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Near a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective
boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity
which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and
fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between
low-energy fermions. We argue that superconducting Tc is nonzero even for strong incoherence and/or
weak interaction due to the fact that the self-energy from dynamic critical fluctuations vanishes for the
two lowest fermionic Matsubara frequencies ωm ¼ �πT. We obtain the analytic formula for Tc, which
reproduces well earlier numerical results for the electron-phonon model at vanishing Debye frequency.
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Introduction.—The interplay between superconductivity
and non-Fermi liquid behavior in metals is one of the most
fascinating issues in the modern physics of correlated
electron systems [1–18]. A generic metallic system in
D > 1 is a Fermi liquid with coherent quasiparticles at
low energies. This coherence is destroyed if the system is
brought to a quantum-critical point (QCP), beyond which it
develops an electronic order in the spin or charge channel.
At a QCP, fluctuations of the order parameter become
massless. In D ≤ 3, the four-fermion interaction, mediated
by these massless fluctuations, destroys fermionic coher-
ence at T ¼ 0, either at specific hot points on the Fermi
surface [4,15,19,20], if the order has a finite momentum,
or everywhere on the Fermi surface, if the order develops
with q ¼ 0 (Ref. [21]). The same massless fluctuations,
however, also mediate the pairing interaction, and if this
interaction has an attractive angular component the system
can develop a superconducting instability at a finite T,
before a QCP is reached. A dome of superconductivity
above a QCP prevents a non-Fermi liquid, QC behavior
from extending down to the lowest energies.
The existence of superconductivity near a QCP is not

guaranteed, however, because strong fermionic self-energy
acts against pairing. There are two effects from the self-
energy. First, at T ≠ 0 the self-energy from static (thermal)
fluctuations acts as an impurity and may cause pair
breaking. This is crucial for spin-triplet superconductivity,
for which thermal self-energy acts as a magnetic impurity
[22], but not for spin-singlet superconductivity, for which it
acts as a nonmagnetic impurity and its singular contribution

cancels out by Anderson theorem [23]. In this Letter, we
consider spin-singlet pairing and neglect the contribution
from thermal fluctuations. Second, already at T ¼ 0 the
self-energy produces strong upturn mass renormalization
and shrinks the range of a coherent fermionic behavior.
Both of these effects are detrimental to superconductivity.
The pairing amplitude and the self-energy come from the

same underlying interactionmediated by a soft boson; hence,
the two are generally of the same order. Zero-temperature
studies of specific models in D ¼ 2 and in D ¼ 3 − ϵ have
shown [3–5,8–10,14] that superconductivity does not
develop at QCP; however, these studies also hinted [2–4]
that the pairing at a QCP is a threshold problem and may
disappear if the self-energy gets enhanced compared to the
pairing amplitude. A recent study [16] made this explicit by
extending amodel inD ¼ 3 − ϵ to largeN in such away that
the self-energy gets enhanced, while the pairing amplitude
remains intact. The authors of Ref. [16] performed T ¼ 0
analysis and argued that there exists a criticalN abovewhich
the pairing does not develop because decoherence, caused by
strong self-energy, wins over the tendency to pairing due to
an attraction.
In this Letter, we analyze the same pairing problem, but

at a nonzero T. Our result is different from Ref. [16] and
earlier work by some of us (Ref. [3]). We argue that
superconducting Tc is finite at arbitrary N. The reason is
that the competition between the self-energy and the
pairing interaction at a finite temperature is qualitatively
different from that at T ¼ 0. Namely, at a finite T the
Matsubara self-energy ΣðωnÞ is a discrete variable, defined
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at a set of ωn ¼ πTð2nþ 1Þ. It is still large for all n ≠ 0,
−1, but at the two lowest Matsubara frequenciesωn ¼ �πT
it vanishes if we neglect the contribution from static
bosonic fluctuations [24]. At the same time, the pairing
interaction χðΩmÞ, also taken without the static part (i.e., at
bosonic Ωm ¼ 2πTm,m ≠ 0) is not reduced at Ωm ¼ πT −
ð−πTÞ ¼ 2πT compared to χðΩmÞ at other Ωm. As a result,
the pairing interaction between fermions with ωn ¼ �πT is
strong, while the competing contribution from the self-
energy is absent. Although this holds only for the two
Matsubara frequencies, we show that this is sufficient to
render Tc finite. Moreover, Tc is not small and has a power-
law dependence of the coupling constant, which is stronger
than the logarithmical divergence in Bardeen-Cooper-
Schrieffer (BCS) theory, although the latter is obtained
by summing up an infinite set of Matsubara points.
In broader terms, we argue against the commonly used

