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We study the mean-field dynamics of a fermionic condensate interacting with a single bosonic mode �a
generalized Dicke model�. This problem is integrable and can be mapped onto a corresponding BCS problem.
We derive the general solution and a full set of integrals of motion for the time evolution of coupled Fermi-
Bose condensates. The present paper complements our earlier study of the dynamics of the BCS model. Here
we provide a self-contained introduction to the variable separation method, which enables a complete analyti-
cal description of the evolution of the generalized Dicke, BCS, and other similar models.

DOI: 10.1103/PhysRevB.72.144524 PACS number�s�: 03.75.Kk, 03.75.Lm, 03.75.Nt

I. INTRODUCTION

A number of closely related nonstationary problems have
come up recently in different contexts. In these problems the
goal is to describe the dynamics of a many-body system
following a sudden perturbation that drove the system out of
an equilibrium. The system in question can be a BCS
superconductor,1–11 coupled Fermi-Bose condensates,12,13 or
a single electronic spin interacting with many nuclear spins
�the central spin model�.14–20 A common feature of all these
problems is that they can be formulated in terms of spin
Hamiltonians, which belong to a class of integrable systems
known as Gaudin magnets.21–23 It turns out that this fact
enables one to solve for the evolution of all these systems
using the same approach.

In the present paper we focus on a particular example of
such a problem. Namely, we study the dynamics of a fermi-
onic condensate interacting with a single bosonic mode. Re-
cent studies of this problem12,13 were motivated by
experiments24–27 on cold fermion pairing. The idea was that
near the Feshbach resonance28,29 these systems can be mod-
eled by a fermionic condensate of atoms strongly coupled to
the lowest energy bosonic mode.

We assume that the system has been prepared in a non-
equilibrium state at t�0 and study the subsequent evolution
for t�0. Our main result is a complete solution for the dy-
namics of the system. We also derive a full set of its integrals
of motion. It turns out that the mean-field time evolution of
the coupled Fermi-Bose condensates can be mapped onto the
corresponding BCS problem, which was solved previously in
Refs. 9 and 10. For this reason, the emphasis in the present
paper is on this mapping and detailed or alternative deriva-
tions that have been largely omitted in Refs. 9 and 10.

The fermion-boson condensate is described by the follow-
ing Hamiltonian:

Ĥ = �
j,�

� jĉ j�
† ĉj� + �b̂†b̂ + g�

j

�b̂†ĉj↓ĉj↑ + b̂ĉj↑
† ĉj↓

† � ,

�1.1�

where � j are the single-particle energy levels and the opera-
tors ĉj�

† �ĉj�� create �annihilate� a fermion of one of the two

species �=↑ or ↓ in an orbital eigenstate of energy � j. Eigen-
states �j↑ � and �j↓ � are related by the time-reversal
symmetry.30 For example, if the single-particle potential is
translationally invariant, �j↑ �= �p↑ � and �j↓ �= �−p↓ �. Opera-
tors b̂† �b̂� create �annihilate� quanta of the bosonic field.

We study the dynamics of the fermion-oscillator model
�1.1� in the mean-field approximation. This amounts to treat-
ing the bosonic field classically, i.e., replacing operators b̂†

and b̂ with c numbers in the Heisenberg equations of motion
for Hamiltonian �1.1�. This procedure is expected to be valid
as long as the bosonic mode is macroscopically populated. It
turns out that in this approximation the dynamics coincides
with that of a classical Hamiltonian system, which can be
mapped onto the corresponding BCS problem �see below�.
The classical dynamical variables are the time-dependent

quantum-mechanical expectation values �ĉj↓ĉj↑�, �b̂�, and
���ĉj�

† ĉj��. We will see below that the mean-field approxi-
mation is also equivalent to the usual way of obtaining the
classical limit—by replacing operators with classical vari-
ables and their commutators with Poisson brackets.

Here we assume that the number of energy levels, n, in-
teracting with the bosonic field in the system �1.1� is arbi-
trarily large, but finite. In this case the typical evolution is
quasiperiodic with n+1 incommensurate frequencies. The
system exhibits irregular multifrequency oscillations ergodi-
cally exploring the part of the phase space allowed by the
conservation laws, returning arbitrarily close to its initial
state at irregular time intervals. For finite n, the solution,
albeit explicit, is rather complicated. However, it consider-
ably simplifies in the thermodynamic limit n→�. In this
limit,31 the return time diverges for most physical initial con-
ditions, while the solution decays to a simple limiting dy-
namics at large times.32 For example, following an initial

decay, ��b̂�t��� asymptotes either to a constant value �cf. Refs.
2, 3, 7, and 11� or to an oscillatory behavior characterized by
only a few frequencies �cf. Fig. 2 in Refs. 4 and 6�.

