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We obtain multisoliton solutions of the time-dependent Bogoliubov–de Gennes equations or, equivalently,
Gorkov equations that describe the dynamics of a fermionic condensate in the dissipationless regime. There are
two kinds of solitons—normal and anomalous. At large times, normal multisolitons asymptote to unstable
stationary states of the BCS Hamiltonian with zero order parameter �normal states�, while the anomalous ones
tend to eigenstates characterized by a nonzero anomalous average. Under certain circumstances, multisoliton
solutions break up into sums of single solitons. In the linear analysis near the stationary states, solitons
correspond to unstable modes. Generally, they are nonlinear extensions of these modes, so that a stationary
state with k unstable modes gives rise to a k-soliton solution. We relate parameters of the multisolitons to those
of the asymptotic stationary state, which determines the conditions necessary for exciting solitons. We further
argue that the dynamics in many physical situations is multisoliton.
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I. INTRODUCTION AND SUMMARY OF THE RESULTS

Recent years have witnessed renewed experimental and
theoretical interest in far from equilibrium phenomena in
strongly interacting many-body systems at low temperatures.
Examples include nonstationary Kondo and other impurity
models,1–9 quenched Luttinger liquids,10–13 electron spin dy-
namics induced by hyperfine interactions,14–22 etc. On the
theory side, there is a considerable effort to develop new
approaches to nonequilibrium many-body physics. This pre-
sents a significant challenge as conventional techniques are
often inadequate for the description of these phenomena. In
particular, there have been major advances in the theory of
dynamical fermionic pairing in the collisionless regime.23–37

This problem is long known to be accurately described by
the time-dependent Bogoliubov–de Gennes equations, which
in this case are a set of coupled nonlinear integro-differential
equations.24,25,27,30 Nevertheless, it was not until recently that
this nonlinear system was realized to be exactly
solvable.29,30,33 The exact solution proved to be a unique ap-
proach to the problem of dynamical pairing and has been
extensively exploited to obtain analytical information about
its key physical properties. For example, a nonequilibrium
“phase diagram” of a homogeneous Bardeen-Cooper-
Schriffer �BCS� superfluid with a number of novel phases as
well as their responses to existing experimental probes were
predicted analytically.34–37

However, while much attention was focused on the
asymptotic states of the condensate at large times, the tran-
sient dynamics has not been fully explored. Most impor-
tantly, nonlinear integrable systems are known to exhibit a
remarkable class of multisoliton solutions that play a central
role in understanding and predicting their properties. Physi-
cal solutions can often be represented as a superposition of
solitons making a quantitative analysis possible. For in-
stance, one can show that the dynamics giving rise to non-
equilibrium “phases” mentioned above is multisoliton �see
below�. The existence and properties of solutions of this type
are also of a general interest from the point of view of non-
linear physics due to the nonlocal nature of the BCS problem

distinguishing it from familiar integrable systems, such as
nonlinear Schrödinger, Korteweg–de Vries, sine-Gordon, etc.

In this paper we construct multisoliton solutions to the
dynamical fermionic pairing problem �see Figs. 1–5�. We
establish a direct correspondence between solitons and the
stationary states of the mean-field BCS Hamiltonian, such
that each soliton solution asymptotes to an eigenstate at
times t→ ��. This also identifies conditions necessary for
exciting solitons. There are two distinct types of solitons—
normal and anomalous. Normal solitons asymptote to sta-
tionary states that are simultaneous eigenstates of a Fermi
gas and the mean-field BCS Hamiltonian and are character-
ized by a zero anomalous average. For anomalous solitons
the asymptotic value of this average is finite, ��t→ ���
�0. As the separation between solitons is increased, the mul-
tisoliton solution breaks up into a simple sum of single soli-
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FIG. 1. �Color online� k=1 normal-soliton solution of the
Bogoliubov–de Gennes equations �Eq. �1�� �Ref. 27�, where �0 is
the ground-state BCS gap. At t→ �� the solution asymptotes to
the Fermi ground state. The inset shows the average fermion occu-
pation number n��� in this state. A single discontinuity �2k−1=1� in
n��� at the Fermi energy gives rise to a single soliton �see the text�.
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tons �see, e.g., Figs. 2 and 3�—one of the defining properties
of solitons.

In the rest of this section, we briefly formulate the prob-
lem and then summarize the main results. The collisionless
dynamics of a fermionic superfluid can be described by the
Bogoliubov–de Gennes equations,27,30

i
d

dt
�Um

Vm
� = � �m ��t�

���t� − �m
��Um

Vm
� , �1�

where ��t�=g�mUmVm
� is the anomalous average, �m are the

single-fermion energies relative to the Fermi level �F, and g

is the coupling constant. These nonlinear equations are
known to be integrable for any number of Bogoliubov am-
plitudes �Um ,Vm�.29,30,33 In the continuum limit the summa-
tion in the expression for ��t� is replaced by integration and
Eq. �1� becomes a system of integrable nonlinear integro-
differential equations. Each solution of Eq. �1� yields a
many-body wave function,

���t�	 = 

m

�Um
� �t� + Vm

� �t�ĉm↑
† ĉm↓

† ��0	 , �2�

where the product is taken only over unblocked levels, i.e.,
singly occupied levels are excluded from Eq. �2�.
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FIG. 2. �Color online� k=2 normal-soliton solutions to the Bogoliubov–de Gennes equations �Eq. �1��. �0 is the ground-state BCS gap.
At t→ �� the two solitons tend to a normal state characterized by 2k−1=3 jumps at �=0 and �a in the average fermion occupation
number n��� �insets�. �a� is obtained from Eq. �6�, where �1,2 are related to a and �0 by Eq. �55� and 4.25a=�0. �b� corresponds to Eq. �7�
with 4�=�0, 4�=�16a2−�0

2 �see the text below Eq. �55�� and a=3.75�0. 	1,2=0 in both cases. For large separation, �
1−
2��1, the
two-soliton solutions split into two single solitons �dashed lines� �see Eqs. �4�, �12�, and �90� and Fig. 1�. For �
1−
2�→0 the two solitons
merge into a single peak. In �b� the amplitude of this peak is modulated with a frequency ��4�=�0 as the two terms in Eq. �7� rotate with
respect to each other.
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FIG. 3. �Color online� three-normal-soliton solution to the Bogoliubov–de Gennes equations �Eq. �1�� obtained from Eq. �8� with random
cj and 	 j. �0 is the ground-state BCS gap. �a� and �b� differ only in the values of 
 j. In �a� 
2−
1=1.00 and 
3−
2=1.25; in �b� 
2

−
1=10 and 
3−
2=12. We see that for large differences between 
 j in �b� the three-soliton breaks up into a sum of three well separated
individual solitons �see Eq. �12��, while in �a� the same solution but with small differences describes a complicated interference between the
three solitons.
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As we demonstrate in Secs. IV B and V, solitons tend to
unstable stationary states of the mean-field BCS Hamiltonian
at t→ ��. The mean-field Hamiltonian has two types of
eigenstates—normal and anomalous. Anomalous stationary
states have a nonzero constant value �a of the anomalous
average and are solutions of Eq. �1� of the form38,39

�Um ,Vm�= �Um
0 ,Vm

0 �e−iEmt, where �Um
0 ,Vm

0 � and Em are the
eigenvectors and eigenvalues of the 2
2 matrix on the
right-hand side of Eq. �1�. There are two states Em

= ���m
2 +�2 for each �m. The BCS ground state has Em�0

for all m. A state where Er�0 while Em�r�0 describes a
single excited pair38,40 and has energy 2��r

2+�2 above the
ground state. We note also that an excited pair introduces a

discontinuity in the average fermion occupation number
n��m�=1−�m /Em since Em changes sign at m=r. Normal
eigenstates have �=0 and amplitudes �Um ,Vm� equal to ei-
ther �0,ei�mt� or �e−i�mt ,0�. Both types of eigenstates are exact
stationary states of the mean-field BCS Hamiltonian,

Ĥ = �
j;�=↓,↑

� jĉ j�
† ĉj� − �

j,k
��ĉj↑

† ĉj↓
† + H.c.� , �3�

where �=g�k
ĉk↓ĉk↑	 and ĉj�
† and ĉj� are the creation and

annihilation operators for the two fermion species. Normal
states are also eigenstates of the Fermi gas—the first term in
Eq. �3�. For example, the Fermi ground state is a normal
eigenstate with Um=0 for �m�0 and Vm=0 for �m�0, i.e.,
all single-particle states below the Fermi level are occupied
and states above it are empty.

A linear analysis of Eq. �1� around stationary states shows
that some of them are unstable.27,41 These states give rise to
solitons, this situation is typical in integrable nonlinear dy-
namics. For example, a simple pendulum displays a soliton
solution when started in its unstable equilibrium with zero
velocity. In the phase space the soliton is the separatrix con-
necting the unstable equilibrium to itself. The same is true,
for example, for the single soliton solution of the
Korteweg–de Vries equation.42 Similarly in the present case
the unstable modes start to grow exponentially and become
solitons due to nonlinear effects. In a certain sense, solitons
can be viewed as nonlinear extensions of the unstable modes.

Now let us summarize soliton solutions of the
Bogoliubov–de Gennes equations �Eq. �1��. Detailed deriva-
tion and discussion of these as well as some other solutions
can be found in Secs. IV and V. Here we present only the
results for the amplitude of the order parameter ���t��.

A. Normal solitons

First, we present normal multisolitons derived in Sec. IV.
The one-soliton solution of a normal type has been previ-
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FIG. 4. �Color online� k=1 anomalous-soliton solution to the
Bogoliubov–de Gennes equations �Eq. �1�� as given by Eq. �13�. At
t→ �� the system tends to an eigenstate of BCS Hamiltonian �3�
with order parameter �a. This eigenstate is characterized by 2k=2
jumps at �= �a in the average fermion occupation number n���
�inset�. � and �a in Eq. �13� are related to a and the ground-state
gap �0 via Eqs. �48� and �50�. Here a=1.47�a and �a=0.09�0.
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FIG. 5. �Color online� k=2 anomalous-soliton solutions of the Bogoliubov–de Gennes equations �Eqs. �1�� �see Eqs. �14� and �15��. �a�
corresponds to the choice of signs ++ and �b� to −+ in Eq. �15�. At t→ �� both two-anomalous solitons tend to the same stationary state
of the mean-field BCS Hamiltonian. In this state, n��� has 2k=4 discontinuities at �= �a and �b �insets� and the anomalous average is equal
to �a. Parameters �1,2 in Eq. �15� and the value of �a are determined by a , b and the ground-state gap �0 �see Eqs. �51� and �52��. For the
above plots we used a=0.87�a, b=4.27�a, and 16�a=�0.
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ously obtained in Ref. 27. The amplitude of the order param-
eter has the following form:

���t�� =
2�

cosh�2�t + 
�
, �4�

where � and 
 are real parameters. At t→ �� the corre-
sponding wave function �2� asymptotes to the Fermi ground
state. The latter is unstable in the presence of the pairing
interaction. Indeed, a linear analysis of equations of motion
�Eq. �1�� around the Fermi ground state shows a single un-
stable normal mode, which grows as ���t���e2�t �Refs. 27
and 41� as can be seen from Eq. �4� in the t→−� limit. The
plot of Eq. �4� is a single peak centered at t=−
 /2� �see Fig.
1�. Its height �the amplitude of the soliton� and width are
controlled by the parameter 2�. In the present case 2�=�0,
where �0 is the ground-state BCS gap. This parameter can be
interpreted as an imaginary “frequency” of the unstable nor-
mal mode, while Eq. �4� as an extension of this mode to the
nonlinear regime. Below we will see that the number of un-
stable modes and consequently the number of solitons corre-
sponding to a given stationary state is related to the number
of discontinuities in the average fermion occupation number
n��� in this state. Specifically, 2k−1 discontinuities �jumps�
in n��� lead to up to k coupled normal solitons. The Fermi
ground state has a single discontinuity at the Fermi level,
giving rise to the one-soliton solution.

