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Relaxation and Persistent Oscillations of the Order Parameter in Fermionic Condensates
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We determine the limiting dynamics of a fermionic condensate following a sudden perturbation for
various initial conditions. Possible initial states of the condensate fall into two classes. In the first case, the
order parameter asymptotes to a constant value. The approach to a constant is oscillatory with an inverse
square root decay. This happens, e.g., when the strength of pairing is abruptly changed while the system is
in the paired ground state and more generally for any nonequilibrium state that is in the same class as the
ground state. In the second case, the order parameter exhibits persistent oscillations with several
frequencies. This is realized for nonequilibrium states that belong to the same class as excited stationary
states.
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Response of fermionic condensates to fast perturbations
is a long-standing problem [1–12]. The main difficulty is to
describe the time evolution in the nonadiabatic regime
when a nonequilibrium state of the condensate is created
on a time scale shorter than the energy relaxation time.
In this case the evolution of the system cannot be described
in terms of a quasiparticle spectrum or a single time-
dependent order parameter ��t� and particle-hole excita-
tions [13]. One has to account for the dynamics of individ-
ual Cooper pairs, making it a complex many-body
problem.

The nonadiabatic regime can be accessed experimen-
tally in ultracold Fermi gases, where the strength of pairing
between fermions can be rapidly changed [14]. Non-
adiabatic measurements can be also performed in quantum
circuits utilizing nanoscale superconductors where the dy-
namics can be initiated by fast voltage pulses [15].

Here we consider a BCS condensate that is out of
equilibrium at t � 0 and study its time evolution for t >
0. Given the state of the system at t � 0, we predict the
dynamics with no need for actually solving equations of
motion. We show that possible initial states fall into two
categories. In the first case, j��t�j asymptotes to a constant
value �1 <�0. The approach to �1 is oscillatory with a
1=

��
t
p

decay,

j��t�j
�1

� 1� a
cos�2�1t������������

�1t
p : (1)

Constants a and � depend on the initial state. This is
realized, e.g., when the pairing strength is abruptly
changed, while the system is in the paired ground state.
In the second case, j��t�j oscillates persistently with sev-
eral incommensurate frequencies. We propose a topologi-
cal classification of initial states, which extends the
concept of excitation spectrum to the nonlinear regime. If
a state is in the same class as the paired ground state,
06=96(9)=097005(4)$23.00 09700
Eq. (1) applies. Other states are topologically distinct, in
which case persistent oscillations occur.

Our approach explains differences between previous
studies of condensate dynamics. Linear analysis around
the ground state yields [3] damped oscillations with a
frequency 2�0, where �0 is the equilibrium BCS gap.
Equation (1) generalizes this result to the nonlinear case
and a wide range of initial conditions. An oscillatory decay
following a change in the coupling strength was observed
numerically [8,11]. We will see that this is due to the fact
that initial states of Refs. [3,8,11] are in the same class as
the BCS ground state. Undamped periodic oscillations of
j��t�j have been found in Refs. [4–6]. They were also seen
numerically for initial states close to a normal state [7]. In
contrast, Ref. [12] also starts from the normal state, but
obtains a saturation to �1 � �0=2. It turns out [16] that
this occurs if the initial state is a paired state with a small
seed gap �in � �0. Quasiperiodic oscillations of the order
parameter [9,10] can also be realized (see below).

In the nondissipative regime, dynamics of the conden-
sate can be described by the BCS model. Here we are
interested in the thermodynamic limit, in which case one
can use the BCS mean-field approach [1]. Using
Anderson’s pseudospin representation [1], one can de-
scribe the mean-field evolution by a classical spin Hamil-
tonian [9] H �

P
j2�js

z
j � g

P
j;ks
�
j s
�
k , where �j are

single-particle energies and s�j � sxj � is
y
j . Dynamical

variables sj are vectors of fixed length, jsjj � 1=2. The
BCS order parameter is ��t� � �x � i�y � g

P
js
�
j .

