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Integrable matrix theory: Level statistics
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We study level statistics in ensembles of integrable N × N matrices linear in a real parameter x. The matrix
H (x) is considered integrable if it has a prescribed number n > 1 of linearly independent commuting partners
Hi(x) (integrals of motion) [H (x),H i(x)] = 0, [Hi(x),H j (x)] = 0, for all x. In a recent work [Phys. Rev. E 93,
052114 (2016)], we developed a basis-independent construction of H (x) for any n from which we derived the
probability density function, thereby determining how to choose a typical integrable matrix from the ensemble.
Here, we find that typical integrable matrices have Poisson statistics in the N → ∞ limit provided n scales
at least as log N ; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated
coupling values x = x0 or when correlations are introduced between typically independent matrix parameters.
However, level statistics cross over to Poisson at O(N−0.5) deviations from these exceptions, indicating that
non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we
present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect
to nearest-neighbor level statistics.
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I. INTRODUCTION

It is generally believed that the energy levels of integrable
systems [1] follow a Poisson distribution [2–8]. For example,
the probability that a normalized spacing between adjacent
levels lies between s and s + ds is expected to be P (s)ds =
e−sds. In contrast, chaotic systems exhibit Wigner-Dyson
statistics, with level repulsion P (s) ∝ s2 or s at small s.
Moreover, level statistics are often used as a litmus test
for quantum integrability even though there are integrable
models that fail this test, e.g., the reduced BCS model [5]
(which is a particular linear combination of commuting Gaudin
Hamiltonians). In this work, we quantify when and why
Poisson statistics occur in quantum integrable models, while
also characterizing exceptional (non-Poisson) behavior.

Poisson statistics have been numerically verified on a
case-by-case basis for some quantum integrable systems,
including the Hubbard [2] and Heisenberg [2,3] models. On
the other hand, general or analytic results on the spectra
of quantum integrable models are lacking, in part due to
the absence of a generally accepted unambiguous notion of
quantum integrability [9,10], and in part because existing
results usually apply to isolated models instead of members
of statistical ensembles like random matrices [11]. Notably,
Berry and Tabor showed [4] that level statistics in semiclassical
integrable models are always Poissonian as long as the
energy E(n1,n2, . . . ) is not a linear function of the quantum
numbers n1,n2, . . . , i.e., the system cannot be represented as a
collection of decoupled harmonic oscillators. As integrability
is destroyed by perturbing the Hamiltonian, the statistics are
expected to cross over from Poisson to Wigner-Dyson at
perturbation strengths as small as the inverse system size [3].

Random matrix theory (RMT) [11,12] captures level
repulsion and other universal features of eigenvalue statistics
in generic (nonintegrable) Hamiltonians (see, e.g., Fig. 1). We
recently proposed an integrable matrix theory [13] (IMT) to
describe eigenvalue statistics of integrable models. This theory
is based on a rigorous notion of quantum integrability and

provides ensembles of integrable matrix Hamiltonians with
any given number of integrals of motion (see below). It is
similar to RMT in that both are ensemble theories equipped
with rotationally invariant probability density functions. An
important difference is that random matrices do not represent
realistic many-body models, while integrable ones correspond
to actual integrable Hamiltonians. We therefore have access
not only to typical features, but also to exceptional cases
and are in a position to make definitive statements about
the statistics of quantum integrable models. Here, we study
the nearest-neighbor level spacing distributions of the IMT
ensembles.

The approach of Refs. [10,13–18] to quantum integrability
operates with N × N Hermitian matrices linear in a real
parameter x. A matrix H (x) = xT + V is called integrable
[16,17,19] if it has a commuting partner H̃ (x) = xT̃ + Ṽ other
than a linear combination of itself and the identity matrix and
if H (x) and H̃ (x) have no common x-independent symmetry,
i.e., no � �= c1 such that [�,H (x)] = [�,H̃ (x)] = 0. Fixing
the parameter dependence makes the existence of commuting
partners a nontrivial condition, so that only a subset of measure
zero among all Hermitian matrices of the form xT + V are
integrable [17].

Further, integrable matrices fall into different classes
(types) according to the number of independent integrals of
motion. We say that H (x) is a type-M integrable matrix if there
are precisely n = N − M > 1 linearly independent N × N

Hermitian matrices [20] Hi(x) = xT i + V i with no common
x-independent symmetry such that

[H (x),H i(x)] = 0, [Hi(x),H j (x)] = 0, (1)

for all x and i,j = 1, . . . ,n. A type-M family of integrable
matrices (integrable family) is an n-dimensional vector space
[20], where Hi(x) provide a basis. The general member of the
family is

H (x) =
n∑

i=1

diH
i(x), (2)
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FIG. 1. The level spacing distribution of a 4000 × 4000 random
real symmetric matrix with entries chosen as independent random
numbers from a normal distribution of mean 0 and off-diagonal
variance 1

2 (diagonal variance of 1). Such a matrix belongs to the
Gaussian orthogonal ensemble (GOE) of real symmetric matrices,
studied in random matrix theory (RMT). The main feature of the
spacing distribution here is its vanishing for small spacings, also
known as level repulsion. The smooth curve is the Wigner surmise
P (s) = π

2 se− π
4 s2

. See the integrable matrix case in Fig. 2.

where di are real numbers. The maximum possible value of n is
n = N − 1, corresponding to type-1 or maximally commuting
Hamiltonians.

Examples of well-known many-body Hamiltonians that
fit into this definition of integrability are the Gaudin, one-
dimensional (1D) Hubbard, and XXZ models, where x

corresponds to the external magnetic field, Hubbard U ,
and the anisotropy, respectively. Note, however, that these
models have various x-independent symmetries, such as the
z component of the total spin, total momentum, etc. Taken
at a given number of spins or sites, they break down into
sectors (matrix blocks) characterized by certain parameter-
independent symmetry quantum numbers. Such blocks are
integrable matrices according to our definition. For instance,
the 1D Hubbard model on six sites with three spin up and three
spin down electrons is a direct sum of integrable matrices of
various types [17]. Sectors of Gaudin magnets, where the z

component of the total spin differs by one from its maximum
or minimum value (one spin flip) or, equivalently, the one
Cooper pair sector of the BCS model are type-1 [16], while
other sectors are integrable matrices of higher types.

Prior work [10,15–18] constructed all type-1, -2, -3 inte-
grable matrices and a certain subclass of arbitrary type-M ,
determined exact eigenvalues and eigenfunctions of these
matrices, investigated the number of level crossings as a
function of size and type, and showed that type-1 integrable
families satisfy the Yang-Baxter equation. This work is a
continuation of Ref. [13] where we formulated a rotationally
invariant parametrization of integrable matrices and derived
an appropriate probability density function (PDF) for the
parameters, i.e., for ensembles of integrable matrices of
any given type. The derivation is similar to that in the
RMT and is based on either maximizing the entropy of the
PDF or, equivalently, postulating statistical independence of

FIG. 2. The level spacing distribution for a 4000 × 4000 real
symmetric integrable matrix H (x) = xT + V at x = 1. This par-
ticular matrix is a sum of 200 linearly independent matrices that
commute for all values of the real parameter x. Note that the spacing
distribution is maximized at s = 0, a feature known as level clustering.
The smooth curve is a Poisson distribution, which is theorized to be
typical of integrable matrices. Compare to the generic real symmetric
matrix case in Fig. 1.

independent parameters and rotational invariance of the PDF.
Here, we use the results of Ref. [13] to generate and study
numerically and analytically level spacing distributions in
ensembles of integrable matrices of various types as well as in
individual matrices.

Our main results are as follows. For a generic choice of
parameters, the level statistics of integrable matrices H (x) are
Poissonian in the limit of the Hilbert space size N → ∞ if
the number of conservation laws n scales at least as log N (see
Fig. 2 for an example). Exceptions to Poisson statistics fall
into two categories. First, it is always possible to construct an
integrable matrix that has any desired level spacing distribution
at a given isolated value x = x0 of the coupling (or external
field) parameter. For a typical type-1 matrix there is always a
single value of x where the statistics are Wigner-Dyson. The
distribution quickly crosses back over, however, to Poisson
at deviations from x0 of size δx ∼ N−0.5, with the crossover
centered at δx ∼ N−1. Second, one obtains non-Poissonian
distributions by introducing correlations among the ordinarily
independent parameters characterizing an integrable matrix
H (x); the reduced BCS model falls into this category. The
statistics again revert to Poisson at O(N−0.5) deviations from
such correlations. We also show numerically that as N → ∞,
integrable matrix ensembles satisfy two distinct definitions
of ergodicity with respect to the nearest-neighbor spacing
distribution P (s). Not only are the statistics of a single matrix
representative of the entire ensemble, but the statistics of the
j th bulk spacing across the ensemble are independent of j .

