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We obtain a complete solution for the mean-field dynamics of the BCS paired state with a large, but finite
number of Cooper pairs in the nonadiabatic regime. We show that the problem reduces to a classical integrable
Hamiltonian system and derive a complete set of its integrals of motion. The condensate exhibits irregular
multifrequency oscillations ergodically exploring the part of the phase space allowed by the conservation laws.
In the thermodynamic limit, however, the system can asymptotically reach a steady state.
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The study of the dynamics of the BCS superconductors
has a long history.1 Early attempts to describe nonstationary
superconductivity were based on the time-dependent
Ginzburg-Landau �TDGL� equation,2–4 which reduces the
problem to the time evolution of a single collective order
parameter ��t�. The TDGL approach is valid only provided
the system quickly reaches an equilibrium with the instanta-
neous value of ��t�, i.e., a local equilibrium is established
faster than the time scale of the order parameter variation,
���1/�. This requirement limits the applicability of the
TDGL to special situations where pair breaking dominates,
e.g., due to a large concentration of magnetic impurities. An
alternative to TDGL is the Boltzmann kinetic equation5,6 for
the quasiparticle distribution function coupled to a self-
consistent equation for ��t�. This approach is justified only
when external parameters change slowly on the �� time
scale, so that the system can be characterized by a quasipar-
ticle distribution.

Is it possible to describe theoretically the dynamics of a
BCS paired state in the nonadiabatic regime when external
parameters change substantially on the �� time scale? In par-
ticular, an important question is whether, following a sudden
perturbation, the condensate reaches a steady state on a ��

time scale or on a much longer quasiparticle energy relax-
ation time scale ��. In the nonadiabatic regime both TDGL
and the Boltzmann kinetic equations fail and one has to deal
with the coupled coherent dynamics of individual Cooper
pairs. Recent studies7–10 of this outstanding problem were
motivated by experiments on fermionic pairing in cold
atomic alkali gases.11,12 The strength of pairing interactions
in these systems can be fine tuned rapidly by a magnetic
field, making it easier than in metals to access the nonadia-
batic regime experimentally.

The main result of the present paper is an explicit general
solution for the dynamics of the BCS model, which describes
a spatially homogenous condensate at times t���. We em-
ploy the usual BCS mean-field approximation, which is ac-
curate when the number of Cooper pairs is large.13,14 It turns
out that the mean-field BCS dynamics can be formulated as a
nonlinear classical Hamiltonian problem. We obtain the

exact solution for all initial conditions and a complete set of
integrals of motion for the mean-field BCS dynamics.

In this paper we assume that the number of Cooper pairs
in the system is arbitrary large, but finite. In this case the
typical evolution at times t��� is quasiperiodic with a large
number of incommensurate frequencies. The condensate ex-
hibits irregular multifrequency oscillations ergodically ex-
ploring the part of the phase space allowed by the conserva-
tion laws. The system returns arbitrarily close to its initial
state at irregular time intervals. However, the return time
diverges in the thermodynamic limit for physical initial con-
ditions, while the solution asymptotically reaches a steady
state on the �� time scale. The system thermalizes on a much
larger energy relaxation time scale ��.

15

The dynamics of the BCS condensate following a sudden
change of external parameters has been previously discussed
by a number of authors.7–10,14,16–18 Most notably, a linear
analysis around the BCS ground state has been
performed14,16 and some simple particular solutions for the
nonlinear mean-field dynamics in the context of supercon-
ductivity have been reported.7 We discuss below how these
results fit into the general picture.

We begin our description of the nonequilibrium Cooper
pairing in the nondissipative regime, t���, with the BCS
model.19–21

ĤBCS = �
j,�

� jĉ j�
† ĉj� − g�

j,q
ĉj↑

† ĉj↓
† ĉq↓ĉq↑, �1�

where � j are single-particle energies. The pairing is between
time reversed states �j↑ � and �j↓ �.22 Our goal is to determine
the evolution of a state that was driven out of equilibrium at,
say, t=0.