Equations of motion are

_s j � bj � sj bj � ��2�x;�2�y; 2�j�: (2)

Consider the Fourier transform of the absolute value of
the order parameter j��t�j. In the thermodynamic limit the
frequency spectrum in general consists of continuum and
discrete parts. Let the discrete part contain k incommensu-
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FIG. 1 (color). (a) Roots uj of L2�u� for the BCS ground state
with gap �00; d is the level spacing. The absence of disconti-
nuities in the spin distribution (insets) (2p � 0) implies a single
pair of isolated roots at �i�00 (red circles connected by a dashed
line). Remaining roots (green circles) are real and doubly degen-
erate. (b) At t � 0 the coupling is abruptly increased so that the
corresponding ground state gap is �0 � 2:4�00. The line of
double real roots deforms into two conjugate lines. There is m �
2p� 1 � 1 isolated cut of L2�u� (red circles connected by a
dashed line). The frequency spectrum of j��t�j is thus continu-
ous: k � m� 1 � 0, i.e., j��t�j (inset) asymptotes to a constant
�1.
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rate frequencies and its contribution to j��t�j be Fk�t�,

j��t�j � Fk�t� �
Z D

�D
d!A�!� cos	!t���!�
; (3)

where D is an ultraviolet cutoff. The integral in Eq. (3)
vanishes as t! 1 for any well-behaved A�!�. Hence,
j��t�j ! Fk�t� for t! 1, i.e., j��t�j oscillates with k
frequencies for k � 1 and j��t�j ! �1 if k � 0.

Given the initial state, the structure of the frequency
spectrum can be determined using integrability of BCS
dynamics [9,10]. Frequencies of an integrable system de-
pend only on its integrals of motion [17], which can be
evaluated at t � 0. Frequencies can thus be determined
without solving equations of motion. Here we use the
method of Ref. [10]. It is convenient to introduce the
following vector function (Lax vector) of an auxiliary
(spectral) parameter u:

L �u� � �
ẑ
g
�
X
j

sj
u� �j

; (4)

where ẑ is a unit vector along the z axis. The square of the
Lax vector is conserved by the evolution. The frequency

spectrum is related to branch cuts of
�������������
L2�u�

p
. Note that the

numerator of L2�u� is a polynomial of degree 2n, where n
is the total number of levels �j. Since L2�u� � 0, all 2n
roots come in complex conjugate pairs. For finite n, all
roots are typically distinct leading to n isolated cuts con-
necting pairs of conjugate roots. This situation is described
by the general solution [9] for finite n. However, one can
also have 2�n�m� roots that are real and thus double
degenerate. This leaves m branch cuts corresponding to
remaining m pairs of complex conjugate roots. The dy-
namics can now be described in terms of m< n effective
spins governed by the same classical Hamiltonian H but
with m spins and m new effective energy levels. These
m-spin solutions contain only m incommensurate frequen-
cies. One frequency corresponds to a uniform rotation of
all spins around the z axis. Thus, j��t�j contains m� 1
frequencies [10].

In the thermodynamic limit some roots of L2�u� merge
into continuous lines and give rise to the continuum part of
the spectrum, while isolated pairs of roots correspond to
the discrete part. Thus, the number of discrete frequencies
in j��t�j is the number of isolated pairs of roots less one,
k � m� 1. At large times j��t�j exhibits persistent oscil-
lations with k frequencies [18] and is described by an
m-spin solution [19]. The number k is a topological prop-
erty of the initial state. It is the number of handles on the

Riemann surface of the function
�������������
L2�u�

p
.

Discrete part of the frequency spectrum turns out to be
related to discontinuities of the spin distribution s��� as a
function of �. Indeed, consider stationary states. There are
two types of such states. The BCS ground state and excited
states with � � 0 are obtained by aligning each spin sj
self-consistently along its effective magnetic field bj.
These states can be termed anomalous stationary states.
09700
Choosing the x axis so that � is real, we obtain

2szj � �
ej�j�����������������
�2
j � �2

q 2sxj � �
ej������������������
�2
j � �2

q ; (5)

where ej � �1 if the spin is parallel to the field and ej � 1
otherwise. The self-consistency condition � � g

P
js
x
j

yields the BCS gap equation. The state with all ej � 1 is
the BCS ground state. The state ek � �1 and ej�k � 1 has

a single excited pair [1] of energy 2
�����������������
�2
k � �2

0

q
. Using

Eqs. (4) and (5) and the gap equation, we derive

Ls�u� � ���x̂� uẑ�Ls�u�;

Ls�u� �
X
j

ej

2�u� �j�
�����������������
�2
j � �2

q :

We see that L2
s�u� � �u2 � �2�L2

s�u� has a pair of isolated
roots at u � �i�. All other roots are determined by the
equation Ls�u� � 0 and are double degenerate.

