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We study finite-size effects in superconducting metallic grains and determine the BCS order parameter
and the low energy excitation spectrum in terms of the size and shape of the grain. Our approach combines
the BCS self-consistency condition, a semiclassical expansion for the spectral density and interaction
matrix elements, and corrections to the BCS mean field. In chaotic grains mesoscopic fluctuations of the
matrix elements lead to a smooth dependence of the order parameter on the excitation energy. In the
integrable case we observe shell effects when, e.g., a small change in the electron number leads to large
changes in the energy gap.
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Since experiments by Ralph, Black, and Tinkham [1] on
Al nanograins in the mid-1990s, there has been consider-
able interest in the theory of ultrasmall superconductors
(see [2,3] for earlier studies). In particular, finite-size cor-
rections to the predictions of the Bardeen-Cooper-
Schrieffer (BCS) theory for bulk superconductors [4]
have been studied [5–10] within the exactly solvable
Richardson model [11]. Pairing in specific potentials,
such as a harmonic oscillator potential [12] and a rectan-
gular box, [13,14] and mesoscopic fluctuations of the
energy gap [15,16] have been explored as well.
Nevertheless, a comprehensive theoretical description of
the combined effect of the discrete energy spectrum and
fluctuating interaction matrix elements has not yet
emerged.

In the present Letter we develop a framework based on
the BCS theory and semiclassical techniques that permit a
systematic analytical evaluation of the low energy spectral
properties of superconducting nanograins in terms of their
size and shape. Leading finite-size corrections to the BCS
mean field can also be taken into account in our approach.
Our main results are as follows. For chaotic grains, we
show that the order parameter is energy dependent. The
energy dependence is universal; i.e., its functional form is
the same for all chaotic grains. The matrix elements are
responsible for most of the deviation from the bulk limit. In
integrable grains, we find that the superconducting gap is
strongly sensitive to shell effects, namely, a small modifi-
cation of the grain size or number of electrons can sub-
stantially affect its value.

We start with the BCS Hamiltonian H �P
n��nc

y
n�cn� �

P
n;n0In;n0c

y
n"c
y
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annihilates (creates) an electron of spin � in state n,
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are matrix elements of a short-range electron-electron
interaction, � is the BCS coupling constant, and  n and
�n are eigenstates and eigenvalues of the one-body mean
field Hamiltonian of a free particle of mass m in a clean
grain of volume V. Eigenvalues �n are measured from the
Fermi level �F and the mean level spacing � � 1=�TF�0�,
where �TF�0� � 2 V

4�2 �
2m
@

2 �
3=2 ������

�F
p

is the spectral density at
the Fermi level in the Thomas-Fermi approximation.

Our general strategy can be summarized as follows:
(i) use semiclassical techniques to compute the spectral
density ���� �

P
n���� �n� and I��; �0� as series in a

small parameter 1=kFL, where kF is the Fermi wave vector
and L ’ V1=3 is the size of the grain (ii) solve the BCS gap
equation in orders in 1=kFL (iii) evaluate the low energy
spectral properties of the grain such as the energy gap,
excitation energies, and Matveev-Larkin parameter [5]
including finite-size corrections to the BCS mean field.
The results thus obtained are strictly valid in the region,
kFL� 1 (limit of validity of the semiclassical approxima-
tion), �=�0 < 1 (limit of validity of the BCS theory), and
l� �� L (condition of quantum coherence) where � �
@vF=�0 is the superconducting coherence length, vF is the
Fermi velocity, l is the coherence length of the single-
particle problem and �0 is the bulk gap. We note that in
Al grains [9] � � 1600 nm and l > 10 000 nm for tem-
peratures T � 4 K. Therefore the region l� �� L is
accessible to experiments.