In Sec. II, we present numerical results on the level statistics
of type-1 matrices, defined to be integrable matrices H (x) with
the maximum number nmax = N − 1 of linearly independent
commuting partners. Section III contains numerical results for
integrable matrices with n � nmax. We present our analytical
justification of numerical results using perturbation theory in
Sec. IV. Finally, we give numerical results on ergodicity in
Sec. V.
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II. LEVEL STATISTICS OF TYPE-1
INTEGRABLE MATRICES

A. Type-1 families, primary parametrization

Although our definition of integrable matrices encompasses
the general Hermitian case, we restrict our focus in this work
to real symmetric matrices. We begin with type-1 integrable
N × N families which contain N − 1 nontrivial commuting
partners in addition to the scaled identity (c1x + c2)1. Such
matrices are the simplest to construct, for the parametrization
of type-M integrable families increases in complexity with M .
Results on these higher types are deferred to Sec. III.

We first summarize the essential points of the basis-
independent type-1 construction of Ref. [13] in order to
arrive at the parametrization of Eq. (4) useful for numerical
calculations. By considering linear combinations of the N − 1
basis matrices, defined in Eq. (2), and the identity, one can
prove that every type-1 family contains a particular integrable
matrix �(x) with rank-1 T part

�(x) = x |γ 〉 〈γ | + E, (3)

i.e., [H (x),�(x)] = 0 for all x and any H (x) = xT + V in
the family. There is an additional restriction [V,E] = 0, which
follows from O(x0) term in the commutator. It can be shown
that the matrices E and V and the vector |γ 〉 completely
determine a given type-1 matrix H (x) = xT + V modulo an
additive constant proportional to the scaled identity.

If we consider any type-1 H (x) in the shared eigenbasis
of E and V , we find that the matrix elements of H (x) can
be parametrized in terms of the N eigenvalues εi of E, the
N eigenvalues di of V , and the N vector components γi of
|γ 〉. Statistical arguments borrowed from RMT in Ref. [13]
identify the εi and di as two independent sets of eigenvalues
drawn from the Gaussian orthogonal ensemble. The γi are
drawn from a δ(1 − |γ |2) distribution. With these parameters,
any N × N type-1 integrable matrix H (x) = xT + V can be
constructed in the following way:

[H (x)]ij = xγiγj

di − dj

εi − εj

, i �= j

[H (x)]jj = dj − x
∑
k �=j

γ 2
k

dj − dk

εj − εk

. (4)

We call Eq. (4) the “primary” parametrization, which is
given specifically in the basis where V is diagonal and
can be transformed into any other basis by an orthogonal
transformation. Note that the quantities dj act as coefficients of
linear combination of basis matrices Hi(x) defined by setting
dj = δij in Eq. (4). Explicitly, nonzero matrix elements of
Hi(x) are

[Hi(x)]ij = [Hi(x)]ji = x
γiγj

εi − εj

, j �= i

[Hi(x)]jj = −x
γ 2

i

εi − εj

, j �= i

[Hi(x)]ii = 1 − x
∑
k �=i

γ 2
k

εi − εk

, (5)

and

H (x) =
N∑

i=1

diH
i(x). (6)

From Eq. (6) we see that the εi and γi uniquely identify a
type-1 commuting family whereas the choice of di produces a
given member of the family.

To describe the spectrum of H (x), we introduce an addi-
tional N parameters λj = λj (x) determined by the following
equation [16]:

1

x
=

N∑
k=1

γ 2
k

λj − εk

. (7)

One can graphically verify that for any nondegenerate choice
of εk there are N real solutions λj to Eq. (7) that interlace the
εk . The N eigenvectors v(x) and eigenvalues η(x) of H (x) are
labeled by λj and take the form

[vλj
(x)]k = γk

λj − εk

, ηλj
(x) = x

N∑
i=1

diγ
2
i

λj − εi

. (8)

The components of the (unnormalized) eigenvectors vλj
(x) are

independent of the choice of di in Eq. (6), and are thus common
to any member of the family defined by εk and γk .

B. Universality of Poisson statistics

Equipped with parametrizations of integrable matrix en-
sembles based on the number of commuting partners in a
family, we can quantitatively outline both the origin and
the robustness of Poisson statistics in these ensembles. We
first explore the latter with numerical tests of the statistics
of integrable matrices in Secs. II C–III C. For clarity of
exposition, the numerical results of Secs. II C, II D, and II E are
demonstrated strictly for type-1 matrices. In Sec. III, we show
that the same results apply generally to a construction of higher
type integrable matrix families that by definition contain fewer
than the maximum number of conservation laws. We present
analytical considerations of numerical results in Sec. IV.

We emphasize that regardless of the choice of parameters
we find Poisson level statistics in the overwhelming majority
of cases, even near isolated points in parameter space with
non-Poissonian statistics. For example, the least biased choice
for di in Sec. II A enforces GOE statistics at x = 0 since
H (0) = V ; by effecting a shift x → x + x0, the equivalent
invariant statement is that each type-1 matrix has a parameter
value x0 such that H (x0) has Wigner-Dyson statistics. Another
exception to Poisson statistics is when di and εi are correlated
so that di = f (εi), a smooth function at least over almost the
entire range of εi . Nonetheless, as soon as we deviate from x0

or f (εi), the results of Secs. II C and II D show that statistics
quickly revert to Poisson at deviations scaling as δ ∼ N−0.5 in
the limit N → ∞.

Generally, we find that random linear superpositions of
basis matrices within a given integrable family are crucial for
obtaining Poisson level statistics. Basis matrices themselves,
defined in Eq. (6) for the primary type-1 construction and
in Eq. (22) for more general integrable matrices, show
non-Poissonian statistics with strong level repulsion. Such
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repulsion washes away, however, for H (x) that are random
linear combinations of sufficiently many basis matrices. We
see this behavior in Sec. II E for all type-1 matrices, i.e.,
independent of the number m of basis matrices (conservation
laws) in linear combination as long as m > O(log N ).

We fit all spacing distributions P (s) to the Brody function
[21] P (s,ω), where ω is the Brody parameter

P (s,ω) = a(ω)sωe−b(ω)sω+1
. (9)

The distribution in Eq. (9) has unit mean and norm with
appropriate choices of constants a(ω) and b(ω). It interpolates
between a Poisson distribution P (s) = e−s at ω = 0 and the
Wigner surmise P (s) = π

2 se− π
4 s2

at ω = 1, and hence is a
convenient fitting function. The Brody parameter ω can take
all values ω > −1, which means it also can detect enhanced
level clustering or repulsion.

Note, however, that the Wigner surmise is not the exact
nearest-neighbor spacing distribution of GOE matrices. One
may therefore expect our numerics to produce an ω �= 1 for
GOE matrices. Figure 4, where ω ≈ .956, shows that this is
indeed the case. The exact distribution P (s) can be found in
Ref. [11] and was originally derived by Gaudin in terms of a
Fredholm determinant [22]. Using Ref. [23] and a few lines
of Mathematica code, we find that the same fitting procedure
used for numerically generated matrices produces ω ≈ 0.957.
Note that it is important to exclude P (0) = 0 in the fitting
procedure for numerically generated finite-sized matrices.

C. Crossover in coupling parameter x

Here, we show that even if the statistics are non-Poissonian
at a given coupling value x = x0 (we set x0 = 0), level
clustering is restored at small deviations from x0. For any N ,
the matrices T and V each have eigenvalues that mostly lie on
an O(1) interval centered about zero. We consider the primary
type-1 construction encountered in Eq. (4) and explore the
level statistics of large matrices. In Fig. 3, we see qualitatively
how the statistics change with x when N = 4000. We find
Poisson statistics at x ∼ 1 until a crossover to level repulsion
begins near x = N−0.5 and ends near x = N−1.5.

To verify that the crossover scaling inferred from Fig. 3
is correct for all N 
 1, in Fig. 4 we plot how the Brody
parameter ω [see Eq. (9)] evolves with x for various choices
of N . It turns out that ω(x,N ) can be fit to a relatively simple
function, for any N 
 1,

ω(x,N ) = α − β tanh

(
logN x − X0

Z

)
. (10)

The numbers (α,β,X0,Z) are fit parameters and take the values
(0.482,0.474,−1.04,0.157) in Fig. 4. Most important is that
for any N 
 1 we find X0 ∼ −1, which solidifies our claim
that the crossover occurs between x ∼ N−1.5 and x ∼ N−0.5.
Analytical arguments explaining this scaling are given in
Sec. IV.