The two-normal solitons have considerably richer struc-
ture. Let us give two examples. Both are described by

���t�� = A� h�t�

h�t�ḧ�t� − ḣ2�t�
� , �5�

with different choices for the amplitude A and function h�t�.
One choice is A=4��2

2−�1
2� and

h�t� = ei	1
cosh�2�1t + 
1�

2�1
+ ei	2

cosh�2�2t + 
2�
2�2

. �6�

Examples of ���t�� for this case are plotted in Fig. 2�a�. The
second option is A=16���2+�2 and

h�t� = e−2i�t+i	1
cosh�2�t + 
1 − i��

2�

+ e2i�t+i	2
cosh�2�t + 
2 + i��

2�
, �7�

where � is the phase of �+ i�, i.e., �+ i�=��2+�2ei�. Fig-
ure 2�b� shows graphs of ���t�� obtained using Eq. �7�. In
both cases the wave function asymptotes to a normal eigen-
state at t→ ��. This eigenstate is obtained from the Fermi
ground state by moving all fermions in the energy interval
−a��m�0 below the Fermi level to the symmetric interval
0��m�a above it. Equations �6� and �7� correspond to dif-
ferent values of a. Note that this normal eigenstate has 2k
−1=3 discontinuities at �=−a, 0, and a in n��� �see the
insets of Fig. 2� thus leading to k=2 solitons. A linear analy-
sis around this state yields two unstable modes that exponen-
tially grow with rates 2�1,2 in the first case and 2��2i� in
the second. Which of the two cases is realized depends on
the ratio a /�0. The values of �1,2 or �� i� are also fixed by

a and �0, while 
1,2 and 	1,2 are arbitrary real parameters.
They control the separation between solitons and their rela-
tive phase in the two-soliton solution, respectively. For suf-
ficiently large �
1−
2� Eq. �5� always breaks up into a sum
of two single solitons of form �4�. The graph of ���t�� in this
case displays two well separated peaks, each representing a
single soliton �see Fig. 2�.

The general k-soliton solution of the normal type has the
form �see Sec. IV A�

���t�� = 22k−1�Dk−1

Dk
� , �8�

where Dr is the following determinant:

Dr = � f . . . f �r−1�

] ]

f �r−1� . . . f2�r−1� � , �9�

where f �m� is the mth derivative of the function f�t� with
respect to t, and

f�t� = �
j=1

2k
A�cj�e−2icjt



m�j

�cj − cm�
. �10�

The set of 2k complex parameters cm �“frequencies” of the
unstable modes� is complex conjugate to itself. Let us order
this set so that ck+l=cl

� and Im�cl��0 for l=1, . . . ,k. The
constants A�cl� and A�ck+l� are related as follows:

A�cl� = e
l+i	l, A�ck+l� = − e−
l+i	l, �11�

where 
l and 	l are arbitrary real parameters. Single soliton
�4� is obtained from Eq. �8� by setting k=1 and c1=�+ i�.
The two-soliton solution corresponds to k=2 and c1,2= i�1,2
or c1,2= i��� to get Eq. �6� or �7�, respectively �see also
Fig. 3 for examples of three-normal soliton solutions�.

At t→ �� the k-normal soliton tends to a normal eigen-
state that has at least 2k−1 discontinuities in the distribution
function n���. Linearizing the Bogoliubov–de Gennes equa-
tions around this state at large negative t, one obtains k un-
stable normal modes that grow as e−2iclt for l=1, . . . ,k. When
the differences between parameters 
l are large, the k-soliton
solution �8� breaks up into a sum of k single solitons,

���k��t,�ci,
i,	i��� � �
i=1

k

���1��t,Im�ci�,
i�� , �12�

where ��k��t� denotes the k-normal soliton �8� and
���1��t , Im�ci� ,
i�� stands for single soliton �4� with �
=Im�ci� and 
=
i. In this case, the plot of ���t�� shows k
well separated peaks �individual solitons� as illustrated in
Figs. 2 and 3. Im�2cl� set the amplitudes and widths of indi-
vidual solitons, Re�2cl� are the frequencies with which they
“rotate” with respect to one another as in Eq. �7�, where
Re�c1,2�= ��, and 
l and 	l determine the separation be-
tween the solitons and their relative phases, respectively.
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B. Anomalous solitons

Next, let us summarize the results of Sec. V for anoma-
lous solitons. A single anomalous soliton has the following
form �see also Fig. 4�:

��t� − �a =
2��2 − �a

2�
�a � � cosh��t + 
�

, �13�

where �=2��2−�a
2 and 
 is an arbitrary real parameter as

before. As t→ �� the state of the system tends to an anoma-
lous eigenstate with the value of the BCS order parameter
equal to �a. In this state, all pairs in a certain energy interval
around the Fermi level are excited, i.e., Em=��m

2 +�a
2 for

��m��a. As a result, the distribution function n��� has two
jumps at �= �a �inset of Fig. 4�. A linear analysis around
this anomalous eigenstate shows a single unstable mode that
grows as e�t. In general, 2k jumps in the distribution function
of a stationary anomalous state give rise to up to k anoma-
lous solitons. Note also that the anomalous soliton �13� gen-
eralizes the normal one �Eq. �4�� and turns into it when �a
=0.

A general k-anomalous soliton can also be constructed
within our approach. However, here we present only an ex-
ample of a two-anomalous-soliton solution,

��t� − �a =
h�t�

2�h�t�ḧ�t� − ḣ2�t��
, �14�

where

h�t� =
�a

�1
2�2

2 �
�1 cosh��1t + 
1�

�1
2��1

2 − �2
2�

�
�2 cosh��2t + 
2�

�2
2��2

2 − �1
2�

.

�15�

The � signs can be chosen independently of each other. As
in the case of the one-anomalous soliton at large times the
wave function asymptotes to an anomalous stationary state
with order parameter �a. This state has two unstable modes
that grow exponentially with rates �1,2=2��1,2

2 −�a
2. The

graph of two-anomalous-soliton solution �14� consists of two
peaks or dips depending on the choice of signs in Eq. �15�
�see Fig. 5�. The parameters 
1,2 take arbitrary real values.
Their difference, �
1−
2�, determines the separation between
the peaks in time. Similarly to Eq. �12�, at large separations
the k-anomalous soliton turns into a sum of individual soli-
tons of form �13�,

��k��t,��i,
i�� − �a � �
i=1

k

���1��t,�i,
i� − �a� , �16�

where ��1��t ,�i ,
i� is single anomalous soliton �13� with �
=�i and 
=
i.

The rest of the paper is organized as follows: in Sec. II,
we review the basic setup of the problem and the tools �Lax
vector and separation variables� necessary for deriving soli-
tons. In Sec. IV, we perform linear analysis of equations of
motion around normal and anomalous stationary states. This
section also provides examples of normal and anomalous
eigenstates that give rise to one and two normal and anoma-
lous solitons. Sections IV and V are devoted to a detailed

derivation of soliton solutions and a discussion of their main
properties.

II. REVIEW OF THE BASIC SETUP AND RELEVANT
PREVIOUS RESULTS

In this section we discuss the basic setup of the problem
and introduce our notation �see Refs. 27 and 30 for more
details�. We also review the properties of the exact
solution29,30,33,34 of the equations of motion needed for ob-
taining and analyzing the multisoliton solutions summarized
in Sec. I.

A. Notations and basic equations

Here we review the model Hamiltonian and its mean-field
equations of motion �Eq. �1��. The latter can be reformulated
as equations of motion for classical spins �angular
momenta�—this is the form we will be primarily using. We
also describe normal and anomalous stationary states in
terms of the spin variables.

The dissipationless dynamics of a fermionic superfluid
can be modeled by the reduced BCS Hamiltonian,24,25,27,38

Ĥ = �
j

� jn̂j − g�
j,k

ĉj↑
† ĉj↓

† ĉk↓ĉk↑, �17�

where n̂j =��=↓,↑ĉj�
† ĉj�. This description of the dynamics is

valid in the weak-coupling regime at times shorter than the
energy relaxation time �� and for a system of size L smaller
than the BCS coherence length �. Under these conditions, the
BCS order parameter is uniform in space; the interaction
matrix elements can be evaluated at the Fermi energy �F
yielding a single coupling constant g that is independent of j
and k. The summations in Eq. �17� over j and k are restricted
to single-particle energies �� j��D and ��k��D, where D is an
ultraviolet cutoff for the pairing interaction. In metallic su-
perconductors D��D, where �D is the Debye frequency.
For atomic fermions D��F. The off diagonal interactions,
terms of the form cj↑

† ĉl↓
† ĉk↓ĉr↑ with l� j or r�k, can be ne-

glected since they are relevant only at times t���.
The validity of the mean-field approach is rooted in the

fact that each pair-creation operator ĉj↑
† ĉj↓

† in Eq. �17� inter-
acts with the collective pairing field g� jĉk↓ĉk↑, which is ex-
pected to deviate little from its quantum-mechanical average
��t�. For example, the mean field is known to be exact for
the description of the low-energy properties of Hamiltonian
�17� in the limit � /�0→0,40,43,44 where �= 
�m+1−�m	 and �0
are the mean spacing between the single-particle levels �m
and the ground-state gap, respectively. Note that the condi-
tions ���0 and L�� are compatible in the weak-coupling
regime.

We are interested in solving the Heisenberg equations of
motion for Hamiltonian �17� to determine the evolution of
various correlators, e.g., 
n̂m�t�	, 
ĉm↓�t�ĉm↑�t�	, and

ĉm↑

† �t�ĉm↓
† �t�	. In mean-field approach, we replace the opera-

tor g� jĉk↓�t�ĉk↑�t� in the Heisenberg equations with its
quantum-mechanical average,
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��t� = g�
k


ĉk↓�t�ĉk↑�t�	 . �18�

Further, introducing

2sm
z = 
n̂m	 − 1,

sm
− � sm

x − ism
y = 
ĉm↓ĉm↑	 , �19�

we obtain40

ṡm = bm 
 sm, bm = �− 2�x,− 2�y,2�m� , �20�

where �x and −�y are the real and imaginary parts of �
=g�msm

− . In terms of Fm�t�=2ism
z and Gm�t�=2ism

− , Green’s
functions at coinciding times, Eqs. �20� are well-known
Gorkov equations.24,45 The above procedure leading to
Gorkov equations is essentially equivalent to taking the time-
dependent wave function of the system to have product form
�2� at all times. Then, the Schrödinger equation takes the
form of the Bogoliubov–de Gennes equations �Eq. �1��,
which are in turn equivalent to Eqs. �20� with

2sm
z = �Vm�2 − �Um�2, sm

− = UmVm
� . �21�

Equations of motion �Eqs. �20�� are Hamilton’s equations
for the following classical spin �interacting angular-
momentum� model:

Hcl = �
j=1

n

2� jsj
z − g �

j,k=1

n

sj
+sk

−, �22�

with the usual angular-momentum Poisson brackets �sj
x ,sj

y�
=−sj

z, etc. The summations in Eq. �22� are restricted to the
subspace of unblocked �with occupation numbers nj =0,2�
single-fermion levels � j. Hamiltonian �17� does not have ma-
trix elements connecting the unblocked levels to blocked
ones �nj =1�. The latter are decoupled and their occupation
numbers are conserved by the evolution. Note also that Eq.
�1� conserves the norm �Um�2+ �Vm�2=1 and therefore the
length of the spins is fixed, �sm�=1 /2.

