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We develop a theory of a pseudogap state appearing near the superconductor-insulator (SI) transition in
strongly disordered metals with an attractive interaction. We show that such an interaction combined with
the fractal nature of the single-particle wave functions near the mobility edge leads to an anomalously
large single-particle gap in the superconducting state near SI transition that persists and even increases in
the insulating state long after the superconductivity is destroyed. We give analytic expressions for the
value of the pseudogap in terms of the inverse participation ratio of the corresponding localization
problem.

DOI: 10.1103/PhysRevLett.98.027001 PACS numbers: 74.78.�w

A rapidly growing number of experiments [1–9] on
various disordered superconductors shows that a novel
phase often appears on the insulating side of the
superconductor-insulator transition. As the disorder
strength is increased the superconductivity is suppressed
leading to a strange insulator characterized by a large
thermally assisted resistance with a small but hard gap
(Fig. 1). Experimentally, the phase diagram of disordered
superconductors is often explored by varying the applied
magnetic field. On the superconducting side of the transi-
tion a relatively small field destroys the superconductivity
resulting in a hard-gap insulating state. At larger magnetic
fields the resistance and the gap drop [4–8]. This is ob-
served only in a narrow window of disorder strengths,
away from this window on a superconducting side the
application of magnetic field converts the superconductor
into a normal metal as usual.

It is tempting to explain these data by the formation of
localized Cooper pairs [4,10]. In this picture the super-
conductivity is due to a fragile coherence between local-
ized Cooper pairs, while the energy to break the pair is
much larger and remains finite even when the coherence
(and thus the superconductivity) is destroyed. The hy-
pothesis of preformed Cooper pairs is further confirmed
by the behavior of these superconductors at higher tem-
peratures. On the insulating side of the transition in thick
(effectively 3D) films one observes [1,3] Arrhenius tem-
perature behavior of the resistivity, R�T� / exp�TI=T�, at
low temperatures. The experimental value of the activation
energy TI is somewhat larger than the superconducting gap
in less disordered samples and grows with the disorder
[1,3]. However, at higher temperatures this behavior is
replaced [3] by Mott’s variable-range hopping R�T� �
exp�TM=T�

1=4. This can be understood if the insulating
pseudogap is due to preformed Cooper pairs with a rela-
tively large pairing energy TI. In this Letter we show that
preformed Cooper pairs appear in the semimicroscopic
three-dimensional model that contains only low energy

electrons with weak BCS-type attraction and a strong
random potential that leads to Anderson localization of
single-particle states.

In the presence of preformed Cooper pairs the parity
effect should arise—the ground-state energy with even
number of electrons is lower than that for the closest
odd number. The corresponding parity gap �P � TI �
�= ln��=�� has been calculated by Matveev and Larkin
[11] for small superconducting grains. Here � � 1=��0L

3�
is the mean level spacing in the grain, �� � is the energy
gap in the bulk superconductor, and �0 and L3 are the
density of orbital states and the volume of the grain,
respectively. In this Letter we argue that the result of
Ref. [11] can be generalized to bulk Anderson insulators.
In this case, L is replaced by the localization radius Lloc, so
that �! �L � 1=��0L

3
loc�, and the BCS � is replaced by

the superconducting gap �crit at the Anderson transition
point. The fractal nature of near-critical wave functions
characterized by the fractal dimension D2 < 3 determines
the reduction factor ��L=�crit�

1�D2=3 � 1 that replaces
ln��=�� in the Matveev-Larkin formula.

We consider two different regimes. In more disordered
materials where �L � �crit the Cooper instability and
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FIG. 1 (color online). Schematics of low-temperature phase
diagram of disordered superconductors in the vicinity of the
superconductor-insulator transition.
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superconductive long-range order disappear. However, the
attraction between electrons persists as long as �L remains
smaller than the Debye frequency !D and results in the
‘‘local’’ pairing of electrons with opposite spins occupying
the same localized state. We show below that in this regime
the hard-gap insulator is formed with properties similar to
those observed in [1,3]. We further argue that in the less
localized regime, when �L � �crit, the unusual supercon-
ductive state with a pseudogap is formed. The features of
this state are (i) single-electron excitation gap �1 is larger
than superconductive gap � so that the ratio �1=Tc is
anomalously high, and (ii) insulating trend in the R�T�
curves exists above Tc.