First, consider the ground state, ej � 1. Since Ls�u� !
�1 as u! �j � 0 for each j, all roots of Ls�u� are real
and located between consecutive �j. In the thermodynamic
limit they merge into a line from�D toD [Fig. 1(a)]. Note
that the existence of a double real root between �j and �j�1

relies on ej � ej�1. Further, Eq. (5) implies that when ej �
ej�1, the components of spins s��� are continuous at � �
�j. Now let ej � �ej�1. In this case the real root between
�j and �j�1 can disappear. Thus, discontinuities (jumps) in
the spin distribution generate isolated complex roots [see
Fig. 3(a) for an example]. Since spins far from the Fermi
level are not flipped, the total number of jumps is even. In
5-2
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FIG. 2 (color). (a) Roots of L2�u� for the Fermi state. There is
2p� 1 � 1 discontinuity in the spin distribution (insets) result-
ing in p� 1 � 1 pair of imaginary double roots uj � �i�0=2
(blue crosses). Remaining roots (green circles) are real and
doubly degenerate. (b) Initially the system is in the Fermi state.
A small ‘‘external field’’ �2�QFx̂ � �5:4� 10�2�0x̂ is added
to Eq. (2) for a time t
 � 1=�0. The p� 1 � 1 pair of double
roots uj � �i�0=2 splits into m � 2p� 2 � 2 isolated cuts
(red circles connected by dashed lines); the line of real roots
splits into two conjugate lines. The frequency spectrum of j��t�j
has k � m� 1 � 1 discrete frequency, i.e., j��t�j (inset) exhib-
its periodic oscillations.
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general, for 2p jumps Ls�u� can have up to p pairs of
isolated roots.

One can linearize Eq. (2) around anomalous stationary
states and solve for normal modes. The eigenvalues !j �

2
������������������
u2
j � �2

q
are determined by the roots uj of L2

s�u�. For the

ground state uj � �j up to finite size corrections [cf.
Ref. [1] ].

Consider few examples of nonequilibrium initial states.
Let the system be in an anomalous stationary state for t <
0. Suppose at t � 0 the coupling changes abruptly from g0

to g. It follows from Eq. (4) that the change in g results in a
smooth deformation of the root distribution: lines of roots
deform into lines. On the other hand, doubly degenerate
roots become nondegenerate, e.g., p pairs of isolated
double roots in addition to a pair of roots �i� become

m � 2p� 1 pairs of single roots, i.e.,
�������������
L2�u�

p
acquires

2p� 1 cuts. Accordingly, j��t�j exhibits persistent oscil-
lations with k � m� 1 � 2p frequencies (Fig. 3).

Let the initial state be the ground state with coupling g0.
Then, the line of double real roots splits into two complex
conjugate lines [Fig. 1(b)]. There is only one pair of
isolated roots as in the ground state. Therefore, k � 0
and j��t�j asymptotes to a constant �1 at t� ��, as
illustrated in Fig. 1. According to Eq. (2), at large times
spin sj rotates in a constant magnetic field bj �

�2�1; 0; 2�j� with a frequency !��j� � 2
�������������������
�2
j ��2

1

q
.

Using this, one derives Eq. (1). The 1=
��
t
p

decay law is
set by the square root singularity in the spectral density
[16]. Note that, although j��t�j asymptotes to a constant,
the final state of the system is nonstationary [12].

There is another type of stationary states—normal
states. In these states each spin is aligned along the z
axis, szj � zj=2 � �1=2. The Fermi state is zj � �sgn �j
(levels below the Fermi energy are occupied, above �
empty). States with other zj correspond to particle-hole

excitations of the Fermi gas. For example, a state zk �
sgn �k < 0 has a pair of fermions removed from the level
�k. The Lax vector for normal states is

L n�u� � Ln�u�ẑ Ln�u� � �
1

g
�
X
j

zj
2�u� �j�

: (6)

All roots of L2�u� � L2
n�u� are thus doubly degenerate.

Note the absence of a branch cut of
�������������
L2�u�

p
connecting the

points u � �i�. Further analysis is similar to that for
anomalous states. The Fermi state has a single jump in
the sz��� at the Fermi level. This results in a pair of
complex conjugate isolated roots [Fig. 2(a)], which can
be determined from the equation Ln�u� � 0. In the ther-
modynamic limit, u � �i�0=2. The rest of the roots are
real and form a continuous line. A normal state with 2p�
1 jumps in sz��� can have up to p� 1 pairs of isolated
roots. Each root is doubly degenerate. Linearizing Eq. (2)
around a normal state, we obtain normal frequencies !j �

2uj, where Ln�uj� � 0. In particular, the Fermi state has a
09700
single unstable mode that corresponds to uj � �i�0=2
and grows as e�0t indicating the pairing instability of the
Fermi state [20]. Remaining frequencies are real and cor-
respond to the precession of spins at their natural frequen-
cies, !k � 2�k up to finite size corrections.