procedure [3,4,8–10,14,16] to obtain Tc at a QCP by
computing the pairing susceptibility χppðωÞ at T ¼ 0,
associating the superconducting region with the range of
N where χppðωÞ becomes negative below some ω�, and
identifying Tc with Oðω�Þ. We argue that Tc has to be
determined from the actual calculations at a finite T, and Tc
generally does not scale with ω�, except for special cases
like models in D ¼ 3 − ϵ and N ¼ Oð1Þ.
To be specific, our conclusion holds for a set of QC

models with dynamical interaction between fermions, for
which the Eliashberg approximation [25] is valid. Within
this approximation, the momentum integration in the gap
equation can be carried out explicitly, and the analysis of
superconductivity reduces to a set of equations for the
frequency dependent pairing vertex ΦðωmÞ and fermionic
self-energy ΣðωmÞ, both originating from the effective,
momentum-averaged interaction χðωm − ω0

mÞ. We consider
a generic case of χðΩmÞ ¼ ðg=jΩmjÞγ , where g is the
effective fermion-boson coupling. We list specific exam-
ples of different γ below. In particular, γ ¼ 2 corresponds to
the much studied strong coupling limit of electron-phonon
interaction [1,26–28]. We argue that Tc is nonzero for
any γ, even if the self-energy is enhanced after a proper
extension of the model to large N, as in [16]. Moreover, at
large N, Tc ≈ ½g=ð2πÞ�=N1=γ ≈ 0.16g=N1=γ is fully deter-
mined by the two lowest Matsubara frequencies. At N ¼ 1
this formula yields Tc ≈ 0.16g. This value is very close to
Tc ≈ 0.18g obtained numerically for γ ¼ 2 (Refs. [26,29]).
which implies that Tc for theQC electron-phonon problem is
predominantly determined by just the two lowest Matsubara
frequencies.
The model.—We consider a system of fermions at the

boundary between a Fermi liquid state and a state with a
long-range order in either spin or charge channel (ferro-
magnetism, nematic order, spin- or charge-density wave,
etc.). At a QCP, the propagator of a soft boson becomes
massless and mediates singular interaction between fer-
mions. As previously stated, we treat this interaction as

attractive in at least one pairing channel. This is true for
QCP towards density-wave instabilities [30], but we
caution that this is not always the case—e.g., for fermions
at the half-filled lowest Landau level, long-range current-
current interaction mediated by gapless gauge fluctuations
is repulsive in all channels [14].
We assume, following earlier work [3,4,7,10,13–16,

31,32], that bosons can be treated as slow modes compared
to fermions; i.e., the Eliashberg approximation is valid.
Within this approximation one can explicitly integrate over
the momentum component perpendicular to the Fermi
surface and reduce the integral equations for the self-
energy Σ and the pairing vertex Φ to the set for ΣðkF;ωmÞ
and ΦðkF;ωmÞ on the Fermi surface. We will be interested
in the solution for Tc; hence, we set ΦðkF;ωmÞ to be
infinitesimally small and approximate ΣðkF;ωmÞ by its
normal state value. We make one additional approximation
—we assume that the dependence of ΦðkF;ωmÞ on ωm and
on the momentum direction along the Fermi surface can be
factorized, i.e., thatΦðkF;ωmÞ ¼ fΦðkFÞΦðωmÞ, where fΦ
has the symmetry of the corresponding superconducting
state [4,18], and we neglect the momentum dependence of
ΣðkF;ωmÞ. Under this approximation, the integration over
the momentum component along the Fermi surface can be
done explicitly [4,15], and the set of equations for Tc
reduces to the integral equation for ΦðωmÞ and the equation
for the normal state self-energy ΣðωmÞ:

ΦðωmÞ ¼
gγ

N
πT

X
m0≠m

Φðωm0 Þ
jωm0 þ Σðωm0 Þj

1

jωm − ωm0 jγ ;