We assume that superconductivity is due to attraction
between electrons that originates at high energy scales
�!D that is not affected by localization of electron wave
functions for moderate disorder �L & !D. In a fermion
system with weak attraction one can leave only pair inter-
action terms in the Hamiltonian leading to the usual BCS
model in the basis of localized electron states [12]:
 

H �
X
j�

�jc
y
j�cj� �

�
�0

X
j;k

Mjkc
y
j"c
y
j#ck"ck#; where

Mjk �
Z
dr 2

j �r� 
2
k�r�;

(1)

� is dimensionless Cooper coupling constant, �j is the
single-particle energy of the state j, and cj� is the corre-
sponding electron operator for the spin projection �.

Physical properties of the electron system are controlled
by the electrons near the Fermi level, so a very important
implicit ingredient of the model (2) is the statistics of
matrix elements Mjk between eigenstates in the vicinity
of Anderson mobility edge. The key feature of these nearly
critical wave functions is their fractal structure [13] that
shows in the anomalous scaling of diagonal matrix ele-
ments Mjj 	 Mj (’’inverse participation ratios,’’ IPRs)
with localization length: typical IPR �M / L�D2

loc , where
fractal dimension D2 < 3. Numerical studies [14,15] in-
dicate that D2 � 1:30
 0:05 for the standard 3D
Anderson transition. The IPR distribution function
P �Mj� has been studied in [15]. Scaling theory of local-
ization predicts that near the mobility edge P �Mj� acquires
a scale-invariant form and this is indeed what was observed
[15]. The same data demonstrate that P �Mj� decreases fast
for atypicallly extended states; i.e., at Mj= �M� 1. This
allows us to use the typical value

 

�M � L�3
0 �Lloc=L0�

�D2 ; (2)

where L0 is the short-scale cutoff length of the fractal
behavior. The associated energy scale E0 � 1=��0L

3
0� de-

pends on the microscopic details of the model of disorder
and might be small compared to Fermi-energy EF.
Localization length depends on Fermi-energy (in the scal-
ing region Lloc � L0) as Lloc � L0�E0=�Em � EF�

�,

where Em is the position of the mobility edge and � is
the localization length exponent.

Another important property of the nearly critical eigen-
states is their strong correlation in energy and real space
[13,16,17] even in the limit of strong fractality D2 � 3. It
results in the scaling dependence of the average matrix
elements �Mjk on the energy difference Ej � Ek � !:

 V �Mjk 	 M�!�

�

�
�Lloc=L0�

3� at !� �L �a�
�E0=!�� at �L � ! � E0 �b�

(3)

where � � 1�D2=3 and V is the total system’s volume.
Note that in the critical region M�!� � 1 in contrast both
to a metal and to a deep insulator (Lloc � L0), where
M�!� � 1.

We begin with the insulating region �� �L � !D
where Cooper interaction can be treated perturbatively. In
the first order of the perturbation theory we take into
account only diagonal terms j � k of the interaction simi-
lar to the case of ultrasmall grain [11]. Then the energy
(counted from EF) required to break a bound pair of
electrons siting in the jth orbital state is 2��j�P �

�
�0
Mj.

Typical value of this ‘‘parity gap’’ (cf. [11]) scales then as

 �P �
�
2
E0

�
L0

Lloc

�
D2

/ �Em � EF�
�D2 (4)

Neglecting fluctuations in the local values of ��j�P , one finds
that all states occupied by single electrons are shifted up by
the amount �P that leads to the electron DOS ~��"� �
�0��"��P�. In fact, values of ��j�P differ for different
localized states, and the average density of states ��"� in
a large sample is determined by the IPR distribution P �M�:

 ��"� � �0

Z 2"�0=�

0
P �M�dM: (5)

As mentioned above, numerical data for P �M� indicate its
very fast decrease atM= �M ! 0. Thus the DOS shape (5) is
not far from a rectangular sharp gap, with the gap value
given by Eq. (4). We emphasize that (i) parity gap �P

is much larger than level spacing �L at Lloc=L0 >
�2=��1=�3�D2�, and (ii) the DOS (5) does not contain any
‘‘coherence peak’’ above the gap (cf. Ref. [18]).