D. Correlations between matrix parameters

In the eigenbasis of V , our parametrization of integrable
N × N matrices is given in terms of about 3N independent

FIG. 3. Crossover in coupling x of the level statistics of type-
1 integrable N × N matrices H (x) = xT + V , N = 4000. See
Sec. II A for their parametrization. V is a random matrix so that
H (x = 0) has level repulsion. Each distribution contains the levels
statistics of a single matrix H (x) at a given value of x. Note that some
level repulsion has set in by x = N−1. Each numerical distribution
is fit to the Brody function P (s,ω) from Eq. (9); for couplings
x = (1,N−1,N−1.5) the fits give ω = (0.01,0.30,0.94), respectively.
The solid lines are reference plots of a Poisson distribution P (s) = e−s

and the Wigner surmise P (s) = π

2 se− π
4 s2

. See Fig. 4 for more on this
crossover.

parameters (up to a change of basis). Through an explicit
construction of the probability density function of integrable
matrices obtained through basis-independent considerations,
Ref. [13] shows that for a typical integrable matrix, di and εi are

FIG. 4. Crossover in level statistics with variation of coupling
parameter x in type-1 integrable N × N matrices H (x) = xT + V ,
quantified by the Brody parameter ω(x,N ) from Eq. (9). The two
important limits are ω = 0 for Poisson statistics and ω = 1 for
random matrix (Wigner-Dyson) statistics. Each plotted value ω(x,N )
is computed for the combined level spacing distribution of several
matrices from the ensemble. We extract the crossover scale by
fitting ω(x,N ) to Eq. (10) (solid curve) to all curves simultaneously,
where most notably X0 ∼ −1 for all N investigated, indicating that
crossovers to Poisson statistics are centered at that value for integrable
matrices H (x) when H (x = 0) has level repulsion. The middle of the
crossover is indicated by a vertical line.
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FIG. 5. Level statistics of two N × N type-1 integrable matri-
ces H (x) = xT + V , x = 1 and N = 4000, when correlations are
introduced between dj and εj [see Eqs. (4), (8), and then Eq. (11)
for an example]. Note that in contrast to Fig. 3, these integrable
matrices exhibit level repulsion even for x = 1. Each of the two
curves is generated from a single matrix. One numerical curve
corresponds to the case when di = εi and the other is when di =∑4

k=1 Akhk(εi), where hk(z) is the kth order Hermite polynomial and
(A1,A2,A3,A4) = (2.3,2.16,−1.46,0.51), chosen randomly. Note
that the polynomial dependence weakens the level repulsion as
compared to the linear case. If higher order polynomials are included,
the level repulsion eventually gives way to Poisson statistics. The solid
curve is the Wigner surmise P (s) = π

2 se− π
4 s2

. See Fig. 7 for more on
this behavior.

indeed uncorrelated. We see in this section that if correlations
are introduced between εi and di , the statistics become
non-Poissonian. Small perturbations about these correlations,
however, bring the statistics immediately back to Poisson. In
this section, x = 1 for all matrices considered.

Continuing with type-1 matrices in the primary
parametrization [Eq. (4)] we recall that the eigenvalues ηλj

of
such a matrix H (x) = xT + V are given by Eq. (8),where the
λj = λj (x) are obtained from Eq. (7). As we saw in Sec. II C,
a typical choice of parameters will produce Poisson statistics,
but this changes if we let di be some smooth function of εi . The
simplest case is shown in Fig. 5 for which di = εi . As discussed
in Refs. [13,17], H (x) for this choice of parameters describes
a sector of the reduced BCS model and, independently, a
short range impurity in a weakly chaotic metallic quantum
dot studied in Refs. [24,25].

The level repulsion for this case can be understood by a
simple manipulation of Eq. (8) when di = εi :

ηλj
= x

N∑
i=1

εiγ
2
i + λjγ

2
i − λjγ

2
i

λj − εi

= −x

N∑
i=1

γ 2
i + λj ,

(11)

where we used Eq. (7). Then, when di = εi the eigenvalues
of H (x) are just the λj up to an additive constant. For the
case when εi are random matrix eigenvalues, Ref. [24] derives
the joint probability density of the set {εi,λj } and Ref. [25]
demonstrates that the λj are subject to the same level repulsion

FIG. 6. Illustrating that conclusions drawn about correlations be-
tween di (eigenvalues of V ) and εi (eigenvalues of E) are independent
of the particular choice of εi . Pictured are four numerically generated
nearest-neighbor spacing distributions P (s) for 5000 × 5000 type-1
matrices, x = 1, when the di and εi are either from a random matrix
(GOE) or are independently and identically distributed numbers
(i.i.d.) from a normal distribution. Each curve represents the level
statistics of a single matrix chosen from the type-1 ensemble. Level
repulsion survives in the two cases where di and εi are correlated
(V = E), even though the overall shape of P (s) depends on whether
E’s eigenvalues are GOE or i.i.d. numbers. The solid curves are
the usual Poisson distribution P (s) = e−s and the Wigner surmise
P (s) = π

2 se− π
4 s2

. We do not include plots for different choices of γi ,
which do not affect the general character of the results.

as the εi . Note also that Eq. (7) implies λj lie between
consecutive εi and therefore the eigenvalues in Eq. (11) can
have no crossings at any finite x. Numerically, we have found
that λj exhibit level repulsion for any choice of εi (see
Fig. 6). Figure 5 also shows the level repulsion induced when
di = ∑4

k=1 Akhk(εi), where hk(εi) is the kth order Hermite
polynomial and Ak are independent random numbers drawn
from a normal distribution. In this case, the level repulsion
is mitigated relative to the case of linear correlation. Sums to
higher orders of hk(εi) (or any higher order polynomial) will
eventually bring the statistics back to Poisson.

We now investigate the stability of induced level repulsion
in H (x) when correlations between di and εi are broken.
In Fig. 7, we let di = εi(1 + δDi) where Di is an O(1)
random number from a normal distribution and δ is a number
controlling the size of the perturbation. The crossover to
Poisson statistics as δ increases is very similar to that in Fig. 4,
which shows the crossover with x. In fact, we can fit the Brody
parameter ω(δ,N ) to

ω(δ,N ) = α − β tanh

(
logN δ − X0

Z

)
. (12)

Note that Eq. (12) is just Eq. (10) with the substitution x → δ.
We find that the crossover occurs over the range N−1.5 � δ �
N−0.5, indicating that any perturbation to correlations will
immediately destroy level repulsion as N → ∞. In partic-
ular, Fig. 7 gives (α,β,X0,Z) = (0.479,0.474,−1.03,0.169)
for linear correlations. This scaling is not restricted to
the case di = εi , as seen in Fig. 8 where we again
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FIG. 7. Variation in the Brody parameter ω(δ,N ) when di =
εi(1 + δDi) in the level statistics of N × N type-1 integrable matrices
H (x) for various N , x = 1. The number δ is a parameter controlling
the size of the perturbation from correlation, and Di is an O(1) random
number from a normal distribution. Note that the crossover in δ is very
similar to that in x shown in Fig. 4. The numerical curves are fit to
the function ω(δ,N ) given in Eq. (12) (solid curve), with a crossover
centered at X0 ∼ −1, indicating that crossovers to Poisson statistics
are centered at that value. Each plotted value ω(δ,N ) is computed for
the combined level spacing distribution of several matrices from the
ensemble. A vertical line indicates the center of the crossover on the
plot. For a similar plot for nonlinear functions di(εi), see Fig. 8.

FIG. 8. Variation in the Brody parameter ω(δ,N ) when di =∑4
k=1 Akhk(εi)(1 + δDi) in the level statistics of N × N type-1

integrable matrices H (x = 1) for various N . Here, δ quantifies the
deviation from the point δ = 0 where the parameters di and εi defining
the matrices are correlated, Di and Ak are O(1) random numbers from
a normal distribution, hk(z) is the kth order Hermite polynomial.
Each ω(δ,N ) is computed for the combined level spacing distribution
of several matrices from the ensemble. The crossover in δ is very
similar to that in x in Fig. 4 and in δ for linear correlations in
Fig. 7. Because the correlations are nonlinear, the level repulsion
is diminished in comparison to previous cases. Despite this, the
crossover still demonstrates the same scaling: fitting the data to
ω(δ,N ) given in Eq. (12) (solid curve), with a crossover centered at
X0 ∼ −1 (vertical line), shows that δ ∝ N−0.5 is enough for statistics
to revert to Poisson.

FIG. 9. The Brody parameter ω(m,N ) [see Eq. (9)] vs number
m of type-1 basis matrices Hi(x) in linear combination H (x) =∑m

i=1 diH
i(x) for various N , x = 1. The fits presume exponential

decay and are expressed in terms of two parameters (a,b) from
Eq. (14). For N = (500,1000,2000,4000) we find the decay constant
b = (1.15,1.07,1.14,1.21), indicating that we only need mmin ≈
log N conservation laws for Poisson statistics to emerge. Figures 15
and 16 show similar plots for higher types. Each plotted ω(m,N )
is computed for the combined level spacing distribution of several
matrices from the ensemble.

consider di = ∑4
k=1 Akhk(εi) and find a similar crossover with

(α,β,X0,Z) = (0.237,0.233,−0.914,0.206).