The normal and anomalous eigenstates of the BCS Hamil-
tonian discussed in Sec. I correspond to equilibrium spin
configurations where each spin sm is either parallel or anti-
parallel to the field bm.40 According to Eq. �21�, every such
arrangement of spins uniquely determines an eigenstate of
form �2� and vice versa. The anomalous eigenstates yield

2sm
z = −

em�m

��m
2 + �a

2
, 2sm

x = −
em�a

��m
2 + �a

2
, em = � 1,

�23�

where the x axis has been chosen so that the stationary value
of the order parameter, �a, is real. The factor em=−1 if the
spin is parallel to the field and em=1 otherwise. The self-
consistency condition �a=g�msm

x reads

�
m

em

��m
2 + �a

2
=

2

g
. �24�

This is the BCS gap equation, which determines the value of
�a in the anomalous state. The configuration of spins with all

em=1 is equivalent to the BCS ground state. In this case
�a=�0—the ground-state gap—and Eq. �24� becomes in the
continuum limit,

�
0

D d�

��2 + �0
2

=
2

�
, � = g�FV �

g

�
, �25�

where �F is the density of states at the Fermi level and V is
the volume of the system. In Eq. �25� and throughout this
paper we assume the weak-coupling regime �0�D and a
constant density of � j, ����=�F, in the continuum limit. A
nonconstant density of states modifies the value of �0 deter-
mined from Eq. �25� but will not affect any other equations
derived in the rest of the paper. As we will see, these equa-
tions are confined to energies of order �0, while the density
of states varies on an energy scale of order D or larger. Using
�0�D, we obtain from Eq. �25�

�0 = 2De−1/�. �26�

The configuration with only one flipped spin, ek=−1 and
em�k=1, corresponds to an excited state—it contains an ex-
cited pair and has energy 2��k

2+�0
2 relative to the ground-

state. Similarly, having two spins parallel to the field is
equivalent to an eigenstate with two excited pairs, etc.

Normal eigenstates are spin arrangements where each
spin is along z axis, i.e.,

2sm
z = � 1 � lm, sm

− = 0. �27�

They are also equilibria of classical Hamiltonian �22� accord-
ing to Eq. �20�. The Fermi ground state corresponds to lm
=−sgn �m, while other normal eigenstates can be obtained
from this state by moving pairs of fermions from levels be-
low the Fermi energy to levels above it and flipping the
corresponding spins.

B. General properties of the dynamics

In this section we introduce the Lax vector
construction,30,33 which plays a central role in analyzing the
dynamics of the BCS Hamiltonian. We also define the sepa-
ration variables and describe the general features of the dy-
namics.

The dynamics of classical Hamiltonian �22� or, equiva-
lently, Eqs. �1� and �20� turn out to be integrable. A conve-
nient tool for their analysis is the Lax vector defined as

L�u� = −
ẑ

g
+ �

m=1

n
sm

u − �m
, �28�

where u is a complex parameter, ẑ is a unit vector along z
axis, and n is the total number of spins. The length of this
vector is conserved by Eqs. �20� for any u, i.e.,

dL2�u�
dt

= 0. �29�

For this reason L2�u� can be viewed as the generator of the
integrals of motion30 for Eqs. �20�. For example, its zeroes
are conserved and constitute a set of independent integrals.
Another possible choice for the integrals is, e.g., the set of
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the residues of L2�u� at the poles at u=�m. Note that

L2�u� =
Q2n�u�

g2

j

�u − � j�2
, �30�

where Q2n�u� is a �spectral� polynomial of order 2n. We also
have

L2�u� = Lz
2�u� + L−�u�L+�u� , �31�

where L−�u�=Lx�u�− iLy�u� and Lx,y,z are the components of
the Lax vector L�u�.

To obtain solitons, we need to introduce new dynamical
variables um �Refs. 46 and 47� in which Eq. �20� separates
and can be integrated. The separation variables are defined in
terms of the “old” dynamical variables s j as solutions of the
following equation:

L−�um� = �
j=1

n
sj

−

um − � j
= 0. �32�

This equation has n−1 solutions since, when L−�u� is
brought to a common denominator, its numerator is a poly-
nomial of order n−1. Consequently, there are n−1 separation
variables um. Equation �32� can be inverted to obtain the
spins in terms of the separation variables as follows:

sj
− = J−



k

�� j − uk�



k�j

�� j − �k�
, �33�

where J−=Jx− iJy as usual and J=� js j is the total classical
spin. In terms of the separation variables Eqs. �20� read

u̇j =
2i�Q2n�uj�



m�j

�uj − um�
, j = 1, . . . ,n − 1, �34�

J̇− = − 2iJ−��
j=1

n

� j +
gJz

2
− �

m=1

n−1

um� . �35�

An important observation34 is that main properties of the
dynamics can be effectively discerned by analyzing the zeros
of L2�u�. According to Eq. �30�, these are the roots of the
spectral polynomial Q2n�u� and we will often refer to their
configuration in the complex plane as to the root diagram of
L2�u�. Since Q2n�u� is positively defined, it has n pairs of
complex-conjugate roots. For generic initial conditions all 2n
roots are distinct. In this case the dynamics of the system is
quasiperiodic with n incommensurate frequencies and any
dynamical quantity, e.g., the order parameter ��t�=gJ−�t�,
typically contains all n frequencies.

Significant simplifications occur when some roots are
degenerate.29,33 It is important to distinguish between real
and complex double roots. Note that any real root of Q2n�u�
is automatically a double root �zero� because Q2n�u� is posi-
tively defined. A real zero c of L2�u� must also be a zero of
all three components of L�u�.48 Further, note from Eq. �32�
that one of the separation variables must coincide with c. In

other words, it must be time independent as it is “frozen”
into the real root c. Equation �34� shows that this is an al-
lowed solution of the equations of motion for the separation
variables. This freezing of a separation variable can be trans-
lated into a genuine reduction in the number of degrees of
freedom by 1 so that the dynamics of Hamiltonian �22� with
n spins reduces to that of the same Hamiltonian but with n
−1 spins. In general, n−m real zeros �or equivalently 2m
complex zeros� mean a reduction in the dynamics to that of
2m effective spins �see Refs. 29 and 33 for details�. Below
we will often encounter a situation when L2�u� has a number
of real zeros and consequently a number of separation vari-
ables are frozen. The remaining variables we call unfrozen.

Let un−1=c be the separation variable frozen into the
double zero of Q2n�u�. Consider Eq. �34� for j�n−1. Both
the numerator and the denominator of the right-hand side
contain a factor u−c, which cancels lowering the order of the
polynomial under the square root by 2. Suppose Q2n�u� has
n−2k double real zeros. Then, there are 2k−1 unfrozen sepa-
ration variables u1 , . . . ,u2k−1. For these variables Eq. �34� can
be brought to the following form29 with the help of Eq. �30�:

�
j=1

2k−1
uj

lduj



m

�uj − �m��L̃2�uj�
= 2igdt�l,2k−2, l = 0, . . . ,2k − 2,

�36�

where L̃2�u� is obtained from L2�u� by removing all real
zeros cm, i.e.,

L̃2�u� =
L2�u�



m

�u − cm�2
.

III. LINEAR ANALYSIS AROUND STATIONARY
STATES

In this section, we analyze equations of motion linearized
in the vicinity of normal and anomalous stationary states. We
show that the separation variables uj are the normal modes of
the linearized problem. Some of the stationary states are un-
stable. As we will see in Sec. IV, the corresponding normal
modes become solitons in the nonlinear regime.

A. Frequencies of oscillations around stationary states

Here we show that the frequencies of small oscillations
around normal and anomalous states are determined by the
zeros of L2�u� �see also Ref. 34�. When one of the frequen-
cies is complex, the state is unstable and the corresponding
mode grows exponentially.

The linear analysis of equations of motion �Eqs. �20��
around stationary states greatly simplifies in terms of sepa-
ration variables. According to Eq. �34�, stationary positions
of uj are the roots of the polynomial Q2n�u� �or equivalently
the zeros of L2�u�; see Eqs. �30��. Let us determine the form
of L2�u� in the stationary states. Consider first the anomalous
states �Eq. �23��. Using Eqs. �23�, �24�, and �28�, we obtain
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L�u� = ��ax̂ − uẑ�Ls�u�, L2�u� = �u2 + �a
2�Ls

2�u� , �37�

where x̂ is a unit vector along x axis and

Ls�u� = �
m=1

n
em

2�u − �m���m
2 + �a

2
, em = � 1. �38�

Note that when the right-hand side of Eq. �38� is brought to
a common denominator, the numerator is a polynomial of
order n−1. Therefore, L2�u� and consequently Q2n�u� have
n−1 double zeros cr—the solutions of the equation Ls�cr�
=0. In addition, we see from Eq. �37� that there are two roots
u= � i�a, i.e.,

Q2n�u� = �u2 + �a
2�


r=1

n−1

�u − cr�2. �39�

When the spins s j deviate from their equilibrium positions
�Eq. �23��, the roots cr of polynomial Q2n�u� shift to cr
+�cr.

49 Linearizing Eq. �34� in deviations �cr=ar+ ibr and
�ur=ur−cr−ar around the stationary positions ur=cr and us-
ing Eq. �39�, we obtain

�u̇r = 2i�cr
2 + �a

2���ur�2 + br
2 �40�

with a solution �ur=br sin��r�t− t0��, where �r=2�cr
2+�a

2.
Linearizing Eq. �33�, one derives the spin variables in terms
of �ur. At this point we are interested only in the frequencies
�r.

We conclude that the separation variables are indeed the
normal modes of the linearized problem �since they contain a
single frequency�. The frequencies of small oscillations
around anomalous stationary states are related to the double
zeros cr of L2�u� as �r=2�cr

2+�a
2. If any of �r has an imagi-

nary part, the stationary state is unstable.
Next, consider linear analysis around normal eigenstates

�Eq. �27��. In this case all spins are along z axis. It follows
from Eqs. �27� and �28� that L�u�=Ln�u�ẑ, where

Ln�u� = −
1

g
+ �

j=1

n
lj

2�u − � j�
, lj = � 1. �41�

We see that all zeros cr of L2�u�=Ln
2�u� are double zeros.

There are n of them as the numerator of Ln�u� is a polyno-
mial of order n, i.e., Q2n�u�=
r=1

n �u−cr�2. As before, the sta-
tionary positions of separation variables are ur=cr. Note
however that there are only n−1 separation variables, so one
of the n zeros cr must remain vacant.