Since the matrix elements I��; �0� are energy dependent
the BCS order parameter ���� also depends on energy. The
self-consistency equation for ���� reads
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where ED is the Debye energy. In the limit V ! 1, the
spectral density in the 2ED energy window near the Fermi
level can be taken to be energy independent and given by
the Thomas-Fermi approximation, ���� � �TF�0�, matrix
elements are also energy independent, I��; �0� � ��, and
the gap is equal to its bulk value, �0 � 2EDe

�1=�. As the
volume of the grain decreases the mean level spacing
increases and eventually both ���� and I��; �0� deviate
from the bulk limit.

Semiclassical evaluation of ����.—The spectral density
in a 3d grain,

 ���0� ’ �TF�0�	1� �g�0� � ~gl��0�
 (3)

consists of a monotonic part, �g�0� � � S�
4kFV
� 2C

k2
FV

and an

oscillatory contribution ~gl��0�. Here S and C denote the
surface area and mean curvature of the grain, respectively,
and upper (lower) signs stand for Neumann (Dirichlet)
boundary conditions. The oscillatory contribution, to lead-
ing order, is given by the Gutzwiller trace formula [17,18],

 

~gl��
0� � < 2�

k2
FV

Pl
p Ape

i�kFLp��p��0kFLp=2�F�; (4)

where both the amplitude Ap and the topological index �p
depend on classical quantities only [18]. The summation is
over a set of classical periodic orbits p of length Lp. For
isolated grains Dirichlet is the most natural choice, but we
also include Neumann to illustrate the dependence of our
results on boundary conditions. Only orbits shorter than the
quantum coherence length l of the single-particle problem
are included. This effectively accounts for inelastic scat-
tering and other factors that destroy quantum coherence.
Here we focus on the limit l� �, the case l� � will be
discussed elsewhere [19]. In Eq. (4) classical actions
@k��0�Lp are expanded as k��0� � kF � �0kF=2�F. The
amplitude Ap increases by a factor �kFL�1=2 � 1 for
each of the symmetry axes of the grain.

Semiclassical evaluation of I��; �0�.—For integrable
systems I��; �0� depends on details of the system. In a
rectangular box it is simply I��; �0� � �� but in most other
geometries an explicit expression in terms of classical
quantities is not available. In the chaotic case the situation
is different. As a result of the quantum ergodicity theorem
[20] it is well justified to assume that for systems with time
reversal symmetry (the only ones addressed in this Letter),
 2
n� ~r� �

1
V �1�O�1=kFL��. In order to explicitly deter-

mine deviations from the bulk limit we replace  2
n� ~r� in

In;n0 with h 2�~r�i�n , where h. . .i� stands for an energy
average around �. The single-particle probability density
is thus effectively averaged over a small energy window
resembling the effect of a finite coherence length.

Substituting h 2� ~r�i� into In;n0 , we obtain I��; �0� � �
V 

	1� � S�4kFV
�2 � �I��F; �; �0�
, where �I��F; �; �0� �

�Ishort��F� � �Ilong��F; �� �
0� can be split into two parts

coming from short and long orbits. Short orbits involve a
single reflection at the grain boundary and result in a
monotonic contribution

 

�I short��F� �
�S

4kFV
; (5)

while the contribution of long orbits depends on the energy
difference �� �0
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with �l�w� �
RPl

	�r�D
2
	 cos	wkFL	
dr, where the sum is

over all nonzero classical paths (not periodic orbits) 	�r�
starting and ending at a given point r inside the grain [21]
and the amplitude D	 is defined in Refs. [17,19,21]. The
integral stands for an average over all points r inside the
grain. The explicit evaluation of �l�w� for a given geome-
try requires, in principle, the knowledge of all classical
paths L	 up to length l. However, for l� L, one can use a
sum rule for classical closed orbits [22] to obtain

 �l�w� �
�
2�
kF

�
2 sin�wkFl�

wkF
: (7)

Solution of the gap equation.—First, let us consider
chaotic grains. Here we present only the final answer for
the 3d case deferring a more detailed account, including
the 2d case, to Ref. [19]. Writing the gap function ����
formally as a series in 1=kFL,