E. Basis matrices: How many conservation laws?

Here, we demonstrate that in order to obtain Poisson
statistics, the number m of linearly independent conservation
laws contained in an N × N integrable type-1 matrix can be
much less than N . Consider a combination of m basis matrices
Hi(x) defined in Sec. II A:

H (x) =
m∑

i=1

diH
i(x), m � N − 1. (13)

From the sum in Eq. (13), we can determine the number m

needed to obtain Poisson statistics. Individual basis matrices
Hi(x) will exhibit level repulsion, and it is only when an
integrable matrix is formed from an uncorrelated (w.r.t. εi , see
Sec. II D) linear combination of sufficiently many of them
will we observe Poisson statistics. Level repulsion in this
case can be qualitatively understood by reasoning that a basis
matrix only “contains” one nontrivial conservation law, itself.
More concretely, we see from Eq. (8) that the eigenvalues of
Hi(x) are xγ 2

i (λj − εi)−1, i.e., they are simple, mostly smooth
functions of λj , which exhibit level repulsion.

Figure 9 quantifies how many basis matrices m (i.e., con-
servation laws) are needed for Poisson statistics as a function
of N , the matrix size. We find numerically that the plots of the
Brody parameter ω [see Eq. (9)] versus the number m of basis
matrices in linear combination can be fit to a simple function

ω(m,N ) = a exp

[
− b

log N
m

]
, (14)
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where a and b are real constants. The fact that for different
values of N we find that b ∼ 1 supports the notion that we
need only about log N conservation laws in order to induce
Poisson statistics. We make this claim with caution because
we only have data for 500 � N � 4000, a range over which
log N does not vary significantly. More precisely, Fig. 9 shows
that having m = O(1) conservation laws is insufficient for
inducing Poisson statistics, and that a useful upper bound on
the lowest m necessary for Poisson statistics is mmin < O(Nα)
where 0 < α < 0.20. We obtain the factor of 0.20 by
rewriting Eq. (14) assuming the decay constant has power law
dependence on N instead of logarithmic dependence

ω(m,N ) = a exp
[
− c

Nα
m

]
. (15)

Numerically, we found that the parameter b in Eq. (14)
satisifies 1.07 � b � 1.21 when 500 � N � 4000. By
matching exponents between Eqs. (15) and (14) for
(b1,N1) = (1.21,500) and (b2,N2) = (1.07,4000), we find a
maximum exponent α = 0.198.

The basis matrices Hi(x) contained in any integrable H (x)
are linearly independent conservation laws. The observed
dependence of P (s) on the number m of basis matrices
in linear combination is reminiscent of the early work of
Rosenzweig and Porter [26] (RP) on the nearest-neighbor
spacing distribution of superpositions of independent spectra.
Although the spectra of basis matrices Hi(x) are not strictly
independent and are added together instead of superposed
(“superposed” here means “combined into a single list”), we
see the same qualitative behavior as described by RP: a single
basis matrix has level repulsion, but a sufficiently large number
combined have Poisson statistics. In the case of m independent,
superposed spectra with vanishing P (0) that contribute equally
to the mean level density, the value Pm(0) of the superposed
spectrum is given by the RP result

Pm(0) = 1 − 1

m
. (16)

We see in Fig. 10 that Pm(0) for m basis matrices in linearly
combination differs from the RP result for small m, as ex-
pected, but asymptotically approaches Eq. (16) for large m and
large N . Thus, it seems reasonable to conceptually understand
the emergence of Poisson level statistics in integrable matrices
H (x) as arising from the existence of conservation laws, whose
spectra are statistically independent for large m and N .

Integrable matrix spectra are similar in structure to those of
semiclassically integrable models studied by Berry and Tabor
[4]. Such spectra are also sums (or simple functions) of rigid
spectra, and they have Poisson nearest-neighbor level statistics
in the semiclassical limit.

Berry’s work [27] on semiclassical models shows that
longer range spectral statistics of integrable and chaotic models
deviate from the predictions of the Poisson ensemble [28] and
Gaussian random matrix theory, respectively. Similar behavior
occurs in purely quantum systems [29]. An example of such
a long range statistic is 2(L), the spectral variance of the
average number of eigenvalues contained in an interval of
length L. For independent random numbers with unit mean
spacing in an infinitely large spectrum, 2(L) = L. For a given
Hamiltonian, 2(L) will eventually saturate [30] at some Lmax,

FIG. 10. Plot of numerically generated Pm(0.025) for linear com-
binations of m type-1 basis matrices [Eq. (13)] for N = 100 and 2000
at x = 1. The solid curve gives the Rosenzweig-Porter prediction
of Pm(0) = 1 − 1/m for superpositions of m independent random
matrix spectra. Physically, the RP curve represents Pm(0) for the
combined spectra of m blocks of different (parameter-independent)
quantum numbers of a Hamiltonian. We note that although different
mechanisms are involved in the RP and integrable matrix approach
to Poisson statistics, the behavior of P (0) is similar. This gives
heuristic justification to why the existence of parameter-dependent
conservation laws in H (x) implies Poisson statistics. The sub-Poisson
behavior for N = 100 is a finite-size effect.

which depends on the system’s classical periodic orbits and the
energy scale.

We find no evidence of saturation of 2(L) in type-1
matrices on the ensemble average. Because we work with
finite-size spectra, we compare numerically generated 2(L)
to the corresponding Poisson ensemble averaged result for
lists of R independent numbers with unit mean spacing and
periodic boundary conditions


2
(R,L) = L

(
1 − L

R

)
. (17)

The overline indicates an average over the Poisson ensemble.
Because numerical unfolding (see Appendix) introduces spu-
rious effects in long range spectral observables, we instead
average over small regions containing R = 2

√
N eigenvalues

in the centers of N × N matrices where the level density is ap-
proximately constant. As seen in Fig. 11, the spectral variance
of type-1 matrices satisfies Eq. (17), even at relatively small N .

While there is no saturation on the ensemble average,
2(R,L) in the Poisson ensemble has large fluctuations for
L ∼ R/2. Figures 12 and 13 show how individual members
of the Poisson ensemble and individual type-1 matrices can
both exhibit saturation to values of 2(R,L) much smaller
than Eq. (17) and have a spectral variance greatly exceeding
Eq. (17). Type-M matrices, whose construction is detailed
in the next section, exhibit similar behavior in 2(R,L) for
small M , but we have not quantified how precisely 2(R,L)
changes with increasing M .

Recent work by Prakash and Pandey [31] shows that
a two particle noninteracting embedded matrix ensemble
[32] exhibits saturation of 2(L) on the ensemble aver-
age. Embedded matrix ensembles model the structure of
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FIG. 11. Ensemble averaged number variance 
2
(R,L) in N ×

N type-1 matrices H (x) = xT + V at x = 1 for N = 100 and 1000.
In order to achieve a constant mean level spacing normalized to
unity, we selected the middle R = 2

√
N eigenvalues from each matrix

and used periodic boundary conditions on the list of eigenvalues.
The results are in excellent agreement with the Poisson ensemble
predictions (solid curves), given by Eq. (17). There is no saturation
on the ensemble average. We averaged over 104 matrices for N = 100
and 500 matrices for N = 1000.

many-body systems by constructing eigenenergies out of
random k-body interactions between m particles k < m.
Reference [31] contains an extended discussion of saturation
and helpful references. We do not pursue spectral variance
further in this work.

III. STATISTICS OF INTEGRABLE MATRICES
OF HIGHER TYPES

A. Ansatz type-M families

We do not yet have a method for directly generalizing the
type-1 primary parametrization from Sec. II A to higher type

FIG. 12. Deviations from the Poisson ensemble average Eq. (17)

(solid curve) of number variance 
2
(200,L) from two members of the

Poisson ensemble. Shown are the number variances of two different
lists of 200 independent numbers from a flat distribution in order
to illustrate the large fluctuations of long-range spectral observables
in the Poisson ensemble. See Fig. 13 for similar behavior in type-1
spectra.

FIG. 13. Deviations from the Poisson ensemble average Eq. (17)

(solid curve) of number variance 
2
(64,L) from two members of

the N = 1000 type-1 ensemble. Shown are the number variances of
two matrices used in the ensemble average of Fig. 11. The saturation
observed in the more rigid of the two spectra is reminiscent of that
seen in members of the Poisson ensemble (see Fig. 12).

matrices that by definition have fewer commuting partners.
Instead, we present another parametrization that produces
a subset of integrable families of any type M � 1. The
construction is in terms of 3N + 1 real parameters so that in
choosing values for them one obtains a matrix H (x) = xT +
V with a desired number n of nontrivial commuting partners
(n = N − M) and no parameter-independent symmetries. As
in the type-1 primary parametrization, the parameters can be
traced back to eigenvalues of two commuting constant random
matrices and a random vector.