The fermion-oscillator model �1.1� can be viewed as a
generalization of the Dicke �Tavis-Cummings� model of
quantum optics. The latter can be obtained from �1.1� in the
zero fermionic bandwidth limit, i.e., when all single-particle
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levels � j are degenerate, � j =�. To see this, it is useful to
reformulate the model �1.1� as a spin-oscillator model using
Anderson’s pseudospin representation.1 Pseudospins are de-
fined as

2K̂j
z = n̂j − 1, K̂j

− = ĉj↓ĉj↑, K̂j
+ = ĉj↑

† ĉj↓
† , �1.2�

where n̂j =��ĉj�
† ĉj�. Operators K̂ j have all properties of spin-

1
2 on the subspace of unoccupied and doubly occupied �un-
blocked� levels � j. Singly occupied �blocked� levels do not
interact with the bosonic field and are decoupled from the
dynamics. In terms of pseudospins the Hamiltonian �1.1� for
n unblocked levels takes the form

Ĥ = �
j=0

n−1

2� jK̂j
z + �b̂†b̂ + g�

j=0

n−1

�b̂†K̂j
− + b̂K̂j

+� . �1.3�

In the zero bandwidth limit the Hamiltonian �1.3� de-

scribes an interaction of a single collective spin T̂=� jK̂ j
with a harmonic oscillator

ĤDicke = 2�T̂z + �b̂†b̂ + g�b̂†T̂− + b̂T̂+� . �1.4�

This model was suggested by Dicke in 1953.33 Its spectrum
was obtained exactly by Tavis and Cummings in 1967.34 In
the mean-field approximation it becomes a classical model

for the dynamical variables �T̂�t�� and �b̂�t�� with only two
degrees of freedom �see also below�. The mean-field solution
for the time evolution was outlined by Dicke33 and derived in
detail by Bonifacio and Preparata in 1969.35 In fact, the re-
sulting classical problem is that of a spherical pendulum. The

solution for �T̂�t�� and �b̂�t�� is in terms of elliptic functions
and �apart from the azimuthal motion of the pendulum� is
simply periodic.35

Remarkably, a more general many-body model �1.1� and
�1.3� also turns out to be integrable. This was established by
Gaudin in 1972 �Ref. 21� and later by Jurco36 who used a
different approach. First explicit nonlinear solutions for the
mean-field dynamics of the model �1.1� and �1.3� were con-
structed in Refs. 12 and 13. Interestingly, the initial condi-
tions for which these solutions occur are such that the dy-
namics of the model �1.1� and �1.3� reduces to that of the
Dicke model �1.4�, i.e., it can be described in terms of a
single collective spin coupled to the bosonic field. Similar
solutions for the mean-field dynamics of the BCS model
were discovered by Barankov et al. in Ref. 6 and in an un-
published work by Shumeiko.5

Here we solve for the dynamics of the model �1.1� and
�1.3� in the mean-field approximation for arbitrary initial
conditions. We also derive a full set of conservation laws for
the mean-field dynamics. The typical evolution of the system
is quasiperiodic with n+1 incommensurate frequencies.
However, for certain special choices of initial conditions the
dynamics is characterized by m+1�n+1 incommensurate
frequencies and can be described in terms of m collective
spins coupled to the bosonic field.

Our approach to the mean-field dynamics of the fermion-
oscillator model �1.1� employs the method of separation of
variables. This method was suggested by Komarov38 and

later developed by Sklyanin and Kuznetsov.22,23 It allows us
to derive a full set of integrals of motion for both the quan-
tum model �1.1� and �1.3� and its classical counterpart. We
also use it to derive and analyze equations of motion in terms
of separation variables.