 ���� � �0	1� f�1� � f�2� � f�3����
; (8)

substituting it into Eq. (2), and using the above expressions
for the density of states and interaction matrix elements,
we derive

 f�1� �
1� 1

�
�S

4kFV
; (9)

where � stands for the Neumann (� ) and Dirichlet (� )
boundary conditions. Note that to leading order the com-
bined effect of the interaction matrix elements and the
density of states have very different consequences on the
gap, depending on the kind of boundary conditions. For
Dirichlet, the leading finite-size corrections to the gap
vanishes.

The second order (1=�kFL�2) correction reads

 �f�2� �
2C

k2
FV
� 2

�
�1�

1� 1

�

��
�S

4kFV

�
2
� ~g�0�;

where
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2�

k2
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p

ApW�Lp=�� cos�kFLp � �p� (10)

and,
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exponentially suppresses periodic orbits longer than �.
The third order correction (included in the definition of

�) is energy dependent,

 f�3���� �
���
�0

�
�0�����������������

�2 ��2
0

q �
�
4

�
: (12)

Note that (i) �=�0 � 1 is an additional expansion parame-
ter, therefore the contribution (12) can be comparable to
lower orders in the expansion in 1=kFL and (ii) the order
parameter ���� has a maximum at the Fermi energy (� �
0) and slowly decreases on an energy scale �� �0 as one
moves away from the Fermi level. One can also show that
mesoscopic corrections given by Eqs. (9), (10), and (12),
always enhance ��0� as compared to the bulk value �0.
Figure 1 shows the gap function ���� for Al grains of
different sizes L, where we used (see [1]) kF �
17:5 nm�1, � � 0:18, and � � 7279=N meV, where N is
the number of particles.

Several remarks are in order: (a) the smoothing of the
spectral density energy dependence in Eq. (10) caused by a
cutoff function W is a superconductivity effect not related
to the destruction of quantum coherence, (b) the energy
dependence of the gap is universal in the sense that it does
not depend on specific grain details, (c) the matrix ele-
ments I��; �0� play a crucial role, e.g., they are responsible
for most of the deviation from the bulk limit in Fig. 1,
(d) the requirement �� L used to derive Eq. (7) is well
justified for nanograins since L� 10 nm, while ��
104 nm.

We now turn to the integrable case. Probably the sim-
plest example is that of a rectangular box, since in this case
the interaction matrix elements are simply I��; �0� � ��.
The calculation is simplified as now the order parameter is
energy independent. We have

 � � �0	1� f
�1� � f�3=2� � f�2�
; (13)

where f�n� / �kFL��n��1. We obtain �f�1� � �g�0� �
~g�1��0�, �f�3=2� �

P
i;j�i~g

�3=2�
i;j �0�, �f�2� �

P
i~g
�2�
i �0� �

f�1�, 	f�1� � �g�0�
, where ~g�k� / �kFL��k denotes the oscil-
lating part of the spectral density and indexes i and j take
values 1, 2, and 3 in three dimensions. Explicit expressions
for ~g�k�, ~g�k�i , and ~g�k�i;j in terms of periodic orbits for a
rectangular box can be found in Ref. [18] [the cutoff
function in our case is given by Eq. (11)]. We note that:
(i) Eq. is also obtained by expanding the standard expres-
sion of the bulk gap � � 2ED exp�� �TF�0�=��0��� in
powers of �kFL���1 with ��0� given by Eq. (3).
(ii) Unlike the chaotic case, the leading smooth correction
to the bulk limit does not vanish for any boundary condi-
tion, (iii) smooth and oscillating corrections are of compa-
rable magnitudes.