Here, we present the results; more details can be found in
Ref. [17] while the rotationally invariant construction is given
in Ref. [13]. Again in the diagonal basis of V , the most general
member of an ansatz type-M commuting family is

[H (x)]ij = xγiγj

(
di − dj

εi − εj

)
�i + �j

2
, i �= j

(18)

[H (x)]ii = di − x
∑
j �=i

γ 2
j

(
di − dj

εi − εj

)
1

2

(�i + �j )(�j + 1)

�i + 1
,

where

〈i|i〉 ≡
N∑

j=1

γ 2
j

(λi − εj )2
,

di = 1

x0

N−M∑
j=1

gj

〈j |j〉
1

λj − εi

, (19)

�i = ±
√√√√1 + 1

x0

N∑
j=N−M+1

Pj

〈j |j〉
1

λj − εi

.

This parametrization gives all type-1, -2, and -3 integrable
matrices and only a subset of such for higher types. We
call matrices obtained by this construction ansatz type M as
opposed to all type M , these two notions being equivalent for
M = 1,2,3.
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Basis-independent considerations from Ref. [13] identify λi

as eigenvalues of a matrix � selected from the GOE and γi as
selected from a δ(1 − |γ |2) distribution, as was the case for the
primary parametrization of type-1 matrices in Sec. II A. One
may alternatively select the εi as eigenvalues of a GOE matrix
E and from them derive the λi . We find that this choice has no
effect on the statistics. Unique to the ansatz parametrization are
the (N − M) parameters gi and M parameters Pi . Reference
[13] identifies these parameters as eigenvalues selected from
an N × N GOE matrix G [33] satisfying [G,�] = 0. The sign
of �i can be chosen arbitrarily for each i and each set of sign
choices corresponds to a different commuting family. The λi

by construction are solutions of the following equation with
arbitrary (but fixed) real x0 �= 0:

f (λi) ≡
N∑

j=1

γ 2
j

λi − εj

− 1

x0
= 0,

F (εi) ≡
N∑

j=1

1

〈j |j 〉
1

λj − εi

− x0 = 0.

(20)

The second line of Eq. (20) follows from the first by writing
both the partial fraction decomposition and factorized form
of F (z) = 1/f (z) and matching residues. Equations (19) and
(20) mean that ansatz type-M matrices are written in terms of
an auxiliary primary type-1 problem with parameter x0 and
(unnormalized) eigenstates |i〉 [see Eq. (7) and Ref. [13]].
Note the important distinction between x and x0, namely, that
x is free but x0 is fixed for a given family of commuting
matrices.

Due to the square root in the expression for �i [Eq. (19)],
a given set of Pi will typically result in a complex set of �i .
The matrix H (x) will subsequently be complex symmetric,
rather than real, although it will still satisfy all requirements of
integrability. Because in this work we study the eigenvalues of
real symmetric integrable matrices, we elect to reparametrize
�i in a way that guarantees they be real without awkwardly
scaling each set of Pi :

�i = ±
√√√√∏N

j=1(φj − εi)∏N
k=1(λk − εi)

, (21)

where the M φj are real parameters such that (upon ordering
εj and λj for argument’s sake) εj < φj < λj if x0 > 0 and
λj < φj < εj if x0 < 0. The resulting �i are real valued. As
there is no existing basis-independent interpretation for φj ,
we simply choose them from a uniform distribution on their
allowed intervals. We find that the choice of φi or Pi to generate
the �j has a numerically undetectable effect on the eigenvalue
statistics.

Varying parameters gj produces different matrices within
the same commuting family, while varying the remaining
parameters γi,λi,φi,x0 generate sets of matrices from different
families. A natural way to choose a basis for the ansatz type-M
commuting family is to define the n = N − M nontrivial
Hk(x) such that gj = δkj in Eq. (19) for 1 � j � N − M .

In other words,

Hk(x) = xT k + V k is given by Eq. (18) with

di → dk
i = 1

x0

1

〈k|k〉
1

λk − εi

(22)

for k = 1, . . . ,N − M . In particular,

V k = Diag
(
dk

1 ,dk
2 , . . . ,dk

N

)
. (23)

A general member of the commuting family is

H (x) =
N−M∑
k=1

gkH
k(x) (24)

up to a multiple of the identity trivial to the study of level
spacing statistics.

Ansatz type-M families have an exact solution in terms of a
single equation similar to Eq. (7) given in Ref. [17], which has
slight differences in notation as compared to here. To study
level statistics of ansatz matrices, we numerically diagonalize
them rather than use the computationally cumbersome exact
solution.

A fundamental difference between ansatz type-M matrices
and the primary type-1 parametrization is that the eigenvalues
of the matrix V in the former are heavily constrained by
Eq. (19), while in the latter they are free parameters. In
particular, as explained in Ref. [13] the primary type-1 V is
selected from the GOE, while the ansatz V is a certain primary
type-1 matrix evaluated at x = −x0, i.e.,

V (x0) = −x0TH1 + H1, (25)

where H1 has N − M arbitrary eigenvalues gi and M eigenval-
ues equal to zero. By the results of Sec. II, ansatz V = V (x0)
will typically have Poisson statistics. The resolution to this
apparent disconnect between the two parametrizations is that
for |x0|  1, V (x0) will have the eigenvalue statistics of H1.
We argue in Ref. [13] that the N − M gi are a subset of
eigenvalues of an N × N matrix from the GOE, so that for M

not too large and x0  1 we obtain Wigner-Dyson statistics in
ansatz V .

We then forgo studying crossovers in the coupling x of level
statistics of ansatz type-M matrices H (x) = xT + V because
ansatz V have Poisson statistics for typical parameter choices.
Instead, we focus on the behavior of the statistics with respect
to parameter correlations, the number M , and the number of
basis matrices. In all numerical work on ansatz matrices we
set x0 = 1, as this is a typical coupling value for the auxiliary
type-1 problem.

B. Correlations in ansatz parameters

Building on the results of Sec. II D, here we explore effects
of parameter correlations on the statistics in general type-M
ansatz matrices. Introducing correlations between di and εi in
this case is more complicated than in Sec. II D because the
di here are not all independent. Fortunately, Eq. (19) admits
a simple way to produce such correlations. As an example,
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FIG. 14. Variation in the Brody parameter ω(δ,N ) when gi =
λi(1 + δGi) in the level statistics of N × N ansatz type-M integrable
matrices H (x = 1) [Eq. (18)] for various N and M . Ordered pairs in
the legend indicate size and type (N,M) of the matrices, δ controls the
strength of the perturbation from the point δ = 0 where the parameters
gi and λi defining these integrable matrices are correlated, and Gi is
an O(1) random number from a normal distribution. The crossover
in δ for small M is similar to the primary type-1 crossovers in δ

and x seen in Figs. 4, 7, and 8. For larger M , correlations cannot be
introduced by this method [see Eq. (26)]. Despite type-M matrices
having fewer than the maximum number of conservation laws, the
crossover still demonstrates the scaling given in Eq. (12) (solid curves)
with a crossover centered around X0 ∼ −1 (vertical line). As before,
deviations from correlation of size δ ∝ N−0.5 are enough for the
statistics to become Poisson. Each plotted value ω(δ,N ) is computed
for the combined level spacing distribution of several matrices from
the ensemble. For the case of correlations in ansatz matrices, we
choose all �k > 0 in order to avoid pathological statistics in H (x).

consider the case when gj = λj :

di = 1

x0

N−M∑
j=1

λj − εi + εi

〈j |j〉
1

λj − εi

= 1

x0
εi

⎛
⎝N−M∑

j=1

1

〈j |j〉
1

λj − εi

⎞
⎠ + (const)

= εi

⎛
⎝1 − 1

x0

M∑
j=1

1

〈j |j〉
1

λj − εi

⎞
⎠ + (const),

(26)

where the second part of Eq. (20) was used. The sums in the
third line of Eq. (26) introduce a randomizing factor that has
a weak effect for small M but that destroys the correlation
between di and εi at intermediate values of M . Figure 14
shows the now familiar level statistics crossover in δ for ansatz
matrices of different size and type with gk = λk(1 + δGk),
where Gk is an O(1) random number chosen from a normal
distribution and δ a parameter controlling the size of the
perturbation. Just as in Sec. II D, the crossover to Poisson
statistics is centered about δ ∼ N−1. More generally, we can
induce level repulsion in ansatz type-M matrices if M  N

when gk = f (λk), a smooth function of λk .