There are several equivalent ways to derive mean-field
equations of motion. One can start with the BCS product
state, � j�Uj�t�+Vj�t�cj↑

† ĉj↓
† ��0�, and use Bogoliubov–de

Gennes equations for the time-dependent amplitudes Uj�t�
and Vj�t�. Alternatively, one can study the evolution
of the normal, Gj�t�=−i	�ĉj↑�t� , ĉj↑

† �t���, and anomalous,
Fj�t�=−i	�ĉj↑�t� , ĉj↓�t���, Green’s functions at coinciding
times.16
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The most convenient way for us approach to the BCS
mean-field dynamics is based on the Anderson pseudospin
representation.14 Within this approach the mean-field equa-
tions are Hamiltonian equations of motion for a classical spin
chain. Pseudospin-1 /2 operators are related to fermion cre-

ation and annihilation operators via K̂j
z= �n̂j↑+ n̂j↓−1� /2 and

K̂j
−= ĉj↓ĉj↑= �K̂j

+�†. Pseudospins are defined on empty and
doubly occupied �unblocked� single-particle orbitals � j. Sin-
gly occupied orbitals are decoupled from the dynamics. For
n unblocked orbitals the Hamiltonian has the form

ĤBCS = �
j=0

n−1

2� jK̂j
z − g�

j,q
K̂j

+K̂q
−. �2�

The mean-field approximation is accurate13,14 in the
thermodynamic limit due to the infinite range of interactions
between spins in the Hamiltonian �2�. Therefore, the
effective field seen by each pseudospin in �2� can be
replaced with its quantum mechanical average, b j�t�
= (−2�x�t� ,−2�y�t� ,2� j), where ��t�
�x�t�− i�y�t�

g� j	K̂j

−�t�� is the BCS gap function. In this approximation,

each spin evolves in the self-consistent field: K̂
˙

j

= i�ĤBCS ,K̂ j��b j �K̂ j. Taking the quantum mechanical av-
erage of these equations with respect to the time-dependent

state of the system, we obtain for s j�t�= 	K̂ j�t��,

ṡ j = b j � s j, b j = �− 2gJx,− 2gJy,2� j�, J = �
q=0

n−1

sq. �3�

The components of the classical spins sj
z�t� and sj

±=sj
x± isj

y

are related to Bogoliubov amplitudes and equal times

Green’s functions as 2sj
z= �Vj�2− �Uj�2, sj

−= ŪjVj and Gj�t�
= isj

z�t�, Fj�t�= isj
−�t�, respectively. Evolution equations �3�

conserve the square of the average for each spin: ds j
2 /dt=0.

If the spins initially were in a product state, s j
2=1/4. Note

also that ��t�=gJ−�t�.
One can check that Eqs. �3� are equations of motion for a

classical spin Hamiltonian

HBCS = �
j=0

n−1

2� jsj
z − g�

j,q
sj

+sk
−. �4�

It means that Eqs. �3� are Hamilton equations ṡ j = �HBCS ,s j

derived from Hamiltonian �4� using the usual angular mo-
mentum Poisson brackets

�sj
a,sk

b
 = − 	abc
 jksj
c, �5�

where a, b, and c stand for spatial indexes x, y, and z. The
classical model �4� can be obtained from its quantum coun-
terpart �2� by replacing operators with classical dynamical
variables and commutators with Poisson brackets.

Both the classical �4� and quantum models �1� and �2� are
integrable23–25 �see also Ref. 26 and references therein�. To
show this, one can introduce a vector function �Lax vector�
of an auxiliary parameter u

L�u� = −
ẑ

g
+ �

j

s j

u − � j
, �6�

where ẑ is a unit vector along the z axis. Poisson brackets
between components of L�u� at different values of u can be
evaluated using Eq. �5�.