Next, we show that the frequencies of small oscillations
around a normal stationary state are �r=2cr. When one of
the zeros cr is complex, the oscillatory behavior is replaced
with an exponential growth, i.e., the stationary state is un-
stable. Note that for small deviations from a normal state the
xy components of the total spin J are small. Therefore, in
linear approximation we can set the separation variables uj to
their equilibrium values in Eqs. �33� and �35�, uj =cj, i.e.,
only J− is time dependent. As mentioned above, Ln�u� has a
vacant zero �say cr� which does not correspond to any sepa-
ration variable. Equation �35� yields

−
d�ln J−�

2idt
= ��

j=1

n

� j +
gJz

2
− �

m=1

n

cm� + cr = cr, �42�

where we used the fact that the contribution in square brack-
ets vanishes. This can be seen by observing that, since cm are
the zeros of Ln�u�, Eq. �41� can be written as

Ln�u� = −
1

g



m

�u − cm�



j

�u − � j�
. �43�

Expanding the right-hand sides of Eqs. �41� and �43� in 1 /u,
matching the coefficients at 1 /u, and using 2Jz=� jlj �this
follows from Eq. �27��, we see that the sum of terms in
square brackets in Eq. �42� is indeed zero. It follows that
J−�e−2icrt and from Eq. �33� we also derive sj

−�e−2icrt. Thus,
the frequencies of oscillations around normal stationary
states are �r=2cr.

B. Examples of root diagrams of L2(u)

Here we provide examples of root diagrams—
configurations of solutions of the equation L2�u�=0 in the
plane of complex u �see Ref. 34 for more examples�. We saw
that the zeros of L2�u� evaluated in stationary states deter-
mine the frequencies of oscillations around them. Moreover,
the most important features of the dynamics, e.g., the behav-
ior of ��t� at large times, can be predicted by inspecting the
root diagram34 �see also the discussion below Eq. �35��.
Similarly, we will see that the root diagram determines the
number and properties of solitons corresponding to a given
stationary state.

For simplicity, we assume particle-hole symmetry, i.e., the
single-fermion energies ��m� are symmetric with respect to
zero �Fermi level�. According to Eq. �23�, this means

sx��m� = sx�− �m�, sz��m� = − sz�− �m� ,

sy��m� = − sy�− �m� , �44�

where sm�s��m�. These relations can also be derived from
Eq. �19� using particle-hole transformation for fermion cre-
ation and annihilation operators ĉ��−�m�↔ ĉ�

†��m�. Note that
relations �Eq. �44�� are preserved by equations of motion
�Eq. �20�� and also imply �y�t�=0.

1. BCS ground state

As discussed below Eq. �24�, the BCS ground state cor-
responds to em=1. We note from Eq. �23� that spin compo-
nents sx��m� and sz��m� in this state are continuous functions
of single-particle energy �m. It follows from Eqs. �37� and
�38� that L2�u�=0 has two single roots at u= � i�0 �see Fig.
6� and n−1 double roots ck that are the solutions of the
following equation:

Ls�u� = �
m=1

n
1

2�u − �m���m
2 + �0

2
= 0. �45�

All n−1 solutions are real. This can be seen by noting that
Ls�u� changes sign between consecutive �m. Indeed, let �m be
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ordered so that �1��2� ¯ ��n. Since Ls�u�→ +� as u
→�m

+ and Ls�u�→−� as u→�m+1
− , there is a point u=cm in

the interval ��m ,�m+1� where Ls�cm�=0. According to Sec.
III A, this yields a frequency �m=2�cm

2 +�0
2 of small oscil-

lations around the BCS ground state. In the continuum limit,
when level spacings �m+1−�m tend to zero, we have cm��m

and �m�2��m
2 +�0

2. In this limit, cm densely fill the interval
from −D to D=max��m�, i.e., L2�u� has a line of double roots
as shown in Fig. 6. Frequencies �m are also the energies of
excited pairs—excitations obtained by flipping the spin sm
from its ground-state position antiparallel to the field bm= �
−2�0 ,0 ,�m� to an equilibrium position parallel to the field
bm �see Ref. 40 for a discussion of this relationship between
the frequencies and the excitation spectrum�.

2. Excited anomalous states

Next, consider two examples of anomalous stationary
states obtained from the BCS ground state by flipping spins
in certain energy intervals.

Example 1. First, let spins in the interval �−a ,a� be
flipped, i.e., em=sgn���m�−a�. This means that the Cooper
pairs in this energy interval are excited.38,40 Equation �23�
implies that spin components sx��� and sz��� are discontinu-
ous at �= �a �see the inset of Fig. 7�. As before L2�u� has
two single zeros at u= � i�a and n−1 double zeros ck that
are the solutions of Ls�ck�=0, where Ls�u� is given by Eq.
�38�. The difference is that in this case two of ck can be
imaginary. Suppose �m1

�−a��m1+1 and �m2
�a��m2+1.

Then, em1
=1 while em1+1=−1 and similarly for m2 and we

are no longer guaranteed real zeros of Ls�u� in intervals
��m1

,�m1+1� and ��m2
,�m2+1� as in the BCS ground state. In-

stead, Ls�u� can acquire two complex-conjugate zeros. In the
particle-hole symmetric case Ls�−u�=−Ls�u�, which implies

that these zeros must be purely imaginary as in Fig. 7. The
remaining n−3 double zeros of L2�u� are real and lie be-
tween consecutive � j. In the continuum limit, they merge into
a continuous line of double zeros between −D and D as in
the ground state.

To determine the two imaginary zeros c= � i� in the con-
tinuum limit, we rewrite the equation Ls�u�=0 in the form

�
0

� sgn�� − a�d�

��2 + �2���2 + �a
2

= 0, �46�

where we used Ls�−u�=−Ls�u� and took the ultraviolet cutoff
D to infinity. In terms of

F��� =� d�

��2 + �2���2 + �a
2

=
1

2���2 − �a
2
ln����2 + �a

2 + ���2 − �a
2

���2 + �a
2 − ���2 − �a

2� , �47�

Eq. �46� reads F�+��=2F�a�. This equation has a unique
positive solution,

� = �a + �a2 + �a
2�

a

�a
. �48�

Note however that the gap equation �Eq. �24�� has solu-
tions only for sufficiently small a. To see this, we write down
Eq. �24� for the order parameter �a in the anomalous state
where em=sgn���m�−a� and for the gap �0 in the BCS ground
state where em=1. Equating the left-hand sides of the two
equations, we obtain

0
ε

-0.5

0

0.5
uS

z
(ε)

-D D

i∆0

-i∆0

0

FIG. 6. �Color online� The roots of L2�u�=0 �the root diagram�
for the BCS ground state in the complex u plane. There is a line of
double real roots �zeros of L2�u�� from −D to D, where D is the
high-energy cutoff on the single-fermion states participating in BCS
Hamiltonian �17�. In addition, there are two imaginary single zeros
�i�0, where �0 is the ground-state gap. Frequencies � of small
oscillations around the ground state are related to the zeros c as �

=�c2+�0
2 �see Sec. III B 1�. We have ����=��2+�0

2, where −D
���D and �=0. The inset shows the spin component sz��� in the
ground state. Since it has no discontinuities, there are no complex
double zeros.
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-i∆
a
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FIG. 7. �Color online� Zeros of L2�u� for an excited anomalous
state in the complex u plane. This anomalous state has 2k=2 jumps
at �= �a in the spin component sz��� �inset� leading to 2k double
imaginary zeros �i�. In addition, L2�u� has a line of real double
zeros from −D to D and single zeros �i�a, where �a is the value of
the order parameter in this state. In the present case, there is a single
�k=1� unstable mode that grows with the rate ��2−�a

2 giving rise
to a single anomalous soliton shown in Fig. 4 �see Sec. III B 2�.
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�
0

D d�

��2 + �0
2

= �
0

D sgn�� − a�d�

��2 + �a
2

. �49�

In the D→� limit this equation yields

�a
3 − 2�0�a

2 + �0
2�a − 4a2 = 0 �50�

together with the condition �a��0.
The analysis of Eq. �50� shows that there are two solu-

tions �a��0 provided 3�3a��0 and no solutions other-
wise. Interestingly, for one of the solutions ���a, while for
the other ���a. Which solution do we choose? Note that
quantum Hamiltonian �17� has 2n unblocked states. Corre-
spondingly, there are 2n choices of em= �1. More than one
solution for a given selection of em means that we have more
states in the mean field than there are eigenstates of the origi-
nal quantum Hamiltonian. It is natural to expect that among
the two solutions for �a the one that yields a stable anoma-
lous state corresponds to the quantum eigenstate. We have
shown above that frequencies of small oscillations around
anomalous stationary states are related to the zeros ck as �k

=�ck
2+�a

2. For the zeros �i� we have ��= i��2−�a
2. We see

that for ���a the frequency is imaginary and the corre-
sponding normal mode grows exponentially. Therefore, the
solution �a�� yields an unstable anomalous state, while for
�a�� we get a stable state. Both states however can play an
important role in the description of dynamical problem �1�.

Example 2. A more involved example of an anomalous
state is obtained by flipping spins in two energy intervals,
e.g., in intervals �−b ,−a� and �a ,b� symmetric with respect
to the Fermi level. This implies em=sgn���m�−a����m�−b�.
Now the spin components have four discontinuities at �
= �a and �= �b �inset of Fig. 8�. Correspondingly, L2�u�

can have four complex double zeros �i�1,2 as in Fig. 8 in
addition to two single zeros at u= � i�a and n−5 real zeros
on the line from −D to D. This follows in a manner similar to
the above analysis of the state with em=sgn���m�−a�. In gen-
eral, 2k discontinuities in spin components in an anomalous
stationary state can lead to 2k complex double roots.

To determine the complex zeros in the continuum limit,
we repeat the procedure that leads to Eq. �48�. Now we de-
rive 2F�b�−2F�a�=F�+��, where F��� is given by expres-
sion �47�. This equation has solutions �i�1,2, where

4
�1,2

�a
= xy − 1 � ��xy + 1�2 − 4�x + y − 1� , �51�

x�a
2= ��a2+�a

2−a�2, and y�a
2= ��b2+�a

2+b�2. The gap equa-
tion �Eq. �24�� in terms of x and y takes the form

xy =
�0

�a
, �52�

where �0 is the ground-state gap. Using these equations, it is
not difficult to select a and b so that �1,2 are real and �2

��1��a as shown in Fig. 8. This is the choice we will need
in Sec. V B.

3. Fermi ground state

We saw that in normal stationary states all zeros of L2�u�
are double degenerate and are solutions of the equation
Ln�u�=0 �see Eq. �41��. The Fermi ground state has all states
below the Fermi energy occupied and states above it empty.
This corresponds to 2sj

z= lj =−sgn � j. Therefore, the zeros are
determined by the following equation:

�
j=1

n
sgn � j

u − � j
= −

2

g
. �53�

There are n solutions, each one being a double zero of L2�u�.
The analysis of Eq. �53� is similar to that of Eq. �45�. Equa-
tion �53� has real roots between consecutive � j except when
sgn � j changes from 1 to −1. Therefore, there is a real root cj
in each interval �� j ,� j+1� except for the interval containing
the Fermi level. Since there are n−2 such intervals, n−2
roots are real while the remaining two can be complex. Due
to particle-hole symmetry �44� the complex roots must be
purely imaginary �see Fig. 9�. They also must be complex
conjugate to each other as Eq. �53� is invariant under com-
plex conjugation.