Let the system be in a normal state at t � 0. Since,
within mean field, normal states are unstable equilibria, a
small perturbation is needed to start off the dynamics. A
typical deviation splits all double degenerate roots as illus-
trated in Fig. 2(b). Real roots split into two complex
conjugate lines. Degenerate roots at u � �i�0=2 split
into m � 2 isolated cuts. Since k � m� 1 � 1 in
Eq. (3), j��t�j will exhibit undamped periodic oscillations
(Fig. 2). At large times it is described by a 2-spin solution
[19].

The dynamics in normal states can be triggered by
quantum fluctuations. In Ref. [12] this is modeled by add-
ing a small external field �2�QFx̂ to Eq. (2). This makes
L2�u� time dependent: dL2�u�=dt � 2�QFLy=g. Being
applied for a short time t
, the external field drives the
system out of the normal state. Treating the evolution of
L2�u� perturbatively, we find that the new positions of the
roots are determined by the equation Ln�u� �
�2i�QFt
=g. Degenerate complex roots split along the
real axis into two cuts [Fig. 2(b)] separated by
2�2

QFt

d=g, where d � h�j�1 � �ji is the level spacing.

Thus, k � 1 and j��t�j exhibits periodic oscillations
(Fig. 2). The frequency spectrum has a single discrete
frequency corresponding to the unstable mode rather than
being continuous as general arguments of Ref. [12]
assume.

We see that for initial conditions close to the Fermi state
a periodic solution is ‘‘dynamically selected’’ [7], while
5-3
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FIG. 3 (color). (a) Roots of L2�u� for an anomalous stationary
state (see the text) that has been obtained from the ground state
with gap �00 by flipping spins in energy interval (�0:37�00; 0).
It has a gap � � 0:4�00. Spin flips result in 2p � 2 disconti-
nuities in the spin distribution (insets). There is a p � 1 pair of
isolated double roots (blue crosses) in addition to a pair of single
roots uj � �i� (red circles connected by a dashed line). The
remaining roots (green circles) are real and doubly degenerate.
(b) At t � 0 the coupling constant is increased so that the
corresponding ground state gap is �0 � 1:55�00. The p � 1
pair of isolated double roots splits into two cuts, resulting inm �
2p� 1 � 3 isolated cuts (red circles connected by dashed lines).
The frequency spectrum of j��t�j has k � m� 1 � 2 discrete
frequencies; i.e., j��t�j (inset) displays oscillations with two
basic frequencies.
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other initial conditions ‘‘select’’ damped or multifrequency
undamped oscillations. In more conventional terms, this
corresponds to a basic fact that the evolution of an inte-
grable system depends on initial conditions. All different
behaviors are captured by the general solution [9]. Here we
systematically classified possible initial states and speci-
alized the general solution to each type of initial condi-
tions; i.e., we developed ‘‘selection rules’’ for the BCS
dynamics. Which behavior is realized in a particular ex-
perimental setup depends on the initial state of the con-
densate. In this respect, the periodic solution is somewhat
special: if we start from the ground state with a small
nonzero �in � �0, the order parameter j��t�j asymptotes
to a constant value �1.

Excited normal states have several jumps in the spin
distribution and can therefore display oscillations with
more than one frequency. Consider, e.g., a state where
pairs in energy interval from ��a to ��b have been
removed. The initial spin distribution is sz��� �
�sgn 	���� �a���� �b�
. The 2p� 1 � 3 jumps result
in p� 1 � 2 pairs of isolated double degenerate complex
roots. As a small perturbation splits these roots into m �
2p� 2 � 4 cuts, j��t�j oscillates with k � m� 1 � 3
frequencies.

In conclusion, we have shown how to predict the BCS
dynamics from the initial state of the condensate. We
classified initial states by their integrals of motion—roots
of L2�u�. For states with a root diagram as in the paired
ground state, the order parameter j��t�j displays damped
09700
oscillations described by Eq. (1). Other states are of the
same type as excited stationary states of the BCS
Hamiltonian. In these cases j��t�j oscillates persistently
with few incommensurate frequencies. The number of
frequencies is related to the number of jumps in the pseu-
dospin distribution of the corresponding stationary state.
For the situation most relevant to the experiments on cold
fermions—an abrupt change of the coupling—we predict
damped oscillations with 1=

��
t
p

decay.
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