�La�v�,Lb�w�
 = 	abc
Lc�v� − Lc�w�

v − w
. �7�

�Relations �7� hold for each term in �6� separately; all terms
Poisson commute with each other.� It follows from Eq. �7�
that the lengths of the Lax vector at different values of u
Poisson commute are

�L2�v�,L2�w�
 = 0. �8�

The scalar function L2�u� can be represented in the form

L2�u� =
1

g2 + �
j=0

n−1 � 2Hj

u − � j
+

s j
2

�u − � j�2� , �9�

where

Hj = �
k=0

n−1

�
s j · sk

� j − �k
−

sj
z

g
. �10�

Since Eq. �8� holds for any v and w, all Hj Poisson com-
mute with each other. Therefore, each Hj, as well as any
algebraic combination of Hj, defines a classical model27 that
has n degrees of freedom �n classical spins� and n integrals
of motion �including itself� and thus is integrable in the usual
sense.28 Note that the sum of Hj is proportional to the z
component of the total spin J, therefore Jz is conserved by all
Hj and their combinations. Moreover, the following identity
follows from Eqs. �4� and �10�:

HBCS = − g�
j

� jHj + const. �11�

This implies that the classical BCS model �4� Poisson-
commutes with all Hj’s and thus is also integrable. Equations
�10� and �11� can be straightforwardly quantized by replac-

ing s j→K̂ j. The resulting operators Ĥj all pairwise commute,
thus showing the integrability of quantum models �1� and
�2�.

To obtain the general solution for the mean-field dynam-
ics of the BCS model �1�, we follow the method of Ref. 29
and introduce n−1 separation variables uk as zeros of
L−�u�=Lx�u�− iLy�u�, i.e., � jsj

− / �uk−� j�=0.
Equations of motion for the variables uk are30

u̇k = 2i�Q2n�uk� �
m�k

�uk − um�−1, �12�

where Q2n�u� is the spectral polynomial defined as

Q2n�u� = g2L2�u��
j

�u − � j�2. �13�

By Eq. �9�, the coefficients of Q2n�u� depend only on the
integrals of motion Hj.
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Equations �12� constitute the well-known Jacobi’s inver-
sion problem solvable in terms of hyperelliptic theta
functions.31 Here we outline the final answer; the details will
be reported elsewhere.30 Klenian � and � functions of genus
G �in our case G=n−1� are defined as

�l�x� =
� ln ��x�

�xl
, ��x� = �

m�ZG

exp�Sm�x�/2� ,

Sm�x� = x · �
−1x + 2i��m · �m + 
−1x · m� , �14�

where the sum is over all G-dimensional integer vectors m,
�=
�
−1, and 
, 
�, and � are G�G matrices of periods
�see below�. The solution is

sj
−�t� = 	ĉj↓�t�ĉj↑�t�� = J−�t�r�� j,t��

k�j

� j

� j − �k
, �15�

��t� = gJ−�t� = g�
j

sj
−�t� = cne−i�t��x + d�

��x − d�
. �16�

Here xT= i�c1 ,… ,cn−2 ,2t+cn−1�; d is a vector of constants;
�=gJz+� j� j; c1 ,… ,cn are constants fixed by the initial con-
ditions, and

r�u,t� = 1 − �
k=1

n−1

��k�x + d� − �k�x − d� + ak�uk−n. �17�

Constants ak, the matrices of periods, constant vector d, are
all uniquely determined32 by the spectral polynomial Q2n�u�,
i.e., by integrals of motion.

The evolution of s j�t�= 	K̂ j�t�� described by the general
solution is typical of an integrable system.28 It is character-
ized by n frequencies, which in our case can be determined30

in terms of integrals of motion, and are typically incommen-
surate. Note that ���t�� contains only n−1 frequencies. The
typical dynamics is stable against perturbations destroying
integrability.28

Now let us discuss some particular solutions. There are
two types of equilibrium states that play an important role in
the dynamics. In normal states all spins are parallel to the z
axis, 2s j

z= ±1. Since 2s j = 	n̂j�−1, these states correspond to
the ground state and excitations of the single-particle part of
the Hamiltonian �1� �Fermi gas�. They are stationary within
the mean-field dynamics �3�. For a finite system, they are
nonstationary for the quantum Hamiltonian �1� and their
short time dynamics is entirely driven by quantum correc-
tions �cf. Refs. 33 and 34�.

The second type of equilibrium states are anomalous
ones, which correspond to the BCS ground state and excita-
tions. These states are obtained by aligning each spin in �4�
self-consistently along the effective magnetic field acting on
it. The self-consistency condition is the BCS gap equation.

As s j = 	K̂ j�, one can obtain the BCS wave function and en-
ergy spectrum from anomalous equilibrium configurations of
classical spins s j.