In the continuum limit the spacing between � j vanishes
and for the real roots we have cj �� j, i.e., L2�u� has a line of
double real zeros stretching from −D to D �Fig. 9�. To deter-
mine the two imaginary roots �i�, we rewrite Eq. �53� in the
integral form,

�
0

D � d�

� − i�
+

d�

� + i�
� =

2

�
.

Using Eq. �26�, we obtain in the weak-coupling regime �0
�D,

0
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FIG. 8. �Color online� Zeros of L2�u� for an excited anomalous
state in the complex u plane. This anomalous state has 2k=4 dis-
continuities at �= �a and �b in the spin component sz��� �inset�
leading to 2k double imaginary zeros �i�1,2. In addition, L2�u� has
a line of real double zeros from −D to D and single zeros �i�a,
where �a is the value of the order parameter in this state. In the
present case, there are k=2 unstable modes that grow with rates
��1,2

2 −�a
2 giving rise to two-anomalous solitons shown in Fig. 5

�see Sec. III B 2�.
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� =
�0

2
. �54�

Thus, according to the discussion in Sec. III A, equations of
motion �Eq. �20�� linearized around the Fermi ground state
show n−1 stable modes with oscillation frequencies � j
�2� j and one unstable mode that grows as e2�t=e�0t.27,41

Note also that the z component of spins 2sz�� j�
=−sgn � j in the Fermi ground state experiences a single jump
at the Fermi level.

4. Excited normal state

Now consider a normal stationary state where sz�� j� has
three discontinuities. We require 2sz�� j�=−1 �Eq. �1�� for

large positive �negative� � j. Otherwise, the first term in Eq.
�22� is not minimized at large � j and single-particle states far
from the Fermi level are affected by the pairing interaction,
which is unphysical. Under these conditions the total number
of discontinuities in sz�� j� must be odd. Therefore, the next
option after the Fermi ground state that has one jump is a
state with three jumps in sz�� j�.

Let 2sj
z= lj =−sgn � j�� j

2−a2�, i.e., spins in the interval �� j�
�a point in directions opposite to those in the Fermi ground
state �see the insets of Fig. 10�. The solutions of L2�u�=0 are
determined in the same way as for the Fermi ground state. In
the present case, we find that there are n−4 double roots
located between � j and � j+1 except when lj and lj+1 have
different signs. The remaining four double roots can take
complex values. In the continuum limit, L2�u� has a line of
double zeros from −D to D and four isolated complex zeros
c= i�1,2 and c=−i�1,2 shown in Fig. 10, where

�1,2 =
�0

4
���0

2

16
− a2. �55�

Correspondingly, there are two unstable modes �one for each
pair of complex-conjugate zeros�. If a��0 /4, Eq. �55�
yields real �1,2 �Fig. 10�a�� and the unstable modes grow as
e2�1t and e2�2t. For a��0 /4 we have c= ��� i� �Fig.
10�b��, where �=�0 /4 and �=�a2−�0

2 /16. In this case un-
stable modes diverge in an oscillatory manner as e�2i�te2�t.
In general, a normal stationary state with 2k−1 discontinui-
ties in sz�� j� is characterized by up to 2k complex double
zeros of L2�u� and k unstable modes.

IV. NORMAL SOLITONS

In this section, we determine solutions of equations of
motion �Eq. �1�� that asymptote to normal stationary states at
t→ ��. In particular, we derive Eqs. �4�–�12� for normal
solitons �see also Figs. 1–3�. That these solutions are solitons
can be seen in a number of ways. First, these are trajectories
that connect an unstable equilibrium to itself, i.e., they start
in an unstable stationary state at t→−� and return to it at t

0
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-0.5

0

0.5

1
uS

z
(ε)

-D D

i∆0

-i∆0
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2

2

FIG. 9. �Color online� Zeros of L2�u� for the Fermi ground state
in the complex u plane. The single discontinuity �k=1� in the spin
component sz��� at �=0 �see the inset� leads to a single �2k−1
=1� pair of complex double zeros at �i�0 /2, where �0 is the order
parameter in the BCS ground state. There is also a line of double
real zeros stretching from −D to D, where D is the high-energy
cutoff on the single-fermion states participating in BCS Hamil-
tonian �17�. Frequencies � of small oscillations around this state are
related to the zeros c as �=2c �see Sec. III A�. In the present case,
there is a single �k=1� unstable mode that grows with the rate �
=�0 giving rise to k=1 normal soliton shown in Fig. 1.
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FIG. 10. �Color online� Zeros of L2�u� for an excited normal state characterized by 2k−1=3 jumps in the spin component sz��� at �
= �a �insets�. There are k=2 pairs of complex-conjugate double zeros �identified with crosses� leading to k=2 normal-soliton solutions
shown in Fig. 2. The complex zeros are determined by a and the ground-state gap �0 �see Eq. �55��. �a� corresponds to the case 4a��0 and
Figs. 2�a� and �b� corresponds to 4a��0 and Fig. 2�b�.
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→�. This is typical of solitons42 �see the paragraph preced-
ing Eq. �4��. Second, as we will show in a certain regime the
solution splits into a sum of single solitons as it should.50

Finally, in contrast to the general solution these solutions are
in terms of elementary functions.51

A. General k-normal-soliton solution

Consider a general normal stationary state with 2k−1 dis-
continuities in sz�� j�. Suppose L2�u�=Ln

2�u� has 2k complex
double zeros c1 ,c2 , . . . ,c2k, i.e., there are k unstable modes in
the linear analysis. Let us solve equations of motion for sepa-
ration variables �Eq. �36�� for this state.

First, we derive a useful equation for the time-dependent
gap function ��t�. Ln�u� has 2k complex-conjugate zeros
c1 ,c2 , . . . ,c2k and n−2k real zeros. Bringing Eq. �41� to a
common denominator, we obtain

Ln�u� = −
1

g

P2k�u�Rn−2k�u�



m

�u − �m�
, �56�

where P2k�u�=
r=1
2k �u−cr� and Rn−2k�u� represents the contri-

bution of the real zeros. Both these polynomials have real
coefficients. Equation �31� yields

�Lz�u� − Ln�u���Lz�u� + Ln�u�� = − L−�u�L+�u� . �57�

This equation implies

Lz�u� + Ln�u� = −
2

g

Sk�u�Sk
��u�Rn−2k�u�



m

�u − �m�
,

Lz�u� − Ln�u� = −
g

2
J−J+

Tk−1�u�Tk−1
� �u�Rn−2k�u�



m

�u − �m�
, �58�

L−�u� = J−
Sk�u�Tk−1�u�Rn−2k�u�



m

�u − �m�
, �59�

where Sk�u� and Tk−1�u� are polynomials in u of orders k and
k−1, respectively. The coefficient at highest power of u is
equal to unity in all polynomials. The coefficients of Sk

��u�
are complex conjugate to those of Sk�u� and similarly for
Tk−1

� �u�. The prefactors in Eqs. �58� and �59� are obtained
from large u behavior. For example, Eqs. �28� and �41� imply
Lz�u�+Ln�u��−2 /g at u→�. The right-hand side of the first
equation in Eq. �58� has the same large u asymptote. The
polynomial Rn−2k�u� is common to all components of L�u�
since any real zero of L2�u� is also a zero of Lx,y,z.

48 Sub-
tracting the second equation in Eq. �58� from the first one
and using Eq. �56�, we derive

P2k�u� = Sk�u�Sk
��u� +

���2

4
Tk−1�u�Tk−1

� �u� , �60�

where we used ��t�=gJ−�t�. We will need this equation be-
low to determine ���t��.

Now consider equations of motion �Eq. �36��. It follows
from Eq. �31� and definition �32� of separation variables uj

that L2�uj�=Lz
2�uj�. Comparing the large u behavior of

�L2�u�→1 /g and Lz�u�→−1 /g, we conclude that �L2�uj�
=−Lz�uj�. Equation �36� takes the following form:

�
j=1

2k−1
uj

lduj

L̃z�uj�

m

�uj − �m�
= 0, l = 0, . . . ,2k − 3,

�
j=1

2k−1
uj

2k−2duj

L̃z�uj�

m

�uj − �m�
= − 2igdt , �61�

where L̃z�u�=Lz�u� /Rn−2k. Equations �32� and �59� imply that
unfrozen separation variables u1 , . . . ,u2k−1 are the roots of
Sk�u�Tk−1�u�. Let u1 , . . . ,uk−1 be the roots of Tk−1�u� and

uk , . . . ,u2k−1 the roots of Sk�u�. Equation �58� reads L̃z�uj�
= L̃n�uj� for j=1, . . . ,k−1 and L̃z�uj�=−L̃n�uj� for j

=k , . . . ,2k−1, where L̃n�u�=Ln�u� /Rn−2k. Further, using Eq.
�56�, we obtain from Eq. �61�

�
j=k

2k−1
uj

lduj

P2k�uj�
− �

j=1

k−1
uj

lduj

P2k�uj�
= − 2idt�l,2k−2, l = 0, . . . ,2k − 2.

�62�

Equation �62� does not contain square roots in contrast to
Eq. �36� and can be integrated in elementary functions. To do
so, we expand the ratios ul / P2k�u� in elementary fractions,

ul

P2k�u�
= �

m=1

2k
cm

l

�u − cm� 

j�m

�cm − cj�
, l � 2k . �63�

This identity can be verified by comparing residues at poles
u=cm on both sides. Using expansion �63� in Eq. �62�, we
obtain

�
m=1

2k
cm

l dxm



j�m

�cm − cj�
= − 2idt�l,2k−2, �64�

where l=0, . . . ,2k−2 and

dxm = �
j=k

2k−1
duj

uj − cm
− �

j=1

k−1
duj

uj − cm
= d ln

Sk�cm�
Tk−1�cm�

,

xm �
Sk�cm�

Tk−1�cm�
. �65�

Integration of Eq. �64� results in

�
m=1

2k
cm

l xm



j�m

�cm − cj�
= − 2it�l,2k−2 + E�cl�, l = 0, . . . ,2k − 2,

�66�

where E�cl� are the integration constants. These equations
are linear in xm with the general solution,

EMIL A. YUZBASHYAN PHYSICAL REVIEW B 78, 184507 �2008�

184507-12



xm = − 2icmt + Ẽ�cm� + G�t� . �67�

Ẽ�cm� are new time-independent constants and G�t� is an
arbitrary function of t.