Upon the replacement of the quantum bosonic field b̂ with
its time-dependent expectation value, the Hamiltonian �1.1�
becomes similar to the mean-field BCS Hamiltonian. In this

analogy, g�b̂�t�� plays the role of the BCS gap 	�t�. The
difference is that in the case of the BCS model 	�t� is not an
independent dynamical variable, but is related to

�ĉj↓�t�ĉj↑�t��= �K̂j
−�t�� by the self-consistency condition 	�t�

=g� j�K̂j
−�t��. Nevertheless, it turns out to be possible to map

the mean-field dynamics of the fermion-oscillator model
�1.1� with n energy levels onto the corresponding BCS prob-
lem with n+1 levels. This mapping is facilitated by the vari-
able separation and enables us to obtain the general solution

for the time dependence of the expectation values �K̂ j�t�� and

�b̂�t�� in terms of hyperelliptic functions39,40 using the known
solution for the mean-field dynamics of the BCS model.9,10

The rest of the paper is organized as follows. In Sec. II we
derive the classical Hamiltonian that governs the mean-field
dynamics of the quantum model �1.1� and �1.3�. We show
that the dynamics of the resulting classical model is inte-
grable and derive a full set of its conservation laws in Sec.
III. In Sec. IV, we perform a transformation to a new set of
variables, which facilitates the solution of the equations of
motion. The mapping to the corresponding BCS problem and
the general solution for the mean-field dynamics of the
model �1.1� and �1.3� are derived in Sec. VI. Finally, Sec.
VII is devoted to an interesting class of particular solutions
that include mean-field equilibrium states and special solu-
tions of Refs. 12, 13, 33, and 35.

II. CLASSICAL MODEL

Here we derive the classical Hamiltonian model that de-
scribes the mean-field dynamics of the quantum model �1.1�
and �1.3�.

We start with the Heisenberg equations of motion for the
spin-oscillator model �1.3�.

K̂
˙

j = i�Ĥ,K̂ j� = B̂ j 
 K̂ j, B̂ j = �2gb̂x,2gb̂y,2� j� ,

b̂
˙

= i�Ĥ, b̂� = − i�b̂ − igT̂−, T̂ = �
q=0

n−1

K̂q, �2.1�

where the operators b̂x and b̂y are defined by

b̂ = b̂x − ib̂y, b̂† = b̂x + ib̂y .

In the regime when the bosonic mode is macroscopically

populated, we can replace operators b̂�t� and b̂†�t� in Eqs.

�2.1� with c numbers: b�t�= �b̂�t�� and b̄�t�= �b̂†�t��, where � �
stands for the time-dependent quantum-mechanical expecta-
tion value. After this replacement, Eqs. �2.1� become linear
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in operators. Taking their quantum-mechanical expectation

value, we obtain for s j�t�= �K̂ j�t��

ṡ j = B j 
 s j, B j = �2gbx,2gby,2� j� ,

ḃ = − i�b − igJ−, J = �
j=0

n−1

s j . �2.2�

An important observation is that Eqs. �2.2� are Hamil-
tonian equations for the following classical model:

H = �
j=0

n−1

2� jsj
z + �b̄b + g�

j=0

n−1

�b̄sj
− + bsj

+� , �2.3�

where sj
±=sj

x± isj
y. This Hamiltonian governs n classical spins

interacting with a classical harmonic oscillator.41

Classical spins are similar to the angular momentum and
have the same Poisson brackets

	sj
a,sj

b
 = − �abcsj
c,

	b, b̄
 = i, 	bx,by
 = 1
2 , �2.4�

where a, b, and c stand for the spatial indexes x, y, and z. All
other Poisson brackets between components of s j and b van-
ish. Equations �2.4� determine the fundamental Poisson
brackets in our problem in a sense that Poisson brackets be-
tween any other pair of dynamical variables �functions of b,

b̄ and components of s j� can be obtained from Eqs. �2.4�
using the standard properties of Poisson brackets.42 For ex-
ample, Eqs. �2.2� can be obtained from the Hamiltonian

equations of motion ṡ j = 	H ,s j
 and ḃ= 	H ,b
 using Eqs. �2.4�
and �2.3�.

Equations of motion �2.2� conserve the length of each
spin, s j

2=const. This fact can also be viewed as a property of
the brackets �2.4�—since s j

2 Poisson commutes with all other
dynamical variables, its bracket with the Hamiltonian �2.3�
also vanishes. In the mean-field approximation eigenstates of
the Hamiltonian �1.3� are product states. In a pure state of a
spin-1

2 , there is always an axis n such that the projection of

the spin onto it is 1
2 , i.e., K̂ j ·n= 1

2 . In this case, s j
2= �K̂ j�2

= 1
4 . Therefore, if the system was in a product state at t=0

s j
2 = �sj

z�2 + sj
+sj

− = 1
4 . �2.5�

If a number of orbitals � j in �2.3� are degenerate, the
magnitude of their total classical spin ��j=�s j is conserved by
the equations of motion �2.2�. In this case, one can replace
the corresponding spins s j with a single classical spin of a
larger magnitude,

�
�j=�

� js j = �S�, where S� = �
�j=�

s j , �2.6�

in the Hamiltonian �2.3� and sum over nondegenerate orbit-
als only. Below we will assume whenever necessary that
such a replacement has been made, i.e., that orbitals � j are
nondegenerate.