It turns out that equilibrium states are a part of a more
general scheme when the dynamics of n spins degenerates to
that of m�n collective spins �m-spin solutions� governed by

the same Hamiltonian �4� only with m spins and new param-
eters � j instead of � j. Normal and anomalous states corre-
spond to zero- and one-spin solutions, respectively. To con-
struct m-spin solutions one has to take the Lax vector �6� to
be proportional to that of a system with m spins tk,
L�u�= �1+� jbj / �u−� j��Lt�u�, where bj are time-independent
constants, and Lt�u�=−ẑ /g+�ktk / �u−�k�. Then, 2�n−m� of
2n, typically distinct, roots of the spectral polynomial Q2n�u�
become doubly degenerate and n−m separation variables uk

are frozen in these double roots, which automatically solves
the equations of motion for these n−m variables. The dy-
namics is obtained by replacing n→m and �k→�k in Eqs.
�14�–�17� and is characterized by m�n typically incommen-
surate frequencies. For m=2 the solution is in terms of hy-
perelliptic functions of genus G=m−1=1, i.e., in terms of
ordinary elliptic functions.

Now let us discuss the connection of our results with the
previous work. The solutions for the mean-field BCS dynam-
ics obtained in Ref. 7 are two-spin solutions in the above
classification. They were used in Ref. 7 to describe the evo-
lution beginning from a state infinitesimally close to the nor-
mal ground state. In our view, the dynamics in the vicinity of
this state can have additional features and deserves further
analysis.

The two-spin solutions resemble the TDGL approach in
that they describe the dynamics of all pairs in terms of only
two collective degrees of freedom resulting in large ampli-
tude single frequency �periodic� oscillations of the order pa-
rameter magnitude ���t��. Mathematically, they lie on a one-
dimensional curve of points in a multidimensional �infinite
dimensional in the thermodynamic limit� space of possible
values of integrals of motion. The situation with other few
spin solutions is similar.35 In contrast, the general solution
we obtained here typically has a large �infinite in the thermo-
dynamic limit� number of incommensurate frequencies and a
substantially reduced amplitude. The difference between the
general and few spin solutions is clear in a linear analysis14,16

around the BCS ground state that displays normal modes
with frequencies 
k=2��k

2+�0
2, where �k are single-particle

energies and �0 is the equilibrium order parameter. In the
linear regime, the general solution becomes an arbitrary su-
perposition of all normal modes, while few spin solutions
single out all, but few modes. For example, two-spin solu-
tions of Ref. 7 correspond to a single normal mode with a
frequency 2�0.

In conclusion, we have obtained the explicit general
solution for the mean-field dynamics of the BCS paired
state and discussed a number of special cases including
two types of equilibrium states and few spin solutions. A
still open problem is to fully analyze the solution in the
thermodynamic limit. It is also desirable to better understand
the dynamics in the vicinity of normal states where quantum
effects become important. Finally, it is interesting to identify
experimental setups where peculiar features of the nonequi-
librium Cooper pairing in the nonadiabatic regime can
be observed in realistic systems such as, e.g., cold Fermi
gases.
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Note Added. Recently, we became aware of a
publication36 that is in agreement with some of our
conclusions—that the initial dynamics of the normal ground
state is driven by quantum corrections and that ��t� can de-
cay to a constant value at large times.

We are grateful to I. Aleiner, V. Falko, L. Glazman, L.
Levitov, A. Millis, A. Polyakov, and O. Tsyplyatyev for
stimulating discussions. This research was supported by NSF
DMR Grant No. 0210575 and by ARO/ARDA �DAAD19-
02-1-0039�.

1 N. B. Kopnin, Theory of Nonequilibrium Superconductivity �Clar-
endon Press, Oxford, 2001�.

2 E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 �1966�.
3 A. Schmid, Phys. Kondens. Mater. 5, 302 �1966�.
4 L. P. Gor’kov and G. M. Eliashberg, Sov. Phys. JETP 27, 328

�1968�.
5 O. Betbeder-Matibet and P. Nozieres, Ann. Phys. 51, 392 �1969�.
6 A. G. Aronov et al., Adv. Phys. 30, 539 �1981�; in, Nonequilib-

rium Superconductivity, edited by D. N. Landenberg and A. I.
Larkin �Elsevier, New York, 1986�.