Using the definition of xm in Eq. �65�, we find

Sk�cm�
Tk−1�cm�

= − A�cm�F�t�e−2icmt, m = 1, . . . ,2k , �68�

where A�cm� are complex constants and F�t� is a function of
time to be determined below. Equation �68� is a system of 2k
linear equations for 2k−1 coefficients of polynomials Sk�u�
and Tk−1�u�. The compatibility condition for this linear sys-
tem yields a linear equation for the function F�t�. We derive

F�t� = �− 1�k22k−2Dk−1

Dk
, �69�

where the determinant Dr is given by

Dr = � f . . . f �r−1�

] ]

f �r−1� . . . f2�r−1� � , �70�

where f �j� is the jth derivative of the function f�t� with re-
spect to t, and

f�t� = �
m=1

2k
A�cm�e−2icmt



l�m

�cm − cl�
. �71�

To relate �F�t�� to ���t��, we use Eq. �60�. This equation
also imposes certain restrictions on complex constants A�cm�.
Setting u=cm in Eq. �60� and using the fact that cm are the
roots of P2k�u�, P2k�cm�=0, we obtain

S�cm�
T�cm�

S��cm�
T��cm�

= −
���2

4
. �72�

Note that while the coefficients of the polynomial Sm
� �u� are

complex conjugate to those of Sm�u�, S��cm� is not complex
conjugate to S�cm� since cm is complex. Instead, we have
S��cm�= �S�cm

� ���, i.e., S��cm� is conjugate to S�cm
� �. Using this

and Eq. �68�, we obtain from Eq. �72�

A�cm�A��cm
� ��F�t��2 = −

���t��2

4
, �73�

where A��cm
� � is the complex conjugate of A�cm

� �—the con-
stant corresponding to the zero cm

� complex conjugate to cm
�recall that the zeros cj of L2�u� come in complex-conjugate
pairs�. Equation �73� implies that the product A�cm�A��cm

� � is
independent of m. With no loss of generality we set

A�cm�A��cm
� � = − 1. �74�

Any other real value will rescale �F�t�� without affecting
���t��. Therefore, we have ���t��=2�F�t�� and

���t�� = 22k−1�Dk−1

Dk
� . �75�

It follows from Eq. �74� that the constants A�cm� can be
parametrized as follows:

A�cl� = e
l+i	l, A�ck+l� = − e−
l+i	l, �76�

where 
l and 	l are arbitrary real parameters and we ordered
the 2k zeros cm so that ck+l=cl

� and Im�cl��0 for l
=1, . . . ,k.

Equations �68�, �70�, �71�, �75�, and �76� fully describe
the general k-normal-soliton solution �examples for k=1, 2,
and 3 are shown in Figs. 1–3, respectively�. They contain 2k
zeros cm fixed by the normal stationary state corresponding
to this solution. This state has 2k−1 discontinuities in sz��m�.
The zeros cm are the roots of the equation Ln�u�=0, where
Ln�u� is given by Eq. �41�. The 2k real parameters 
l and 	l
in Eq. �76� are arbitrary. That the general k-normal soliton
should be indeed characterized by 2k arbitrary real param-
eters is seen from the discussion in the paragraph following
Eq. �35�. As mentioned there �see Refs. 29 and 33 for de-
tails�, a real double zero of L2�u� effectively reduces the
number of degrees of freedom �spins� by 1. Since in the
present case we have n−2k such roots, it can be described by
2k effective spins. Then, there are 4k initial conditions �two
angles per each spin�. 2k of these are determined by the 2k
integrals of motion cm, while the other 2k correspond to 
l
and 	l.

B. Matching soliton constants to spin configuration at large
negative time

Here we show that k soliton �70� tends to a normal sta-
tionary state in t→ �� limits and relate the constants 
l and
	l to the deviations of spins from this state at large negative
times.

First, let us evaluate expression �70� for large negative t.
To this end, we keep in Eq. �71� only the exponents that
diverge in the t→−� limit, i.e., the k terms that have
Im�cm��0. After some manipulations with the rows of de-
terminants Dk and Dk−1, we derive

���t�� = 2��
m=1

k e−2icmte
m+i	m�cm − cm
� �


i

�cm − ci
��



i�m

�cm − ci� � .

�77�

We see that ���t���e−2�t at large negative t, where � is the
minimum of �Im�cm��. Quantities J��t� and F�t� behave in the
same way as they are proportional to ���t��. According to Eq.
�68� as t→−� either Sk�cm�→0 or Tk−1�cm�→0 except for
the zero cm with Im�cm�= i�. Since the unfrozen separation
variables are the roots of either Sk�u� or Tk−1�u� �see Eqs.
�32� and �59��, they must tend to their stationary-state posi-
tions cm. Observe also that since J��t�→0 Eqs. �57� and �59�
mean Lz�u�→Ln�u� and L−�u�→0. It follows from definition
�28� of L�u� and Eq. �41� that sj

x,y→0 and sj
z→ lj /2. Thus,

the k-normal soliton tends to the normal stationary state that
has the same values of zeros ci. The analysis of the t→�
limit is completely analogous.

Next, consider the limiting stationary state. There are 2k
zeros ci and only 2k−1 unfrozen separation variables, i.e.,
one of the zeros ci �say cr� remains vacant. Suppose spins
deviate from this stationary state keeping the values of inte-
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grals of motion ci the same. Since J−=0 in normal states, Eq.
�33� yields to the linear order in the deviation,

sj
− = J−

Rn−2k�� j�

i

�� j − ui
�0��



i�j

�� j − �i�
, �78�

where ui
�0�=ci are the stationary positions of the unfrozen

separation variables and Rn−2k�� j� is the contribution of the
frozen ones. The frozen variables are located in real zeros of
Ln�u�, which are also the zeros of Rn−2k�u� �see Eq. �56��.
Further, Eqs. �41� and �56� imply

−
1

g
+ �

j=1

n
lj

2�u − � j�
= −

1

g

Rn−2k�u��u − cr�

i

�u − ui
�0��



m

�u − �m�
.

�79�

Equating the residues at poles u=� j on both sides, we obtain

Rn−2k�� j�

i

�� j − ui
�0��



i�j

�� j − �i�
= −

ljg

2�� j − cr�
.

Substituting this into Eq. �78�, we find

sj
−�t� = − gJ−�t�

lj

2�� j − cr�
. �80�

Finally, J−�t� is determined from Eq. �42�, which was also
derived in a linear analysis around normal stationary states.
The difference is that there we considered generic deviations
when the integrals of motion ci also deviate from their
stationary-state values. Nevertheless, Eq. �42� is the same in
both cases and integrating it, we obtain

��t� = gJ−�t� = �re
−2icrt, �81�

sj
−�t� = − �r

lje
−2icrt

2�� j − cr�
. �82�

These are particular solutions of the linearized equations of
motion. They describe an unstable mode with complex fre-
quency 2cr.

The general solution �with ci fixed to their stationary-state
values� is a superposition of all modes, i.e.,

��t� = gJ−�t� = �
r=1

k

�re
−2icrt, �83�

sj
−�t� = − �

r=1

k

�r
lje

−2icrt

2�� j − cr�
. �84�

Note that these equations contain only cr such that Im�cr�
�0, same as in Eq. �77�, to ensure that the deviations are
indeed small at large negative t. Comparing Eqs. �77� and
�83�, we find

�m =

2�cm − cm
� �


i

�cm − ci
��



i�m

�cm − ci�
e
m+i	m, Im�cm� � 0.

�85�

Equations �84� and �85� specify deviations of spins from
their normal stationary-state positions necessary to generate
the k-normal soliton �75�. Indeed, an arbitrary choice of real

m, 	m and large negative t= t0 determines �m and deviations
of spins �Eq. �84��. Equations of motion �Eq. �20�� started at
t= t0 with these initial conditions produce the k-soliton solu-
tion �75� with the same values of ci as those in the stationary
state. On the other hand, note that generic deviations of spins
will modify ci �see, e.g., the text following Eq. �39�� and will
not lead to solitons.

C. Examples of one- and two-normal solitons

In this section, we consider k=1 and k=2 normal solitons
in more detail �see also Sec. I�.

One-normal soliton. The single normal-soliton solution
�Fig. 1� has been previously found in Ref. 27. Here we de-
rive it from the general k soliton ��75�� as its simplest par-
ticular case to illustrate our construction of multisoliton so-
lutions. In this case k=1 and L2�u� has two complex double
zeros c1=c2

���+ i� as illustrated in Fig. 9. The correspond-
ing normal stationary state has a single discontinuity in the z
component of spin �inset of Fig. 9�, i.e., it is the Fermi
ground state �see Sec. III B�. We have seen that in the
particle-hole symmetric case 2sj

z=−sgn � j, �=0, and �
=�0 /2.

Equations �69�, �71�, and �73� yield

A�c1� = e
+i	, A�c2� = − e−
+i	,

F = − i
�

cosh�2�t + 
�
e2i�t−i	

and

���t�� = 2�F�t�� =
2�

cosh�2�t + 
�
. �86�

Graphically, the single soliton is represented by a single peak
located at t0=−
 /2� �see Fig. 1�. The parameter � controls
the width and the height of the peak.

There is 2k−1=1 unfrozen separation variable u1. There-
fore, Sk�u�=u−u1 and Tk−1�u�=1. Equation �68� implies

u1�t� = � − i� tanh�2�t + 
� . �87�

Note that u1→�� i�=c1,2 as t→ �� in agreement with the
results of Sec. IV B. The separation variable starts from the
complex zero �+ i� of L2�u� at t=−� and goes to the
complex-conjugate zero �− i� at t=� along the straight line
connecting the two zeros shown in Fig. 9.

Individual spin components can be derived from Eqs.
�56�, �59�, and �87�. We have
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Ln�u� = −
1

g

�u − c1��u − c1
��Rn−2�u�



m

�u − �m�
,

L−�u� = J−
�u − u1�Rn−2�u�



m

�u − �m�
.

Therefore,

L−�u� = − ��t�
�u − u1�

�u − c1��u − c1
��

Ln�u� .

Using expression �41� with lj =−sgn � j and comparing the
residues at poles at u=� j on both sides of the above equation,
we obtain27

sj
−�t� = sj

x�t� + isj
y�t� = ��t�

�� j − u1�t��sgn � j

2��� j − ��2 + �2�
.

Similarly, the second equation in Eq. �58� yields

sj
z�t� =

sgn � j

2
� ���t��2

�� j − ��2 + �2 − 1� .

Two-normal soliton. Now k=2 and L2�u� has four com-
plex zeros �Fig. 10�. The limiting excited normal state exhib-
its 2k−1=3 jumps in sz�� j� �see the inset of Fig. 10�. In Sec.
III B, we considered such a stationary state with 2sj

z

=−sgn � j�� j
2−a2� and determined the corresponding complex

zeros.
For a��0 /4 these zeros are purely imaginary �Fig.

10�a��, c1= i�1, c2= i�2, c3=−i�1, and c4=−i�2, where �1,2
are given by Eq. �55�. Equation �75� yields

���t�� = A� h�t�

h�t�ḧ�t� − ḣ2�t�
� , �88�

where A=4��2
2−�1

2� and

h�t� = ei	1
cosh�2�1t + 
1�

2�1
+ ei	2

cosh�2�2t + 
2�
2�2

. �89�

The plot of two-normal soliton �88� displays two peaks �see
Fig. 2�. Parameters 
1,2 determine the location of the peaks
in time, while �1,2 control their widths and heights. The two
solitons can be viewed as a nonlinear superposition of two
single solitons. At large separation between solitons in time,
�
1−
2��1, we obtain from Eq. �88�

���t�� �
2�1

cosh�2�1t + 
1 + ��
+

2�2

cosh�2�2t + 
2 − ��
,

�90�

where the phase shift � is

tanh � = sgn�
2 − 
1�
2�1�2

�1
2 + �2

2 .