ΣðωmÞ ¼ gγπT
X
m0≠m

sgnðωm0 Þ
jωm − ωm0 jγ ; ð1Þ

where we incorporated the overall factors from the inte-
gration over momentum into g. As previously stated, we
neglect the terms with m ¼ m0 in Eq. (1) because for spin-
singlet pairing such terms cancel out between ΦðωmÞ and
ΣðωmÞ. We discuss this in more detail in Ref. [33]. The
overall factor 1=N is the result of extending the model to an
SU(N) global symmetry which involves both fermions and
bosons [16]. We treat N as a parameter. Our goal is to
understand whether there is a critical N above which
Tc ¼ 0; i.e., the normal state extends down to T ¼ 0.
Models described by Eq. (1) include a model for color

superconductivity [5] [γ ¼ 0þ, χðΩmÞ ∝ log jωmj], models
for spin- and charge-mediated pairing in D ¼ 3 − ϵ dimen-
sion [10,14,16] [γ ¼ OðϵÞ ≪ 1], a 2D pairing model [35]
with interaction peaked at 2kF (γ ¼ 1=4), 2D models for
pairing at a nematic or Ising-ferromagnetic QCP [2,17,22]
(γ ¼ 1=3), a 2D hot-spot model for pairing at the (π, π)
SDW QCP [3,4,36,37] and at a 2D CDW QCP [28,38],
2D models for pairing by undamped fermions (γ ¼ 1), the
strong coupling limit of phonon-mediated superconductivity
[1,26,29], and models with parameter-dependent γ
(Refs. [8,9]).
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The argument for the threshold.—To set the stage
for our analysis, we briefly display the argument for the
existence of a threshold in N for Tc. The argument is based
on the analysis of the pairing susceptibility at T ¼ 0
for 0 < γ < 1 (Refs. [3,16]). At T ¼ 0 the self-energy
has a non-Fermi liquid form: ΣðωmÞ ¼ jωmj1−γωγ

0sgnðωmÞ,
where ω0 ¼ g½2=ð1 − γÞ�1=γ . Substituting this ΣðωmÞ into
the equation for ΦðωÞ and adding up a bare Φ0, one can
compute the T ¼ 0 pairing susceptibility χppðωmÞ ¼
ΦðΩmÞ=Φ0 at ωm < ω0 order by order in 1=N. The
building block for series for χppðωmÞ is

R
dωm01=

ðjωm0 − ωmjγjωm0 j1−γÞ, where the first term comes from
the interaction and the second from the self-energy. The
integrand scales as 1=jωm0 j at ωm0 > ωm; hence, the series
for χppðωmÞ is logarithmic. At N ≫ 1 the coupling is weak
and one can just sum up the series of leading logarithms, as
in BCS theory. However, this analogy does not go further
because in our case, each logarithm is cut by ωm rather
than by T and the summation of the logarithms yields
χppðωmÞ ¼ 1 þ α logðω0=jωmjÞ þ α2=2½logðω0=jωmjÞ�2þ
α3=6½logðω0=jωmjÞ�3 þ � � � ¼ ðω0=jωmjÞα, where α ¼
ð1 − γÞ=N. This susceptibility is positive; i.e., the summa-
tion of the leading logarithms does not give rise to pairing.
This line of reasoning is developed further by solving for

the susceptibility beyond the logarithmical approximation.
The 1=ωm0 scaling of the kernel suggests a power-law form
ΦðωmÞ ∝ ðω0=jωmjÞβ at ωm < ω0. Substituting this into (1)
and evaluating the integrals, we obtain an equation on
β of the form ðα=2ÞΨγðβÞ ¼ 1, where ΨγðβÞ ¼
ΓðβÞΓðγ − βÞ=ΓðγÞ þ Γð1 − γÞf½ΓðβÞ=Γð1 − γ þ βÞ�þ
½Γðγ − βÞ=Γð1 − βÞ�g. We plot ΨγðβÞ in Fig. 1. Solving
for β as a function of α and γ and choosing the branch
which gives β ≈ α at small α, consistent with logarithmical
perturbation theory, we find that β increases with α, reaches
the value γ=2 at a critical αcr ¼ ð1 − γÞ=Ncr, and at larger α
(i.e., smaller N) becomes complex: β ¼ γ=2� iβ, where
β ∝ ðα − αcrÞ1=2 ∼ ðNcr − NÞ1=2. As the consequence, χpp
becomes an oscillating function of ωm: χppðωmÞ ∝
ðω0=jωmjγ=2Þ cos½β logðω0=jωmjÞ þ ψ0�, where ψ0 is an

arbitrary phase. Oscillations of the pairing susceptibility
cannot be obtained within a perturbation theory and their
presence was interpreted as the sign that the system has
already undergone a pairing instability at some finite Tc. To
obtain Tc, earlier works used the T ¼ 0 form of χppðωmÞ
and identified Tc with the largest ωm at which χppðωmÞ first
becomes negative. At α ≥ αcr, when β is small, this yields
[3,16,39] Tc ∼ ω0e−a=ðNcr−NÞ1=2 , where a ¼ Oð1Þ.
Finite T analysis.—We now perform the actual analysis