Shell effects and fluctuations.—Motivated by previous
studies for other fermionic systems such as nuclei and
atomic clusters (see, e.g., Ref. [23]), we investigate shell
effects in metallic nanograins. In particular, we are inter-
ested in the fluctuations of the BCS gap with the number of
electrons on the grain. As an illustration let us consider a
cubic geometry. This is a natural choice since shell effects
increase with the symmetry of the grain. To determine the
gap, we solve the gap Eq. (2) numerically and determine
the Fermi energy for a given number of electrons N by
inverting the relation 2

R
�F ����d� � N. We find a good

agreement between numerical results and the semiclassical
expansion; see Fig. 2. We also observe that a slight modi-
fication of the grain size (or equivalently the number of
electrons N or the mean level spacing �) can result in
substantial changes in the value of the gap, see Fig. 2.

The typical magnitude of fluctuations of the gap,
~�

�0
�������

��
4�0

q
[16] is consistent with our results (see Fig. 2).

Low energy excitations.—Having solved the gap Eq. (2),
one can evaluate low energy properties of the grain taking
into account finite-size corrections to the BCS mean field
approximation. For example, the energy cost for breaking a
Cooper pair in an isolated grain is [24],

 �E � 2��0� � �; (14)

where ��0� is the solution of Eq. (2) taken at the Fermi
energy and is given by Eqs. (8) and (13) for chaotic and
rectangular shapes, respectively. We note that the correc-
tion to the mean field (� �) has been evaluated [10] for
constant interaction matrix elements. Nevertheless, since
the deviation of matrix elements from a constant energy
independent value is itself of order �kFL��1, Eq. (12) is

-4 -2 0 2 4
ε/∆
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FIG. 1 (color online). Superconducting order parameter ����
in units of the bulk gap �0 for chaotic Al grains (kF �
17:5 nm�1, � � 7279=N, �0 � 0:24 meV) as a function of
energy � counted from the Fermi level. Different curves corre-
spond to grain sizes (top to bottom) L � 6 nm, kFL � 105,
�=�0 � 0:77 (Dirichlet and Neumann boundary conditions),
L � 8 nm, kFL � 140, �=�0 � 0:32 (Dirichlet), and L �
10 nm, kFL � 175, �=�0 � 0:08 (Dirichlet). The leading con-
tribution comes from the energy dependent matrix elements
I��; �0� obtained from Eqs. (5) and (6). Note that the order
parameter is always larger than its bulk value �0 and has a
single maximum at the Fermi level.
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accurate up to terms of order ��=�0��kFL�
�1, which are

negligible as compared to the ones we kept in Eqs. (8) and
(13).

Similarly, the Matveev-Larkin parity parameter [5]
reads �p � E2N�1 �

1
2 �E2N � E2N�2� � ��0� � �

2 , where
EN is the ground state energy for a superconducting grain

with N electrons. Quasiparticle energies are
�����������������������
�2 � ����2

p
plus corrections to mean field, which can be determined
using the approach of Ref. [10].

We see that finite-size corrections to the BCS mean field
approximation are comparable to the energy dependent
correction (8) obtained within mean field, but have an
opposite sign. We also note that our approach of expanding
around the bulk BCS ground state is applicable only when
�� �0, i.e., when corrections to the BCS mean field
approximation are small [25].

To conclude, we have determined the low energy exci-
tation spectrum for small superconducting grains as a
function of their size and shape by combining the BCS

mean field, semiclassical techniques and leading correc-
tions to the mean field. For chaotic grains the nontrivial
energy dependence of the interaction matrix elements leads
to a universal smooth dependence (12) of the gap function
on excitation energy. In the integrable case we found that
small changes in the number of electrons can substantially
modify the superconducting gap.
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FIG. 2 (color online). Superconducting order parameter � in
units of the bulk gap �0 for a cubic Al grain as a function of the
ratio �0=�, where � is the mean level spacing. Black crosses
correspond to the exact numerical solution of the gap Eq. (2),
while the red circles represent the semiclassical analytical ex-
pression.
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