In deriving Eq. �90� we neglected the terms of relative small-
ness e−�
1−
2�. We see that at large separation, the two-normal
soliton reduces to a simple sum of two single solitons as
shown in Fig. 2. This is a general property of solitons and

one can show that the general k-normal soliton �75� also
obeys this rule �see, e.g., Fig. 3 and Eq. �12��. For small
separation the two peaks merge into one.

When a��0 /4 in Eq. �55� the four roots of L2�u� have
the form ��� i� �Fig. 10�b��, where �=�0 /4 and �
=�a2−�0

2 /16. In this case the two-normal soliton is again
given by Eq. �88� where now A=16���2+�2 and

h�t� = e−2i�t+i	1
cosh�2�t + 
1 − i��

2�

+ e2i�t+i	2
cosh�2�t + 
2 + i��

2�
. �91�

An additional feature as compared to Eq. �89� is that here the
two terms “rotate” with frequency 4� with respect to one
another. For large separation, �
1−
2��1, this has no
effect—the plot of ���t�� still shows two peaks well separated
in time �dashed lines in Fig. 2�b��. Now the peaks are the
same, i.e., �1=�2=� in Eq. �89�. In contrast, when the sepa-
ration is small there is a single peak as in two-soliton solutin
�Eq. �89�� but with an amplitude modulated by an oscillation
with frequency ��4�=�0 �see Fig. 2�b��.

V. ANOMALOUS SOLITONS

In this section, we construct one- and two-anomalous soli-
tons �see also Figs. 4 and 5�—solutions of Bogoliubov–de
Gennes equations for ���t�� that asymptote to anomalous sta-
tionary states �Eq. �23�� as t→ ��. These solutions show
the same solitonic signatures as normal solitons �see the in-
troductory paragraph in Sec. IV�. In particular, they are ex-
pressed in terms of exponentials and multisolitons break up
into a sum of well separated single anomalous solitons in a
certain limit.

A. Single anomalous soliton as a special case of a three-spin
solution

A single soliton corresponds to the anomalous state with
one unstable mode in the linear analysis, i.e., L2�u� has two
double complex zeros in addition to single zeros u= � i�a
�see Sec. III A and Fig. 7�. We considered a state of this type
in Sec. III B. In this example, spins in the energy interval
�−a ,a� are flipped; em=sgn���m�−a� in Eq. �23� as shown in
Fig. 7 �inset�. In other words, Cooper pairs for single-particle
states −a���a are excited. This state is particle-hole sym-
metric �44� and the complex zeros of L2�u� are therefore
purely imaginary, u= � i�. As we have shown in Sec. III A,
this anomalous state is unstable for ���a.

For the particle-hole symmetric case equations of motion
�Eq. �20�� have the following form:

ṡ j
x = − 2� jsj

y, ṡ j
z = − 2�sj

y, ṡ j
y = 2�sj

z + 2� jsj
x, �92�

where �=g� jsj
x is real since � jsj

y =0 at all times. Let us solve
Eq. �92� under the condition that at t→−� the solution as-
ymptotes to the above anomalous state. As mentioned below
Eq. �32� and detailed in Refs. 29 and 33, when L2�u� has m
complex-conjugate zeros �the remaining 2n−2m zeros are
real� the problem is reduced to solving equations of motion
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�Eq. �92�� for m effective spins. In the present case m=3
�counting the pair of double zeros as two pairs� and therefore
we will need to solve Eq. �92� for three spins.

This reduction can be seen in Eqs. �34� and �35�. Suppose
Q2n�u� has only three pairs of complex-conjugate roots
�c1 ,c1

��, �c2 ,c2
��, and �c3 ,c3

��. There are only 3−1=2 unfrozen
separation variables, while the remaining n−3 are frozen into
the n−3 double real roots of Q2n�u� �see the text following
Eq. �32��. Suppose c is a real root and let un−1=c. Then
Q2n�uj� contains a factor �uj −c�2 which cancels uj −un−1
=uj −c in the denominator of Eq. �34�. This cancellation oc-
curs for all frozen separation variables and we obtain

u̇j =
2i�Q6�uj�



m�j

�uj − um�
, j,m = 1,2, �93�

J̇− = 2iJ−�u1 + u2� , �94�

where Q6�u�=
i=1
3 �u−ci��u−ci

��. Equation �94� follows from
Eq. �35� since � j� j, Jz, and the sum of frozen separation
variables, � j=3

n−1uj, vanish due to the particle-hole symmetry.52

We see that equations of motion �93� and �94� are exactly the
same as Eqs. �34� and �35� for n=3 in the particle-hole sym-
metric case. Since the latter equations and Eq. �92� are
equivalent, Eqs. �93� and �94� describe the motion of three
effective spins S1, S2, and S3. Note that J−�t� and conse-
quently ��t�=gJ−�t� are the same in both problems. More-
over, one can show29,33 that the original spins are linearly
related to the effective ones, i.e.,

s j = ajS1 + bjS2 + djS3. �95�

Thus, to construct a single anomalous soliton, we need to
solve Eq. �92� for three spins.

First, let us obtain a general three-spin solution for which
Q6�u� has three distinct pairs of complex-conjugate roots. As
discussed above, the soliton corresponds to the special case
when two of these pairs, �i�, are degenerate. The third pair
is u= � i�a and therefore Q6�u�= �u2+�2�2�u2+�a

2�. The
particle-hole symmetry of the three-spin problem implies
�1=−�, �2=0, �3=�, and

S1
x = S3

x � Sx, − S1
y,z = S3

y,z � Sy,z, S2
x = −

1

2
, S2

y,z = 0.

�96�

Using �=g�m=1
3 Sm

x =2gSx−g /2 and integrating Eq. �92�, we
determine the effective spins,

Sx =
�

2g
+

1

2
, Sy = −

�̇

4g�
, Sz =

�2

4g�
+ C , �97�

where C is an integration constant. Combining Eqs. �95� and
�97�, we derive the original spins in terms of ��t�,

sj
x = Aj� + Fj, sj

y = Bj�̇, sj
z = Cj�

2 + Dj , �98�

where Aj, Bj, Cj, Dj, and Fj are time independent. The con-
stants Bj, Cj, and Dj are odd in � j, while Aj and Fj are even

by particle-hole symmetry �44�, i.e., Bj �B�� j�=−B�−� j�, etc.
Since �=g� jsj

x we also have

g�
j=1

n

Aj = 1, �
j=1

n

Fj = 0. �99�

Equation �98� is similar to the ansatz of Ref. 27, which is
obtained by setting Fj =0. Nevertheless, this difference is im-
portant as this ansatz yields two-spin solutions,29 while here
we construct three-spin ones.

Substituting Eq. �98� into equations of motion �Eq. �92��,
we find

Aj = − 2� jBj, Cj = − Bj, Fj =
2c1Bj

� j
, Dj = 2�� j

2 − c2�Bj ,

Bj = −
� jej

4�Q6�� j�
, Q6�u� = u2�u2 − c2�2 + c1

2 − c3u2,

�100�

where ej = �1. Since Bj is odd, ej must be even, e�� j�
=e�−� j�. The polynomial Q6�u� is the same spectral polyno-
mial that appears in Eq. �93� �see the discussion of few spin
solutions in Refs. 29 and 33�. The coefficients of the poly-
nomial Q6�u� are constrained by Eq. �99�. Plugging Eq.
�100� into Eq. �99�, we obtain

�
j=1

n
ej

�Q6�� j�
= 0, �

j=1

n
� j

2ej

�Q6�� j�
=

2

g
, �101�

which provides two constraints on three parameters c1, c2,
and c3. Thus, three-spin solutions constructed here are a one-
parameter family of solutions to Eq. �92�.

It remains to determine ��t� for three-spin solutions. The
equation for ��t� can be obtained from the condition that the
length of spins is conserved by the evolution, s j

2=1 /4. With
the help of Eqs. �98� and �100� this condition reduces to

�̇2 = − P4���, P4��� = �4 + 4c2�2 − 8c1� + 4c3.

�102�

For general P4��� the solution of this equation is an elliptic
function. Here we are only interested in an anomalous soli-
ton. As discussed above, it corresponds to a special choice of
the spectral polynomial Q6�u�= �u2+�2�2�u2+�a

2�. According
to the expression for Q6�u� in Eq. �100�, this implies

c1 = − �2�a, c2 = −
�a

2

2
− �2, c3 =

�a
4

4
− �2�a

2.

For these values of the parameters, Eq. �102� for the order
parameter takes the form

�̇2 = − �� − �a�2��2 + 2��a + �a
2 − 4�2� . �103�

Now the fourth order polynomial on the right-hand side has
a double root �a, which means that Eq. �103� can be solved
by elementary means. Note also that the stationary-state
value ��t�=�a is also a solution. In terms of a new variable
y= ��−�a�−1 Eq. �103� reads ẏ2=�2y2−4�ay−1, where �
=2��2−�a

2. We obtain
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��t� − �a =
�2

2�a � 2� cosh��t + 
�
, � = 2��2 − �a

2.

�104�

The constraints �Eq. �101�� become the gap �Eq. �24�� and
the equation determining imaginary zeros �i� of L2�u�,

�
j

ej

�� j
2 + �2��� j

2 + �a
2

= 0, �
j

ej

�� j
2 + �a

2
=

2

g
.

We solved these equations in Sec. III B �see Eqs. �48� and
�50��.

Finally, Eq. �98� together with Eqs. �100� and �104� yield
the individual spin components for a single anomalous soli-
ton,

sj
x�t� =

ej� j
2���t� − �a�

2�� j
2 + �2��� j

2 + �a
2

+
ej�a

2�� j
2 + �a

2
,

sj
y�t� = −

ej� j�̇�t�

4�� j
2 + �2��� j

2 + �a
2

,

sj
z�t� =

ej� j��2�t� − �a
2�

4�� j
2 + �2��� j

2 + �a
2

−
ej� j

2�� j
2 + �a

2
. �105�

Equations �104� and �105� describe a single anomalous-
soliton solution to equations of motion �1� and �20�. Note
that for t→ �� the order parameter ��t�→�a and the spin
components tend to their stationary-state values �Eq. �23��.
For �a=0 the anomalous soliton �104� turns into the normal
one �Eq. �86��. Graphically, the anomalous soliton is repre-
sented by a single peak similarly to the normal soliton �see
Fig. 4�. Parameters �a and � control its width and height,
while 
 determines its position in time.

B. Two-anomalous-soliton solutions

Two and higher anomalous solitons can be derived by
solving equations of motion for the separation variables �Eq.
�36�� similarly to the construction of normal solitons above.
The k-anomalous soliton corresponds to a root diagram of
L2�u� with k double complex zeros c1 , . . . ,ck and a pair of
single zeros �i�a. Then, the denominator of Eq. �36� is
�u2+�a

2
i�u−ci�, i.e., only a second-order polynomial re-
mains under the square root. In this case, Eq. �36� can be
integrated in elementary functions. However, here we restrict
ourselves to the two-soliton case and adopt a simpler ap-
proach to construct it.