at a finite T and argue that it yields a result different from
the one at T ¼ 0. Namely, we argue that Tc is nonzero for
any N and only tends to zero when N tends to infinity.
We show that this result originates from the vanishing
of the self-energy at Matsubara frequencies ωm ¼ �πT.
The special role of the lowest Matsubara frequencies
cannot be detected in the T ¼ 0 analysis in which
Matsubara frequency is a continuous variable.
Vanishing of the self-energy Σðωm ¼ �πTÞ can be

readily seen from Eq. (1). We have ΣðπTÞ ¼
½g=ð2πTÞ�γπTPm0≠0 sgnð2m0 þ 1Þ=jm0jγ, and the sums
over positive and negative m0 cancel each other. The same
holds for ωm ¼ −πT. For any other m ≥ 1, Σðωm > 0Þ∼
ωm½g=ð2πTÞ�γ ≫ ωm; i.e., at low T the self-energy at
jωmj ≠ πT well exceeds the bare ωm term in the fermionic
propagator. Note in passing that the vanishing of Σðωm ¼
�πTÞ in our analysis does not actually imply that at this
frequency a fermion is a free quasiparticle, because we
eliminated from ΣðωmÞ the contribution from static critical
fluctuations [the m ¼ m0 term in Eq. (1)]. Such a contri-
bution is irrelevant for the pairing, but it is parametrically
larger than T near a QCP; hence, the full self-energy has a
non-Fermi liquid form even at ωm ¼ �πT.
To make our point about Tc, we consider large N

and small T. Neglecting ωm compared to the self-energy
for all m except m ¼ 0 and m ¼ −1, using the symmetry
conditions ΦðωmÞ≡ Φm ¼ Φ−m−1 and ΣðωmÞ≡ Σm ¼
−Σ−m−1, and introducing Φm ≡ Φm=ðπTKTÞ;Σm≡
Σm=ðπTKTÞ, where KT ¼ ½g=ð2πTÞ�γ ≫ 1, we rewrite
the gap equation in (1) as a set of coupled equations for
Φm¼0;−1 and Φm>0:

Φ0 ¼
KT

N
Φ−1 þ

1

N

X
m>0

Φm

Σm

�
1

mγ þ
1

ðmþ 1Þγ
�
;

Φm>0 ¼
KT

N

�
Φ0

mγ þ
Φ−1

ðmþ 1Þγ
�

þ 1

N

X
m0>0;m0≠m

Φm

Σm

�
1

jm −m0jγ þ
1

ðmþm0 þ 1Þγ
�
:

ð2Þ
We distinguish Φ0 and Φ−1 in (2) only for illustrative
purposes. In fact, the two are equal, Φ0 ¼ Φ−1.
At vanishing 1=N Eq. (2) has a solution at KT ¼ N, i.e.,

at T ¼ Tc ¼ ðg=2πÞ=N1=γ . Indeed, the first equation in (2)

FIG. 1. Left: The plot of the function ΨγðβÞ for γ ¼ 0.3. Right:
the solution of the equation ½ð1 − γÞ=2N�ΨγðβÞ ¼ 1. For large N,
β is real, as in perturbation theory (red line); i.e., superconduc-
tivity does not develop. For N < Ncr, β ¼ γ=2� iβ̄ is complex
(blue line). For a complex β, ΦðωmÞ is oscillatory in frequency,
implying that Tc is finite.
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is satisfied, while the second one determines Φm for all
m > 0 in terms of Φ0: Φm>0 ¼ Φ0½1=mγ þ 1=ðmþ 1Þγ�.
Plugging this Φm>0 into the first equation in (2), we obtain
Tc with 1=N correction (see Ref. [33] for details):

Tc ≈
g
2π

1

N1=γ

�
1þ δγ

Nγ

�
; ð3Þ

where δγ ¼
P

m>0½1=mγ þ 1=ðmþ 1Þγ�2=Σm is a number
of order one. We see that Tc is nonzero for any N, i.e., no
matter how strong is the self-energy at Matsubara frequen-
cies ωm with m ≠ 0, −1. We also see that superconducting
Tc is predominantly determined by the two lowest
Matsubara frequencies, for which the pairing interaction
is strong, but the self-energy vanishes. This new under-
standing is very different from the previous one that
superconductivity at a QCP originated from the pairing
of incoherent fermions at T ¼ 0.
The value of Tc.—In Fig. 2 we show Tc given by Eq. (3),