7 R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev. Lett.
93, 160401 �2004�.

8 A. V. Andreev, V. Gurarie, and L. Radzihovsky, Phys. Rev. Lett.
93, 130402 �2004�.

9 R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 93, 130403
�2004�.

10 M. H. Szymanska, B. D. Simons, and K. Burnett, Phys. Rev. Lett.
94, 170402 �2005�.

11 M. W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 �2004�;C. A.
Regal, M. Greiner, and D. S. Jin, ibid. 92, 040403 �2004�.

12 C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 �2004�;M. W. Zwierlein et al., ibid. 92, 120403
�2004�;J. Kinast et al., ibid. 92, 150402 �2004�;M. W. Zwierlein
et al., ibid. 94, 180401 �2005�.

13 R. W. Richardson, J. Math. Phys. 18, 1802 �1977�.
14 P. W. Anderson, Phys. Rev. 112, 1900 �1958�.
15 E. A. Yuzbashyan, O. Tsyplyatev, and B. L. Altshuler �unpub-

lished�.
16 A. F. Volkov and Sh. M. Kogan, Sov. Phys. JETP 38, 1018

�1974�.
17 Yu. M. Gal’perin, V. I. Kozub, and B. Z. Spivak: Sov. Phys. JETP

54, 1126 �1981�.
18 M. H. S. Amin, E. V. Bezuglyi, A. S. Kijko, and A. N. Omely-

anchouk, Low Temp. Phys. 30, 661 �2004�.
19 J. Bardeen, L. N. Cooper, and J. R. Schriefer, Phys. Rev. 108,

1175 �1957�.
20 P. W. Anderson, J. Phys. Chem. Solids 11, 26 �1959�.
21 I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B 62,

14886 �2000�.
22 In the presence of spatial symmetries additional quantum num-

bers are needed to distinguish states. For example, if there is
translational invariance, time-reversed pairs of states are �j↑ �
= �p↑ � and �j↓ �= �−p↓ �.

23 R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 �1964�;
52, 253 �1964�.

24 M. Gaudin, La fonction d’onde de Bethe �Masson, Paris, 1983�.
25 M. C. Cambiaggio, A. M. F. Rivas, and M. Saraceno, Nucl. Phys.

424, 157 �1997�.
26 J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. 76, 643

�2004�.
27 Each of Hj can be viewed as a Hamiltonian of a system of clas-

sical spins, these Hamiltonians are known as classical Gaudin
magnets �Ref. 24�.

28 V. I. Arnold, Mathematical Methods of Classical Mechanics
�Springer-Verlag, New York, 1978�;M. Tabor, Chaos and Inte-
grability in Nonlinear Dynamics �Wiley, New York, 1989�.

29 E. K. Sklyanin, J. Sov. Math. 47, 2473 �1989�; Prog. Theor. Phys.
Suppl. 118, 35 �1995�;V. B. Kuznetsov, J. Math. Phys. 33,
3240, �1992�.

30 E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii �unpublished�.

31 E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, and A. R. Its,
Algebro-geometric Approach to Nonlinear-integrable Equations
�Springer-Verlag, Berlin, 1994�;D. Mumford, Tata Lectures on
Theta, �Birkhauser, Boston, 1983, 1984�, Vols. 1-2.

32 J. C. Eilbeck, V. Z. Enolskii, and H. Holden: Proc. R. Soc. Lon-
don, Ser. A 459, 1581 �2003�.

33 R. Bonifacio and G. Preparata, Phys. Rev. A 2, 336 �1970�.
34 A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev. A 64,

063611 �2001�.
35 For certain initial conditions the dynamics in the thermodynamic

limit can reduce to that of a few spin solution asymptotically at
long times. For example, we expect m=3, 5, …, spin solutions
at long times if the coupling is changed abruptly while the con-
densate is in an excited state.

36 G. L. Warner and A. J. Leggett, Phys. Rev. B 71, 134514 �2005�.

YUZBASHYAN et al. PHYSICAL REVIEW B 72, 220503�R� �2005�

RAPID COMMUNICATIONS

220503-4