We associate the spectral gap �P with the measured
[1,3] activation energy TI, assuming that hard-gap conduc-
tivity behavior is due to single-electron hopping (at the
lowest temperatures variable-range hopping of localized
pairs is expected to prevail). The external parameter (Em �
EF) representing the disorder strength in Eq. (4) can be
replaced with an experimentally more accessible parame-
ter ��c � �� / �Em � EF�. Here � is the high temperature
conductivity and �c is the value of the conductivity where
the parity gap �P first develops. We obtain

 TI � A�1� �=�c��D2 ; (6)

where A is conductivity-independent. This equation pre-
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dicts a moderate increase of TI with disorder strength in
agreement with the experimental data [1]; see Fig. 2.

We now turn to the parameter region �L � � where one
expects a global superconductive coherence to exist at low
enough T. Indeed, in this regime a given localized single-
particle state typically overlaps in a real space with a large
number ��=�L of eigenstates  j in the same energy strip
j�jj � �. It is natural to expect that in this case the mean-
field approximation (MFA) is qualitatively correct. To test
the validity of MFA, we compared its prediction for Tc��L�
(see below) with the transition temperature that was found
numerically by computing the first terms of the virial
expansion applied to (1) with Mij determined by exact
diagonalization. Reasonably good agreement was found
[19]. To proceed with the MFA, we introduce averaged
energy-dependent pairing amplitudes F��j� � hcj"cj#i and
the gap function ���� � �

R
d�1M��� �1�F��1�. Fol-

lowing standard steps, we decouple interaction term in
the Hamiltonian (2) via the gap function ����, calculate
anomalous averages F���, and arrive at the modified BCS
gap equation in the form

 ���� �
�
2

Z �1
�1

d�1
M��� �1����1��������������������������
�2

1 � �2��1�
q tanh

�������������������������
�2

1 ��2��1�
q

2T
:

(7)

Gap function ���� obeying Eq. (7) is an even function of �
with the maximum value ��� � 0� 	 �0.

Superconducting transition temperature Tc is deter-
mined by linearization of Eq. (7) with respect to ����.
Because of power-law decrease of M�!� at large argu-
ments, the integral in Eq. (7) converges and is dominated
by !� T (‘‘infrared superconductivity’’) so no upper cut-
off is needed, contrary to usual BCS problem. When the
Fermi level is very close to the Anderson mobility edge Em

and level spacing �L � E0��Em � EF�=E0
3� is negligibly

small, one can use for M�!� line (b) of Eq. (3). Then the
critical temperature is given by

 T0
c ��; �� � E0�

1=�C���; (8)

where dimensionless function C��� can be computed nu-
merically. At small � the value given by Eq. (8) exceeds the
BCS value TBSC �!De�1=�. This may lead to a maximum
in Tc near the critical disorder. The zero-temperature en-
ergy gap �T�0 in the same limit �L ! 0 is given by Eq. (8)
with C��� replaced by another function D���. We plot
D��� and 2D���=C��� in Fig. 3.

Using Eq. (8) we eliminate the interaction constant �
and the cutoff parameter E0 from Eq. (4) and arrive at

 �P �
1

2C�
�L�T0

c=�L�� (9)

This formula (applied at �L � T0
c ) generalizes the results

of Ref. [11] to bulk strongly disordered superconductors.
In contrast to Ref. [11] here the reduction of �P compared
to �L is not due to the renormalization of attractive inter-
action (which is absent) but to the enhancement of the
matrix elements Mj due to fractality.

To study the effect of nonzero level spacing �L upon Tc,
we approximate M�!� by a simple interpolation formula
M�!� � E�0 �!

2 � �2
L�
��=2 and solve the linearized ver-

sion of Eq. (7) for Tc��L� numerically. Since M�!� is a
uniform function of T and �L, while the coupling constant
� and E0 enter Eq. (7) only in a combination E0�1=�, it is
possible to present the dependence Tc��L� in the form

 Tc��L� � T0
cT �

�
T0
c

�L

�
(10)

where T0
c is defined in Eq. (8) and scaling function T ��x�

does not depend on �. This universal function was found
numerically for � � 0:57 (corresponding to D2 � 1:3 for
3D Anderson transition), the result is plotted in Fig. 3. The
actual Tc is suppressed as compared to the mean-field
result due to fluctuations.