Spin components of the anomalous stationary state, to
which the k-soliton asymptotes at large times, display 2k
discontinuities. We analyzed an example with four disconti-
nuities in Sec. III B �see also Fig. 8�. In this example spins in
energy intervals �−b ,−a� and �a ,b� are flipped, which means
em=sgn���m�−a����m�−b� in Eq. �23�. L2�u� has four complex
double zeros �i�1,2 in addition to single zeros �i�a as il-
lustrated in Fig. 8. We assume �2��1��a. Therefore, there
are two unstable modes in linear analysis with growth rates
�1,2=2��1,2

2 −�a
2�1/2 �see Sec. III A�. The two-anomalous soli-

ton must have the following properties: �a� ��t�→�a as t
→ �� while at large t it should reproduce the linear analy-
sis, �b� for �a=0 it should be equivalent to the two-normal
soliton described by Eqs. �88� and �89�, and �c� in a certain
regime the two-soliton must break up into a sum of two
single solitons �Eq. �104��. This suggests the following an-
satz for the two-soliton:

��t� − �a =
f

f f̈ − ḟ2
, �106�

f = a0 +
a1

�1
cosh��1t + 
1� +

a2

�2
cosh��2t + 
2� , �107�

where a0, a1, and a2 are time-independent parameters. To
determine them, we require that for �
2−
1��1 the two-
soliton be well approximated by a sum of two single anoma-
lous solitons �cf. Eq. �90��,

��t� − �a �
�1

2

2�a � 2�1 cosh��1t + 
1 + ��

+
�2

2

2�a � 2�2 cosh��2t + 
2 − ��
. �108�

Neglecting terms of relative smallness e−�
1−
2� in Eq. �106�,
we indeed obtain Eq. �108� when tanh�� /2�=�1 /�2 and

f =
2�a

�1
2�2

2 �
2�1

�1
2��2

2 − �1
2�

cosh��1t

+ 
1� �
2�2

�2
2��2

2 − �2
2�

cosh��2t + 
2�, �1,2 = 2��1,2
2 − �a

2.

�109�

Further, one can verify that the two-anomalous soliton given
by Eqs. �106� and �109� also has properties �a� and �b� dis-
cussed above. Its plot consists of two peaks leveling off to
the stationary value �a at large times �see Fig. 5�. The am-
plitudes and the widths of these peaks are determined by
parameters �1, �2, and �a.

VI. CONCLUSION

In this paper, we constructed soliton solutions of time-
dependent Bogoliubov–de Gennes equations �Eqs. �1�� or,
equivalently, Gorkov equations �Eqs. �20�� describing the
collisionless dynamics of a fermionic superfluid. There are
two types of solitons. Normal solitons asymptote at t
→ �� to normal stationary states �Eq. �27��, which are si-
multaneous eigenstates of the mean-field BCS Hamiltonian
�3� and the Fermi gas. These states are characterized by zero-
order parameter, �=0. We have derived the general
k-normal-soliton solution �Eqs. �70�, �71�, and �75�� and
matched the soliton constants to small deviations from the
corresponding stationary state. We considered two-soliton
example �88� in detail and related its parameters to those of
the asymptotic stationary state. Examples of k=1, 2, and 3
normal-soliton solutions are shown in Fig. 1–3. At large
separation between the solitons, the k soliton becomes a
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simple sum of k single solitons �see, e.g., Eq. �90� and Figs.
2 and 3�.

Anomalous solitons asymptote to unstable eigenstates of
the mean-field BCS Hamiltonian �23� with nonzero anoma-
lous average. We have obtained one �Eqs. �104� and �105�
and Fig. 4� and two �Eqs. �106� and �109� and Fig. 5�
anomalous-soliton solutions and related their parameters to
those of the corresponding stationary states. The single soli-
ton is a special case of a more general three-spin solution,
which we have also derived. In the vicinity of a stationary
state, both normal and anomalous multisolitons break up into
a sum of single solitons. These single solitons are unstable
normal modes in the linear analysis around the stationary
state.

The utility of the soliton solutions is that they are explicit
and are in terms of elementary functions �exponents�, in con-
trast to the general solution in terms of hyperelliptic
functions.29 At the same time, the dynamics in many physical
situations is multisoliton. The combination of these two fac-
tors makes solitons potentially quite useful in various prob-
lems in nonstationary superfluidity. Consider, for example,
the collisionless dynamics triggered by an abrupt change in
the pairing strength. In most cases of interest L2�u� has only

few isolated zeros, while the remaining complex zeros merge
into continuous lines.34 We believe that the latter zeros can
be treated as being degenerate and their contribution is there-
fore multisoliton. The solution is then a superposition of a
�quasi-�periodic few spin solution29,30,33 with a multisoliton
one. Superpositions of this type are referred to as solitons on
a �quasi-�periodic background in the soliton theory.53 In par-
ticular, when the system is in the ground state before the
coupling change, the collisionless dynamics governed by Eq.
�1� can produce asymptotic states with a constant nonzero
order parameter or a gapless state.34–36 In these cases L2�u�
has either a single pair of nondegenerate zeros or no such
zeros. Therefore, according to the above reasoning, the dy-
namics leading to these asymptotic states is described by a
multisoliton solution of a normal type for the gapless state
and of an anomalous type otherwise.

ACKNOWLEDGMENTS

We thank M. Dzero for many stimulating discussions.
This research was financially supported by the National Sci-
ence Foundation under Award No. NSF-DMR-0547769 and
the David and Lucille Packard Foundation.

1 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, Nature �London� 391,
156 �1998�.

2 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science 281, 540 �1998�.

3 W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzer-
man, S. Tarucha, and L. P. Kouwenhoven, Science 289, 2105
�2000�.

4 J. Nygård, D. H. Cobden, and P. E. Lindelof, Nature �London�
408, 342 �2000�.

5 A. Kaminski, Yu. V. Nazarov, and L. I. Glazman, Phys. Rev.
Lett. 83, 384 �1999�.

6 P. Coleman, C. Hooley, and O. Parcollet, Phys. Rev. Lett. 86,
4088 �2001�.

7 A. Rosch, J. Paaske, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 90,
076804 �2003�.

8 A. Mitra and A. J. Millis, Phys. Rev. B 72, 121102�R� �2005�.
9 P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 �2006�.

10 T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S.
Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, Nat.
Phys. 1, 57 �2005�.

11 M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 �2006�.
12 R. Bistritzer and E. Altman, Proc. Natl. Acad. Sci. U.S.A. 104,

9955 �2007�.
13 V. Gritsev, E. Demler, M. Lukin, and A. Polkovnikov, Phys.

Rev. Lett. 99, 200404 �2007�.
14 K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 �2004�.
15 A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G.

Tischler, A. Shabaev, Al. L. Efros, D. Park, D. Gershoni, V. L.
Korenev, and I. A. Merkulov, Phys. Rev. Lett. 94, 047402
�2005�.

16 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 �2005�.

17 E. A. Laird, J. R. Petta, A. C. Johnson, C. M. Marcus, A. Ya-
coby, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 97,
056801 �2006�.

18 A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88,
186802 �2002�.

19 S. I. Erlingsson and Y. V. Nazarov, Phys. Rev. B 66, 155327
�2002�.

20 I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65,
205309 �2002�.

21 R. de Sousa and S. Das Sarma, Phys. Rev. B 67, 033301 �2003�.
22 K. A. Al-Hassanieh, V. V. Dobrovitski, E. Dagotto, and B. N.

Harmon, Phys. Rev. Lett. 97, 037204 �2006�.
23 V. P. Galaiko, Sov. Phys. JETP 34, 203 �1972�.
24 A. F. Volkov and Sh. M. Kogan, Sov. Phys. JETP 38, 1018

�1974�.
25 Yu. M. Gal’perin, V. I. Kozub, and B. Z. Spivak, Sov. Phys.

JETP 54, 1126 �1981�.
26 V. S. Shumeiko, Ph.D. thesis, Institute for Low Temperature

Physics and Engineering, 1990.
27 R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev. Lett.

93, 160401 �2004�.
28 M. H. S. Amin, E. V. Bezuglyi, A. S. Kijko, and A. N. Omely-

anchouk, Low Temp. Phys. 30, 661 �2004�.
29 E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.

Enolskii, J. Phys. A 38, 7831 �2005�.
30 E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.

Enolskii, Phys. Rev. B 72, 220503�R� �2005�.
31 M. H. Szymańska, B. D. Simons, and K. Burnett, Phys. Rev.

Lett. 94, 170402 �2005�.
32 G. L. Warner and A. J. Leggett, Phys. Rev. B 71, 134514 �2005�.

EMIL A. YUZBASHYAN PHYSICAL REVIEW B 78, 184507 �2008�

184507-18



33 E. A. Yuzbashyan, V. B. Kuznetsov, and B. L. Altshuler, Phys.
Rev. B 72, 144524 �2005�.

34 E. A. Yuzbashyan, O. Tsyplyatyev, and B. L. Altshuler, Phys.
Rev. Lett. 96, 097005 �2006�.

35 R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 96, 230403
�2006�.

36 E. A. Yuzbashyan and M. Dzero, Phys. Rev. Lett. 96, 230404
�2006�.

37 M. Dzero, E. A. Yuzbashyan, B. L. Altshuler, and P. Coleman,
Phys. Rev. Lett. 99, 160402 �2007�.

38 J. Bardeen, L. N. Cooper, and J. R. Schriefer, Phys. Rev. 108,
1175 �1957�.

39 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,
New York, 1996�.

40 P. W. Anderson, Phys. Rev. 112, 1900 �1958�.
41 E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 �1966�.
42 V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd

ed. �Springer-Verlag, New York, 1989�, Appendix 13.
43 R. W. Richardson, J. Math. Phys. 18, 1802 �1977�.
44 P. W. Anderson, J. Phys. Chem. Solids 11, 26 �1959�.
45 L. P. Gorkov, Sov. Phys. JETP 7, 505 �1958�.

46 E. K. Sklyanin, J. Sov. Math. 47, 2473 �1989�; Prog. Theor.
Phys. Suppl. 118, 35 �1995�.

47 V. B. Kuznetsov, J. Math. Phys. 33, 3240 �1992�.
48 Indeed, the numerators of Lx�u�, Ly�u�, and Lz�u� are polynomi-

als in u with real coefficients. Let c be a real �double� zero of
L2�u� and let ax, ay, and az be the remnants from the division of
these polynomials by �u−c�. Since c is real ax,y,z are also real. It
follows from Lx

2�u�+Ly
2�u�+Lz

2�u�=L2�u� that ax
2+ay

2+az
2=0,

i.e., ax=ay =az=0.
49 Note however that since L2�u� is conserved by the evolution, the

roots of Q2n�u� are constants of motion.
50 L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the

Theory of Solitons �Springer-Verlag, Berlin, 1987�.
51 S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Za-

kharov, Theory of Solitons: The Inverse Scattering Method
�Consultants Bureau, New York, 1984�.

52 The frozen separation variables are the solutions of Ls�u�=0,
where Ls�u� is given by Eq. �38�. Particle-hole symmetry implies
Ls�u�=−Ls�−u� and therefore � j=3

n−1 uj =0.
53 E. A. Kuznetsov and A. V. Mikhailov, Sov. Phys. JETP 40, 855

�1975�.

NORMAL AND ANOMALOUS SOLITONS IN THE THEORY… PHYSICAL REVIEW B 78, 184507 �2008�

184507-19