Finally, comparing Hamiltonians �1.3� and �2.3� and
brackets �2.4� to the corresponding quantum commutators,

we note that the mean-field approximation is equivalent to
the standard procedure of going from quantum to classical
mechanics by replacing commutators with Poisson brackets,
i�A ,B�→ 	A ,B
 �here �=1�.

III. INTEGRABILITY

Here we demonstrate that the classical model �2.3�, as
well as its quantum counterparts �1.3� and �1.1�, are inte-
grable and introduce a useful tool to study their dynamics.

The Hamiltonian �2.3� depends on 2�n+1� dynamical
variables: 2 angles for each of n spins plus the coordinate
and the momentum of the oscillator.41 Therefore, its phase
space is 2�n+1�-dimensional and the number of the degrees
of freedom �the number of generalized coordinates� is n+1.
To show that the classical model �2.3� is integrable, we have
to show that it has n+1 independent integrals of motion �see,
e.g., Refs. 37 and 42�.

Consider the following vector functions of an auxiliary
parameter u:

L j�u� =
s j

u − � j
j = 0, . . . ,n − 1,

Ln�u� =
1

g2� 2gbx

2gby

2u − �
� .

It follows from the above definitions and Eqs. �2.4� that com-
ponents of Lk�u� have the following Poisson brackets:

	Lk
a�v�,Lk

b�w�
 =
�abc

v − w
�Lk

c�v� − Lk
c�w�� k = 0, . . . ,n .

�3.1�

Because components of different L j�u� Poisson commute
with each other, their sum

L�u� =
1

g2� 2gbx

2gby

2u − �
� + �

j=0

n−1
s j

u − � j
�3.2�

also satisfies Eqs. �3.1�. One can check using only Eq. �3.1�
that the square of this vector commutes with itself at any two
values, v and w, of the auxiliary parameter, i.e.

	L2�v�,L2�w�
 = 0. �3.3�

The function L2�u� acts as a generating function for the
model �2.3� and its integrals of motion. Indeed, evaluating
L2�u� from Eq. �3.2�, we obtain

L2�u� =
�2u − ��2

g4 +
4Hn

�g2 + �
j=0

n−1 
 2Hj

g2�u − � j�
+

s j
2

�u − � j�2� ,

�3.4�

where

Hj = �2� j − ��sj
z + g�b̄sj

− + bsj
+� + g2�

k�j

s j · sk

� j − �k
, �3.5�
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Hn = ��b̄b + Jz�, J = �
j=0

n−1

s j . �3.6�

Hamiltonians Hj defined by Eqs. �3.5� and �3.6� Poisson-
commute with each other

	Hj,Hk
 = 0, for all j and k .

This follows directly from the fact that Eq. �3.3� holds for
any v and w. On the other hand, it is straightforward to verify
that the spin-oscillator Hamiltonian �2.3� is a linear combi-
nation of Hj

H = �
j=0

n

Hj . �3.7�

Since Hj Poisson-commute with each other, the Hamiltonian
�2.3� commutes with all n+1 Hamiltonians Hj. Therefore, Hj
given by Eqs. �3.5� and �3.6� are integrals of motion for the
classical spin-oscillator model, i.e., this model is integrable.

The above construction based on Eqs. �3.1� and �3.2� con-
stitutes the so-called Lax vector representation for the spin-
oscillator model �2.3�. Its main advantages are that it pro-
vides a powerful tool to study the dynamics and can also be
extended to quantum models. In particular, note that integrals
�3.5� and �3.6� can be trivially generalized to the quantum
case

Ĥj = �2� j − ��K̂j
z + g�b̂†K̂j

− + b̂K̂j
+� + g2�

j�k

K̂ jK̂k

� j − �k
,

Ĥn = ��b̂†b̂ + T̂z�, T̂ = �
q=0

n−1

K̂q.

Operators Ĥj pairwise commute with each other and the
spin-oscillator Hamiltonian �1.3�, which is their linear com-
bination as in Eq. �3.7�.