 

σ

FIG. 2 (color online). Experimental values of the gap from
Ref. [1], TI (boxes) and a fit to the Eq. (6) with � � 1, D2 � 1:3.
The only fitting parameter was the constant A � ��=2�E0; the
data points of Ref. [1] correspond to E0 � 100 K at � � 0:2
extracted from the BCS value of Tc � 3 K for less disordered
samples [1] and !D � 500 K. The value of �c was determined
from high T data. Application of scaling formulas is justified by
the large value of the localization length: Lmin

loc > 30 �A which
was deduced from the Mott temperature characterizing the
resistivity of similar samples at intermediate temperatures [3].
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FIG. 3 (color online). Suppression of Tc as a function of level
spacing within localization volume. The inset shows � depen-
dence of the dimensionless gap and 2��0�=Tc for �L � 0.
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Although gap Eq. (7) is similar to the conventional
one, the real-space properties of the state that it describes
are unusual. The local pairing amplitude F�r� �P
jhcj"cj#i 

2
j �r� is extremely inhomogeneous in space, pop-

ulating only small fraction / �Tc��L�=E0
� of the total

volume [19]. Diamagnetic response of such a supercon-
ductor differs strongly from that of usual ‘‘dirty-limit’’
materials with uniform jF�r�j, but reminds that of weakly
coupled Josephson junctions arrays. Qualitatively, we ex-
pect (i) extremely weak Meissner effect and considerably
stronger linear shielding effect, and (ii) superconductor!
gaped insulator ! Mott insulator sequence of transitions
upon magnetic field increase.

Next, we discuss the effect of ‘‘local pairing’’ consid-
ered previously [see Eq. (4)] in insulating state. We have
seen that in insulating state when �L � � single-particle
excitation (carrying spin 1

2 ) have a gap �1 � �P.
Excitations that involve only hopping of paired electrons
between localized levels and do not involve breaking pairs
are gapless; i.e., the energy gap � vanishes. In supercon-
ducting state within MFA we have �1 � �� �P, while
the gap for pair excitations [20] (without pair breaking) is
�2 � 2�. When Lloc=L0 ! 1, the parity gap �P becomes
much larger than �L. Therefore, we expect that there is a
regime �P * � in the superconducting state where the
spin gap �1 is larger than the energy gap.

Note that it is the spin gap �1 that is measured as a
spectral gap in a superconductive state, via tunneling con-
ductance or optical conductivity experiments. We thus
conclude that superconductors near S-I transition are ex-
pected to have anomalously large ratio of spectral gap to
transition temperature. Suppression of single-particle den-
sity of states described by Eq. (5) can be observed via
tunneling conductance measurements. An additional sup-
pression of Tc in comparison with �P is due to electron-
electron interaction in the density channel, not included
into the model (1).

An anomalously large ratio �1=Tc leads to the insulating
trend of the resistivity versus temperature behavior in the
intermediate temperature range Tc < T � �1. This was
observed in strongly disordered superconductors [8]; it is
also known as the pseudogap phenomenon in underdoped
cuprates [21] where it shows in resistivity, NMR or angle-
resolved photoemission spectroscopy (ARPES) data. The
quantitative similarity between R�T; B� behavior in InOx
films and underdoped cuprates [22,23] allows one to specu-
late that the pseudogap in underdoped cuprates might also
be related to pairing of electrons on localized states. The
important difference of the cuprates is the d-wave symme-
try of the pairing.

In conclusion, weak Anderson insulators with Cooper
attraction are shown to possess hard insulating gap whose
magnitude is determined by the IPR statistics near the
mobility edge. Although this gap is due to electron pairing,
it does not lead to a coherence peak. In the ground-state of
this insulator all electrons are paired on individual local-

ized eigenfunctions. When the Fermi level gets closer to
the mobility edge, superconductive correlations develop
between localized pairs. Key features of the predicted
superconductive ground-state are extreme inhomogenity
of superconductive correlations in real space, an unusually
large (compared to Tc) single-particle excitation gap (spin
gap), and pseudogaped regime at temperatures about Tc.
All these unusual features are due to the fractal nature of
localized eigenstates near the mobility edge.
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