together with the numerical solution of the gap equation.
We see that at large N the actual solution and the one from
Eq. (3) agree quite well, as expected. The agreement does
not extend to N ∼ 1 at small γ, but gets progressively better
for larger γ, for which Tc is predominately determined by
the first two Matsubara frequencies even for N ¼ 1, i.e.,
Tc ≈ g=ð2πÞ. Other Matsubara frequencies account only for
a small correction to Tc ¼ g=ð2πÞ. To verify this, we
computed the leading correction in 1=γ for an arbitrary
N and obtained Tc ¼ g=2πðs=NÞ1=γ , where s ¼ sðNÞ is
determined from J3=2þN=sð1=sÞ=J1=2þN=sð1=sÞ ¼ s − 1,
where J is a Bessel function (see Ref. [33] for details).
At N ¼ 1, s ¼ 1.1843, at N ≫ 1, s ¼ 1þ 1=ð2NÞ, in
agreement with Eq. (3) [in Eq. (3), δγ → 1=2 at γ → ∞].
For the strong coupling limit of electron-phonon super-
conductivity (γ ¼ 2, N ¼ 1), Tc ≈ 0.17g, which is very

close to 0.18g, obtained in extensive numerical studies
[26,29] on a large mesh of Matsubata frequencies. This has
been noticed in Ref. [29] but not related to the absence of
the self-energy at ωm ¼ �πT.
For completeness, we also computed Tc at small γ and

N ¼ Oð1Þ. In this regime Tc ≫ ω0 (see Fig. 2) and the
self-energy is again irrelevant, but now simply because at
T ¼ Tc, ωm ≫ ΣðωmÞ for all m. Neglecting Σðωm0 Þ in
Eq. (1), we obtain (see Ref. [33] for details)

Tc∼ω0ðγNÞ−1=γ∼ g

2πN1=γ e
logðb=γÞ=γ≫

g

2πN1=γ ; ð4Þ

where b ¼ Oð1Þ. A similar result for the pairing scale has
been obtained in Refs. [14,40] using the RG procedure.
Note in passing that the divergence of Tc at γ → 0 is the
consequence of the fact that in this limit the effective
interaction χðΩmÞ ¼ ðg=jΩmjÞγ tends to a constant, while
there is no upper cutoff in the theory. If we add a cutoff, we
indeed obtain that Tc saturates.
In Fig. 3 we plot Tc at N ¼ 1 obtained numerically from

the Eliashberg equation (1). We see that at γ > 1, Tc rapidly
approaches g=2π—the result which we obtained analyti-
cally from the two lowest Matsubara frequencies. We
emphasize that at both small and large γ the fermionic
self-energy is irrelevant for Tc. At γ ∼ 1, it does affect the
value of Tc, but is not crucial in the sense that a comparable
Tc is obtained without including the self-energy.
Conclusion.—In this Letter, we computed superconduct-

ing Tc for a set of quantum-critical models with Eliashberg-
type effective dynamical interaction between low-energy
fermions. We found that superconductivity always devel-
ops above a quantum-critical point, no matter what the
interplay between the pairing interaction and the fermionic
incoherence at T ¼ 0. We argued that the proper calcu-
lation of Tc should be done directly at a finite temperature,
and Tc is nonzero due to the fact that at a finite T the self-
energy vanishes at the two lowest fermionic Matsubara

3

3

FIG. 2. Superconducting Tc, obtained by solving the gap
Eq. (2) numerically (labeled as “actual”), vs the analytical result
from Eq. (3). Upper panel: γ ¼ 0.1; lower panel: γ ¼ 2. In both
cases the analytical Tc perfectly matches the numerical one at
largeN. ForN ¼ Oð1Þ, the numerical solution yields much larger
Tc than Eq. (3) for γ ¼ 0.1, but for γ ¼ 2 numerical and analytical
results remain close even for N ¼ 1.

10-1 100 101 102

1

10

100

1000

FIG. 3. The numerical result for Tc at N ¼ 1 as a function of γ.
At small γ, Tc is determined by all Matsubara frequencies and
increases exponentially with decreasing γ (see the text). At γ > 1
it rapidly approaches Tc ¼ g=2π, which we obtained analytically
from the two lowest Matsubara frequencies.

PRL 117, 157001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

7 OCTOBER 2016

157001-4



frequencies ωm ¼ �πT. This implies that fermionic inco-
herence at a QCP is not an obstacle for superconductivity.
We caution, however, that this is true for the Eliashberg Tc,
which does not include fluctuations of the pairing gap.
The analysis of the gap fluctuations requires separate
consideration.
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