5 10 15 20

0.0

0.2

0.4

0.6

0.8

M = 497
M = 480
M = 250

FIG. 15. Graph of the Brody parameter ω(m,N ) given by Eq. (9)
vs number m of ansatz type-M basis matrices Hk(x) [see Eq. (22)]
contained in linear combination H (x) = ∑m

k=1 gkH
k(x) for N = 500,

x = 1. The fits presume exponential decay and are expressed in terms
of two parameters (a,b) from Eq. (14). For M = (250,480) we find the
decay constant b = (1.13,1.04), indicating that we only need mmin ≈
log N conservation laws for Poisson statistics to emerge, independent
of type. We do not observe Poisson statistics for M = 497 because the
maximum number of nontrivial basis matrices is 3 in this case, and we
see that we need at least ∼15 conservation laws for Poisson statistics
to start emerging for N = 500. See Fig. 16 for a similar plot for
N = 2000 and Fig. 9 for the same concept in type-1 matrices. Each
plotted value ω(m,N ) is computed for the combined level spacing
distribution of several matrices from the ensemble.

C. Basis matrices: Ansatz higher types

We now generalize the type-1 results of Sec. II E to apply to
all ansatz type-M matrices. Recall that a general ansatz type-M
matrix H (x) = xT + V can be written as a linear combination
of basis matrices Hk(x) for which gi = δik [see Eq. (24)].

We see again in Figs. 15 and 16 that Poisson statistics
emerge for relatively small linear combinations of basis
matrices. Denoting m as the number of conservation laws
contained in a linear combination, i.e.,

H (x) =
m∑

i=1

gkH
k(x), m � N − M (27)

we investigate the Brody parameter ω(m,N ) from Eq. (14).
In Fig. 15, N = 500, ω(m,N ) decays to zero as a function
of m in nearly the same way for M = 470 as for M = 20.
It is only for very large M , such as M = 497, that level
clustering is forbidden, and this only because we can use a
maximum of three nontrivial basis matrices. Similar behavior
emerges for N = 2000 in Fig. 16. For all N and M tested
we find b ∼ 1 (with precise values given in the captions).
Therefore, we can estimate a similar bound as in Sec. II E for
the minimum number of conservation laws needed for Poisson
level statistics, namely, mmin < O(Nα) where 0 < α < 0.25,
obtained from the M = N/2 cases. Since m cannot exceed
the total number of conservation laws n = N − M for type-M
matrices, this provides a lower bound nmin = mmin < O(Nα)
consistent with mmin ≈ log N .
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FIG. 16. Brody parameter ω(m,N ) [see Eq. (9)] vs number m

of ansatz type-M basis matrices Hk(x) [see Eq. (22)] contained
in linear combination H (x) = ∑m

k=1 gkH
k(x) for N = 2000, x = 1.

The fits presume exponential decay and are expressed in terms of two
parameters (a,b) from Eq. (14). For M = (1000,1980) we find the
decay constant b = (0.99,1.03), indicating that we only need mmin ≈
log N conservation laws for Poisson statistics to emerge, independent
of type. We do not observe Poisson statistics for M = 1997 because
the maximum number of nontrivial basis matrices is 3 in this case,
and we see that we need at least ∼20 conservation laws for Poisson
statistics to start emerging for N = 2000. See Fig. 15 for a similar plot
for N = 500 and Fig. 9 for the same concept in type-1 matrices. Each
plotted value ω(m,N ) is computed for the combined level spacing
distribution of several matrices from the ensemble.

IV. ANALYTICAL RESULTS: PERTURBATION THEORY

Some of the numerical observations found in Secs. II
and III can be understood using perturbation theory in the
parameter x. We restrict our analysis to the primary type-1
parametrization because our arguments for this case are much
more transparent than for the ansatz construction. The analysis
for ansatz matrices is similar.

The eigenvalues ηm(x) of H (x) to first order in x are given
by the second equation in Eq. (4), where we set constant
|γj |2 = N−1 for clarity and to achieve proper scaling for large
N :

ηm(x) ≈ dm − x

N

∑
j �=m

(
dm − dj

εm − εj

)
. (28)

The first term comes from V , which has a Wigner-Dyson
P (s), and the second term from T , which is determined by
the integrability condition and whose level statistics we do
not control. Let us estimate the x at which the two terms in
Eq. (28) become comparable. Note that dk and εk both lie on
O(1) intervals so that T and V scale in the same way for large
N . Suppose εk are ordered as ε1 < ε2 < . . . < εN . When dk

and εk are uncorrelated dm − dj is O(1) when j is close to m,
i.e., when (εm − εj ) = O(N−1). The second term in Eq. (28)
is then xcm ln N , where cm = O(1) is a random number only
weakly correlated with dm. We performed simple numerical
tests that confirm this scaling argument.

If we now order dm, cm in general will not be ordered, i.e.,
if dm+1 > dm is the closest level to dm and therefore (dm+1 −
dm) = O(N−1), the corresponding difference (cm+1 − cm) =

O(1). The contributions to level spacings from the two terms
in Eq. (28) become comparable for x = xc ≈ 1/(N ln N ). It
makes sense that the second term introduces a trend towards
a Poisson distribution because it is a (nonlinear) superposition
of εk and dk , eigenvalues of two uncorrelated random matrices.
Thus, we expect a crossover from Wigner-Dyson to Poisson
statistics near x = xc. In our numerics, we observe a crossover
over the range N−1.5 � x � N−0.5 centered about xc ∼ N−1

likely because we do not reach large enough N to detect the
log component of the crossover.

This argument breaks down when dk = f (εk) since in this
case (dm − dj ) = O(N−1) when (εm − εj ) = O(N−1). The
two terms in Eq. (28) become comparable only at x = O(1);
moreover, the second term no longer trends towards Poisson
statistics. Relaxing the correlation between dk and εk with
dk = f (εk)(1 + δDk), Dk = O(1), and going through the
same argument, one expects a crossover to Poisson statistics
at δ = O(1/N ln N ) when x = O(1).

The level repulsion observed in basis matrices is a conse-
quence of the level repulsion implicit in the parameters λi ,
independent of the choice of εi [see the text below Eq. (11)
and Fig. 6]. Indeed, basis matrices Hi(x) in the primary type-1
parametrization (4) have eigenvalues ηi

j (x) = xγ 2
i (λj − εi)−1,

which is a smooth function of λj except near εi . The ηi
j (x)

therefore inherit the level repulsion of the λj . Analogous
reasoning applies to ansatz basis matrices.

V. ERGODICITY IN INTEGRABLE MATRIX ENSEMBLES

The discussion and figures in this section make frequent
reference to the “primary” construction of type-1 integrable
matrices and the “ansatz” construction of type-M integrable
matrices. These parametrizations are introduced in Secs. II A
and III A, respectively. Ensemble averages are taken with
respect to the probability distributions for integrable matrices
introduced in Ref. [13].

One of the goals of this work is to determine the extent
to which ensembles of integrable matrices are “ergodic.”
Intuitively, an ensemble is called ergodic if a single randomly
selected member has properties that are typical of the entire
ensemble. Bohigas and Gianonni [34] expound the subject in
generality for random matrices, and here we focus numerically
on the meaning of ergodicity with regards to the nearest-
neighbor level spacing distribution of integrable matrices.
Rigorous results on ergodicty for Gaussian ensembles and the
Poisson ensemble were derived by Pandey [35].

We distinguish between three separate ways of gener-
ating nearest-neighbor eigenvalue spacing distributions for
N × N integrable matrix ensembles. We call Pi,N,R(s) the
level spacing distribution, normalized to unity, of the ith
member of the ensemble obtained from a spectral region R

containing many eigenvalues (infinitely many as N → ∞).
The normalized distribution of spacings in R from all matrices
in the ensemble is called PN,R(s). A third way to characterize
spacing statistics is through the normalized distribution of the
j th eigenvalue spacing of all matrices in the ensemble, which
we call pN,j (s). Both the regions R and the numbers j are
stipulated to be far from the edges of the spectrum. In general,
Pi,N,R(s), PN,R(s), and pN,j (s) are distinct distributions.
Conceptually, PN,R(s) and pN,j (s) are ensemble properties
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FIG. 17. Demonstrating the stationary property (29) in type-1
N × N matrices H (x), x = 1 in the primary parametrization. The
four numerical curves show the statistics pN,j (s) for (N,j ) = (10,3),
(10,5), (80,10), and (80,40), each containing 105 eigenvalue spacings.
The statistics are nearly independent of j for N = 10, and for N = 80
there is no perceptible difference between j = 10 and 40. The solid
line is a Poisson distribution p(s) = e−s . Stationarity is shown to hold
also for type-M ansatz matrices in Fig. 18.

while Pi,N,R(s) characterizes the spectrum of an individual
matrix. In the following definitions, we assume that the spacing
distributions converge to a well-defined limit as N → ∞,
unlike known pathological examples such as the semiclassical
spacing distribution of a harmonic chain [4]. This assumption
is supported numerically.

