remain far remote and
do not affect these nonadiabatic transitions. Suppose
v < b1 − b2. For this case, we mark the points of diabatic
level crossings with crosses in Fig. 2(a). Along P∞,
adiabatic approximation breaks near four points that all
have e ¼ vRþ e0 and

t13=24 ¼ ∓ vRþ e0
b1 − b2

; t14=23 ¼ ∓ vRþ e0
b1 þ b2

:

The distances between these points are ∝ R, which means
that regions of pairwise nonadiabatic transitions along P∞
are well apart. Consider, e.g., the evolution of the ampli-
tudes a1 and a3 near t13 that is governed by H0. Writing
t ¼ t0 þ t13 and disregarding the other two levels, we find

i
da1
dt0

¼ b1t0a1 þ ga3; i
da3
dt0

¼ b2t0a3 þ ga1; ð18Þ

which is a 2 × 2 Landau-Zener problem, whose scattering
matrix is known explicitly [33–36]. Since the other two
levels do not experience nonadiabatic transitions here, they
produce only diagonal unit entries in the scattering matrix
for evolution through t13. The total evolution matrix S for
the path P∞ factorizes into an ordered product of such
pairwise scattering matrices Sab, where a and b label states
experiencing nonadiabatic transitions and diagonal matri-
ces Uα;β describe adiabatic evolution between points α and
β on this path, i.e.,

S ¼ UR;t24S24Ut24;t23S23Ut23;t14S14Ut14;t13S13Ut13;−R:

Trivial phases resulting from the adiabatic evolution drop
out from the matrix of transition probabilities, and we
obtain [66]

Pv<b1−b2 ¼

0
BBB@

p1p2 0 p2q1 q2
0 p1p2 q2 p2q1

p2q1 q2 p1p2 0

q2 p2q1 0 p1p2

1
CCCA;

p1 ¼ e−2πg
2=ðb1−b2Þ; p2 ¼ e−2πγ

2=ðb1þb2Þ;

q1;2 ¼ 1 − p1;2: ð19Þ

This result does not depend on v, so it coincides with the
solution for the model (13) found in Refs. [51,52].
The situation changes for b2 þ b2 > v > b1 − b2. Now

the points of adiabaticity violation e24 and e13 lie on the

FIG. 2. Paths in the space ðt; eÞ for evaluating transition
probabilities for the model (16). On Pτ, τ changes from −R to
þR; all other parameters are fixed.We deformPτ intoP∞ without
affecting the scattering matrix. Points eij and tij marked with
crosses indicate nonadiabatic Landau-Zener transitions between
levels i and j for (a) v < b1 − b2 and (b) b1 þ b2 > v > b1 − b2.
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first leg of the path P∞ as shown in Fig. 2(b). Pairwise
transitions near these points are now governed by the
Hamiltonian H1, and the transition probability matrix in
this case is different:

Pv>b1−b2
v<b1þb2

¼

0
BBB@

p1p2 q1q2 p2q1 p1q2
q1q2 p1p2 p1q2 p2q1
p2q1 p1q2 p1p2 q1q2
p1q2 p2q1 q1q2 p1p2

1
CCCA: ð20Þ

For v > b1 þ b2, all four points with Landau-Zener tran-
sitions lie on the first leg of P∞, and

Pv>b1þb2 ¼

0
BBB@

p1p2 0 q1 p1q2
0 p1p2 p1q2 q1
q1 p1q2 p1p2 0

p1q2 q1 0 p1p2

1
CCCA: ð21Þ

We see that our approach not only reproduces the pre-
viously known solution for the Hamiltonian (13) but also
solves a more complex model (16).
Thus, we have identified a symmetry—multitime evo-

lution with commuting Hamiltonians—that leads to the
integrability of unitary dynamics with time-dependent
Hamiltonians. Our approach generates numerous new
solvable multistate Landau-Zener models. As examples,
we solved a four-state model (16) and proved the pre-
viously conjectured solution of a combinatorially complex
driven Tavis-Cummings Hamiltonian (9), which models
detuning sweeps in atom-molecule condensates [68,69].
The time-dependent BCS Hamiltonian (11) describes the
effect of turning off or on the superconducting coupling
as t varies from 0þ to þ∞ or vice versa, which can be
experimentally realized in cold atomic fermions with
tunable interactions. We believe that this integrability
is behind most if not all nontrivial exactly solvable multi-
state Landau-Zener and Landau-Zener-Coulomb models
[62–65]. It explains why in such problems the scattering
matrix factorizes into a product of two-state scattering
matrices [49]—since Eq. (1) allows a choice of an
integration path that bypasses the region of complex
nonadiabatic dynamics. It also explains why basic known
solvable models have commuting partners with a simple
linear or quadratic dependence on t [44]. Indeed, pairs of
such operators that also satisfy Eq. (8) lead to relatively
simple versions of the WKB approximation necessary to
determine scattering matrices. Furthermore, Eq. (6) shows
how certain distortions of the parameters [50] give rise to
entire families of solvable models.
Finally, we note that, when Ĥj are isotropic Gaudin

magnets [Eq. (12) at B ¼ 0], the j ¼ 1;…;M subsystem of
Eq. (1) is the famous Knizhnik-Zamolodchikov equation
[70]. Its solutions have been obtained using the off-shell
Bethe’s ansatz [71]. This was generalized to B ≠ 0 in

Ref. [72] (see also [73]) and exploited in Ref. [74] to obtain
the dynamics of an isotropic Gaudin magnet with time-
dependent εi. We believe that solutions to Eq. (1), i.e., exact
inexplicit solutions of the nonstationary Schrödinger equa-
tion at arbitrary t, for all time-dependent Hamiltonians
discussed in this Letter can be obtained by further extend-
ing this technique.
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