We now describe a precise notion [35] of ergodicity that
characterizes the limiting behavior of Pi,N,R(s), PN,R(s), and
pN,j (s) as N → ∞. First, we must determine whether pN,j (s)
is asymptotically stationary, i.e., independent of j :

lim
N→∞

pN,j (s) = p(s). (29)

In the case of type-1 matrices in the primary parametrization,
we see in Fig. 17 that the graphs of two different p10,j (s)
closely resemble those of two different p80,j (s), the latter of
which are clearly Poisson. The same is true for ansatz matrices
of any type, but the convergence to a Poisson distribution does
not become apparent until N = 300 as in Fig. 18. We conclude
that Eq. (29) is true for integrable matrices.

We now turn to the notion of spectral averaging, i.e., the
function Pi,N,R(s). If Eq. (29) holds, the ensemble averaged
Pi,N,R(s), called PN,R(s), satisfies

lim
N→∞

PN,R(s) = p(s), (30)

independent of the region R. In practice, we numerically
unfold the spectrum (see Appendix) in order to take into
account any effects a nonstationary mean level spacing can
have on Pi,N,R(s), which characterizes fluctuations about the
mean level spacing. In this work, we say integrable matrices
are spectrally stationary if

lim
N→∞

Pi,N,R(s) = Pi(s), (31)

and ergodic with respect to nearest-neighbor level statistics if

Pi(s) = p(s). (32)

FIG. 18. Demonstrating the stationarity property (29) in ansatz
type-150 N × N matrices H (x), x = 1 and N = 300. The two
numerical curves show the statistics pN,j (s) for (N,j ) = (300,150)
and (300,20), each containing ∼104 eigenvalue spacings. The
statistics are nearly independent of j , although higher N would be
needed in order for the differences to disappear. The solid line is a
Poisson distribution p(s) = e−s .

Two points are to be made about Eqs. (31) and (32). First,
Eq. (31) is similar in spirit to, but not implied by, Eq. (29).
Figures 19–22 show for various integrable matrices, basis
matrices included, that the level statistics from a single large
matrix Pi,N,R(s) do not depend on the spectral region R used.

Second, the limiting distribution is independent of the index
i, which means that a single matrix’s spacing distribution
is typical of the ensemble. In rigorous work on Gaussian
ensembles [35], this is proved by showing the ensemble

FIG. 19. Demonstrating spectral stationarity [Eq. (31)] in type-1
matrices. Shown are the level statistics Pi,N,R(s) of a single (ith
member of the ensemble) type-1 integrable matrix H (x), x = 1
and N = 20000, for different regions R of its spectrum containing
4000 eigenvalues each. The inset shows the density of states of this
matrix and indicates which numerical curve corresponds to which
region R. The distributions Pi,N,R(s) shown are independent of R,
indicating that type-1 matrix spectra are stationary with respect to
nearest-neighbor level statistics. Noting that these distributions are
Poisson, Pi,N,R(s) ≈ e−s (solid curve), and comparing to Fig. 23
which gives PN ′,R(s) ≈ e−s for N ′ = 2000, we see that ergodicity
[Eq. (32)] is satisfied for type-1 integrable matrices.
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FIG. 20. Level statistics Pi,N,R(s) of a single integrable matrix
H (x), x = 1, N = 20 000, and M = 10 000, for different regions R

of its spectrum [the subscript i indicates H (x) is the ith matrix in
the ensemble] containing 4000 eigenvalues each. Inset: the density of
states of H (x) showing the correspondence between the distributions
and regions R. The distributions Pi,N,R(s) are independent of R,
indicating that type-M matrix spectra are stationary with respect
to nearest-neighbor level statistics, i.e., Eq. (31) holds. Noting
that these distributions are Poisson, Pi,N,R(s) ≈ e−s (solid curve),
and comparing to Fig. 24 which gives PN ′,R(s) ≈ e−s for N ′ =
2000, M ′ = 1000, we verify the ergodic property (32).

averaged variance of Pi,N,R(s) vanishes as N → ∞. In this
work, we compare numerically generated graphs of spectral
spacing distributions to ensemble averaged ones for large N .
By comparing Figs. 23 and 24 to Figs. 19 and 20, we see that,
for large N , Pi,N,R(s) → p(s).

FIG. 21. Demonstrating spectral stationarity [Eq. (31)] in level
statistics of primary type-1 basis matrices (defined in Sec. II A).
Shown are the level statistics Pi,N,R(s) of a single type-1 integrable
basis matrix, x = 1 and N = 20 000, for different regions R of its
spectrum [the subscript i indicates H (x) is the ith matrix in the
ensemble]. Each spectral region R contains 4000 eigenvalues. The
inset shows the density of states of this matrix and indicates which
numerical curve corresponds to which region R. The distributions
Pi,N,R(s) shown are independent of R, indicating that type-1 basis
matrix spectra are stationary with respect to level statistics. Even
though there is a band gap, the level statistics on either side of the gap
are the same. The solid curve is the Wigner surmise P (s) = π

2 se− π
4 s2

.

FIG. 22. Demonstrating spectral stationarity [Eq. (31)] in level
statistics of ansatz basis matrices (defined in Sec. III A). Shown are
the level statistics Pi,N,R(s) of a single type-10 000 integrable ansatz
basis matrix, x = 1 and N = 20 000, for different regions R of its
spectrum [the subscript i indicates H (x) is the ith matrix in the
ensemble]. The inset shows the density of states of this matrix and
indicates which numerical curve corresponds to which region R.
The distributions Pi,N,R(s) shown are independent of R, indicating
that type-M basis matrix spectra are stationary with respect to level
statistics. Even though there is a band gap, the level statistics on either
side of the gap are the same. The solid curve is the Wigner surmise
P (s) = π

2 se− π
4 s2

. Regions I–III use 4000 eigenvalues apiece, while
region IV uses only 3000 and gets to within 1% of the spectrum’s
edge.

The properties of stationarity and ergodicity are useful if
they set in quickly for small N because smaller matrices
are more accessible both analytically and computationally.
A classic example in Gaussian random matrix theory is the
Wigner surmise, derived from 2 × 2 matrices (see Fig. 1),
which is extremely useful for characterizing p(s) in the GOE.

FIG. 23. Demonstrating ergodicity [Eq. (32)] in type-1 matrices
(continuing from Fig. 19). A plot of lnPN,R(s), N = 2000 for 100
type-1 matrices in the primary parametrization. We do not specify
the spectral region R because Fig. 19 shows that the statistics are
independent of R. The solid line is f (s) = −s, indicating thatPN,R(s)
is indeed Poisson for N = 2000 type-1 matrices.
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FIG. 24. Demonstrating ergodicity [Eq. (32)] in type-M ansatz
matrices (continuing from Fig. 20). A plot of lnPN,R(s), N = 2000
for 100 type M = 1000 matrices in the ansatz parametrization. We
do not specify the spectral region R because Fig. 20 shows that the
statistics are independent of R. The solid line is f (s) = −s, indicating
that PN,R(s) is indeed Poisson for N = 2000 type-1000 matrices.
Inset: log-log plot of the same data.

We have seen that the nearest-neighbor level statistics of
integrable matrices H (x) are generally stationary and ergodic,
but the property does not set in for small N as quickly as it
does for Gaussian random matrices. As an example, Figs. 25
and 26 show p3,2(s), the distribution of the second eigenvalue
spacing for N = 3, M = 1. This distribution differs markedly
from a Poisson distribution, especially in the small s and large
s regions. For small s, there is slight level repulsion and for
large s, Fig. 26 shows that the decay of p3,2(s) is a power
law. Numerical data generated in Secs. II and III used both
Pi,N,R(s) and PN,R(s) to represent level statistics of integrable
matrices. The results of this section show that for large N , it
is valid to treat these two distinct distributions as equal.

FIG. 25. Plot of the statistics p3,2(s), the second spacing of 106

type-1 integrable matrices H (x) of size N = 3 with x = 1. The
distribution is not Poisson (solid line) and actually has a power law
tail (see Fig. 26 for more on the tail). In order to observe the limit
p(s) of type-1 integrable matrices, defined in Eq. (29), we need to go
to larger N as in Fig. 17.

FIG. 26. Log-log plot of the tail of the distribution p3,2(s) shown
in Fig. 25, the statistics of the second spacing of 106 primary type-
1 integrable matrices H (x) of size N = 3 with x = 1. The linear
fit f (z) = −3.15z + 0.02 shows that this portion of the tail of the
distribution p3,2(s) follows a power law s−α with exponent α ≈ 3.15.
Because the distribution pN,j (s) transitions to Poisson for large N ,
as evidenced by Fig. 17 for type-1 primary matrices and Fig. 18 for
type-M ansatz matrices, we conclude that exponential behavior in the
far tail of pN,j (s) likely emerges only in the limit N → ∞.

VI. CONCLUSION

Just as ensemble averages in ordinary RMT are used to
predict the average behavior of generic quantum systems, there
now exists an analogous ensemble theory- integrable matrix
theory, which we have used to firmly establish the source
of Poisson statistics and exceptions in quantum integrable
models.

The goal of this work was to demonstrate two properties of
ensembles of type-M integrable N × N matrices linear in a
coupling parameter H (x) = xT + V as N → ∞:

(1) The nearest-neighbor spacing distribution P (s) is
Poisson, P (s) = e−s , for generic choices of parameters for
almost all M . There are cases of level repulsion, but they
correspond to sets of measure zero in parameter space.

(2) Integrable matrix ensembles are both stationary and
ergodic with respect to nearest-neighbor level statistics as
defined in Sec. V. It remains to show whether this ergodicity
extends to longer range spectral statistics, such as the number
variance 2(L).

We find that integrable N × N matrices H (x) have Poisson
statistics as long as the number of conservation laws exceeds
nmin ≈ log N (or at most nmin < N0.25). Basis-independent
considerations require (for type-1) GOE statistics at a fixed
x0, but we find that Poisson statistics return at deviations
δx ∼ N−0.5. Correlations between otherwise independent
parameters also induce level repulsion, but Poisson statistics
again return at O(N−0.5) deviations from such correlations.
In both cases, the crossover occurs roughly over the range
N−1.5 � δ � N−0.5.

Some parameter choices produce matrices that correspond
to sectors of certain known quantum integrable models,
although general parameter choices do not map to known
models. Most important is that, in addition to the linearity
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in x condition, the ensembles of matrices studied in this work
are only constrained by symmetry requirements just like the
Gaussian random matrix ensembles. The only difference here
is that in the integrable case there are many more symmetries,
and they are parameter dependent. We therefore expect our
results to apply generally to quantum integrable models with
coupling parameters.

Although we justified the numerical results to a certain
degree using perturbation theory, an analytic justification
for Poisson statistics for integrable matrices is still lacking.
Given the relatively simple construction of integrable matrices
through basis-independent relations (i.e., matrix equations)
involving familiar RMT quantities such as GOE matrices and
random vectors [13], we surmise that an analytic demonstra-
tion of our numerical results might be feasible, especially in
the type-1 case [see, e.g., the discussion below Eq. (11) and
Refs. [24,25]].

It is interesting to note that many-body localized [36]
(MBL) systems are also expected to display Poisson level
statistics [37,38], and there exist random matrix ensembles
which model localization and its statistical signatures [39,40].
Such ensembles are basis dependent, which is natural because
localization is a basis-dependent property. The commutation
requirements of integrable systems, however, are basis in-
dependent, and therefore so is the accompanying integrable
matrix theory. A priori, many-body localization and inte-
grability are two independent concepts [41]. Despite this
fact, integrable matrices do exhibit a parameter-dependent
localization property [43] in which almost all eigenstates of the
matrix H (x) = xT + V are localized in the basis of V for all
values of x. The stability of this property when a random matrix
perturbation is added to H (x), including the possibility of a
multifractal phase accompanying the localized and delocalized
regimes [40], is the subject of future study.
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APPENDIX: UNFOLDING SPECTRA

The eigenvalue spacing distributions P (s), P(s), and p(s)
(see Sec. V for definitions) considered in the level statistics
data in this work characterize the fluctuations of spacings
about their local means. Unfortunately, a nonconstant density
of states renders the actual spacings inadequate for measuring
these fluctuations. Unfolding the spectrum of a matrix refers

to the replacement of the actual eigenvalues ηj with a new
set of numbers with unit mean spacing, but that preserve the
character of local fluctuations.

We employ a simple method that essentially approximates
the inverse density of states (i.e., mean level spacing) of a
given matrix through linear interpolations. First, we write
the eigenvalues ηj in increasing order, and express the j th
eigenvalue ηj in terms of the actual spacings Sk:

ηj = η1 +
j−1∑
k=0

Sk. (A1)

No unfolding has taken place as of yet, i.e., this is an exact
expression. Now, we postulate that we can write the kth spacing
Sk as the product of a smoothly varying local mean spacing sk

and an O(1) fluctuating number ρk = 1 + δk:

ηj = η1 +
j−1∑
k=0

sk(1 + δk) = η1 +
j−1∑
k=0

skρk. (A2)

Note that the ρk have the form of fluctuating numbers with
unit mean; they will therefore serve as our unfolded spacings.
By their definition we can write them as

ρk = ηk+1 − ηk

sk

. (A3)

Therefore, if we calculate the smoothly varying mean level
spacings sk from the given data, we can easily find the unfolded
spacings. The ambiguity in our particular unfolding procedure
lies in the calculation of sk because its definition involves
choosing how many spacings over which to average, a quantity
we call 2r:

sk = ηk+r − ηk−r

2r
. (A4)

It is important to realize that sk is just the inverse of the density
of states. The parameter r is arbitrary except that it must satisfy
two conditions:

(1) r must be large enough to contain many eigenvalues,
which is necessary in order for sk to be a smooth function of k.

(2) r cannot be too large or else sk will actually smooth
over features in the true inverse density of states.

In practice, we have chosen r to be the floor function of the
square root of the maximum number of eigenvalue spacings ν

taken from each matrix. To avoid edge effects we have selected
ν = 0.8N . Then, r = �√0.8N�. Here are some typical values
of r used in this paper:

N = 500, r = 22,

N = 1000, r = 31,

N = 2000, r = 44. (A5)

Such a choice of r grows with N but also is small compared
with N . In other words, we satisfy the requirement 1  r  N

as N → ∞.
For even the best choices of r , our unfolding method can

still fail if the inverse density of states varies too quickly or
has singularities. Such a situation arises, for example, in small
linear combinations of basis matrices [defined in Eqs. (6) and
(24)] for any type. Consider, for example, the insets of Figs. 21
and 22 that show the densities of state of integrable basis

032106-15



SCARAMAZZA, SHASTRY, AND YUZBASHYAN PHYSICAL REVIEW E 94, 032106 (2016)

matrices. The large portions of the spectra where the density of
states D(η) drops to zero is typical of small linear combinations
of basis matrices. This behavior is generic for basis matrices
of all types, and it can be understood by first considering the
expression for the eigenvalues of a type-1 basis matrix (in the
primary parametrization) where dk = δk,q :

ηj = γ 2
q

λj − εq

. (A6)

As both the λj and εj have finite support, ηj in this case will
only approach within a finite distance of zero.

An analogous argument exists for basis matrices in the
ansatz parametrization for any type. For linear combinations
of a small number of basis matrices, such gaps may overlap,
but a mean level spacing sk will still be ill-defined in many
parts of the spectrum. As the number of basis matrices in the
linear combination increases, the gaps smooth out until sk is
well defined everywhere.

Given such gaps in spectra, no choice of r will give the
consistent level statistics. This can be seen numerically by
varying r and observing that P (s) is strongly dependent on r .
We must then avoid regions of the spectrum where 1/D(η) is
poorly behaved.

The difficulty in this task is to automate it so that we can
unfold many matrices in succession without having to examine
each one by hand. Our solution is to notice that if there are
a small number of spacings in the spectrum that are many
times the local mean spacing, the standard deviation of the
set of actual spacings will be large. If the standard deviation
(normalized by the mean) of the actual spacings is near unity,
we can be sure that there are no huge jumps such as the ones
in Figs. 21 and 22.

With these considerations, here is our unfolding algorithm:

(i) Calculate SD = standard deviation

mean
of the middle

(80% + 2r) of the spectrum’s actual spacings. If SD < 1.2,
unfold this region of the spectrum with r = �√0.8N� and
continue to next matrix. If not, continue to step (ii).

(ii)) Shift the region of the spectrum in question to the right
by 10 eigenvalues.

(iii) If ηmax > η0.9N , use 10 fewer spacings AND restart
ηmin = η0.1N

(iv) Calculate SD. If SD > 1.2, repeat back to step (ii).
If SD < 1.2, unfold this region of the spectrum with r =
�√0.8N� and continue to next matrix.

This procedure allows for fewer than 0.8N of the spacings
to be used, but we are guaranteed to only investigate regions
of the spectrum where the mean level spacing accurately
represents the size of a typical spacing. Once a sufficiently
large number of basis matrices are used in linear combination,
the entire middle 80% of the spectrum behaves smoothly and
the procedure given above terminates at step (i) for each matrix.
The choice of a maximum SD of 1.2 is somewhat arbitrary,
and in some parts of this work we used 1.5 in order to increase
computation speed (i.e., keep more eigenvalue spacings per
matrix). Apart from slight differences in distributions, our
results are unaffected by this arbitrariness.

The unfolding procedure used in this paper assumes that
the level statistics are the same in all regions of the spectrum,
excluding the edges. Although in principle a Hermitian matrix
can have different spectral statistics in different parts of its
spectrum, we numerically showed in Sec. V that the statistics
are the same in all parts of the spectrum of integrable matrices
H (u), i.e., they are translationally invariant.
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