The same construction with classical dynamics in the
mean-field approximation and the Lax vector for resulting
classical models applies to a number of other models. In
particular, a closely related model is the BCS model

ĤBCS = �
j,�

� jĉ j�
† ĉj� − g�

j,q
ĉj↑

† ĉj↓
† ĉq↓ĉq↑. �3.8�

Notations here are the same as in Eq. �1.1�. In terms of
Anderson’s spins �see Eq. �1.3��, the Hamiltonian reads

ĤBCS = �
j=0

n

2� jK̂j
z − g�

j,q
K̂j

+K̂q
−. �3.9�

The usual BCS mean field is equivalent to the procedure
�Eqs. �2.1� and �2.2�� we used to derive the classical Hamil-

tonian �2.3�, only now the role of b̂ is played by � jK̂j
− �see

e.g., Refs. 6 and 9�. The mean-field dynamics is described by
the following classical Hamiltonian:

HBCS = �
j=0

n

2� jsj
z − g�

j,q
sj

+sq
− �3.10�

with the Lax vector

LBCS�u� = −
ẑ

g
+ �

j

s j

u − � j
, �3.11�

where ẑ is a unit vector along the z axis. The Lax vector
LBCS�u� has the same properties �3.1� and �3.3� as before and
generates integrals of motion for the BCS model.

IV. SEPARATION OF VARIABLES

In this section we perform a transformation to a new set
of variables, which facilitates the solution of the equations of
motion �2.2�. The choice of new variables naturally follows
from the Lax vector construction of the previous section. The
new variables also separate the Hamilton-Jacobi equations
for the classical Hamiltonian �2.3� in the usual sense.37,42

We define n variables uj as zeros of

L−�u� = Lx�u� − iLy�u� =
2b

g
+ �

j=0

n−1
sj

−

u − � j
. �4.1�

Note that the numerator of this expression is a polynomial of
degree n and therefore there are n roots uj with j=0, . . . ,n
−1. The coefficients of this polynomial are functions of the
dynamical variables sj

− and b. Accordingly, its roots are also
functions of sj

− and b and therefore define a new set of dy-
namical variables.

Variables uj play a role of canonical coordinates for the
classical Hamiltonian �2.3�. The corresponding momenta are
defined as v j =Lz�uj�. Thus, we have

L−�uj� = 0, v j = Lz�uj�, j = 0, . . . ,n − 1. �4.2�

Because our system has 2�n+1� degrees of freedom, we need
two additional variables un and vn, which can be introduced
as

un = b, vn =
Hn

�b
= b̄ +

Jz

b
, �4.3�

where Hn is given by Eq. �3.6�.
Separation variables �uj ,v j� have the following Poisson

brackets:

	uj,uk
 = 0, 	v j,vk
 = 0, 	v j,uk
 = − i
 jk, j,k = 0, . . . ,n .

�4.4�

The first relation in Eq. �4.4� follows from the fact that by
Eqs. �4.2� and �4.3� variables uj depend only on mutually
Poisson-commuting variables sk

− and b. The second relation
follows from 	Lz�v� ,Lz�w�
= 	Lz�v� ,b
=0. To derive Poisson
brackets between v j and uk for j ,k=0, . . . ,n−1; we use the
following equation obtained from Eq. �3.1�:

	Lz�v�,L−�w�
 =
i

v − w
�L−�v� − L−�w�� . �4.5�

Evaluating this expression at v=uj and w=uk, we obtain
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	Lz�uj�,L−�w�
w=uk
= lim

w→uk

− i

uj − w
L−�w� = iL−��uk�
 jk,

�4.6�

where L��u�=�L /�u. On the other hand,

	Lz�uj�,L−�w�
w=uk
= 	Lz�uj�,L−�uk�
 − L−��uk�	Lz�uj�,uk


= − L−��uk�	Lz�uj�,uk
 , �4.7�

where we used L−�uk�=0. Comparing Eqs. �4.6� and �4.7�,
we obtain the last relation in Eq. �4.4� for j ,k=0, . . . ,n−1.

The original dynamical variables s j = �K̂ j�t�� and b

= �b̂�t�� that we are interested in, can be explicitly expressed
in terms of uj �the inverse map�. Indeed, note that L−�u� has
its zeros at u=uj and poles at u=� j. Therefore, using Eqs.
�4.2� and �4.1�, we can write it as

L−�u� =
2b

g
+ �

j=0

n−1
sj

−

u − � j
=

2b

g

�k
�u − uk�

� j
�u − � j�

, �4.8�

where we have also used L−�u�=2b /g+O�1/u� for large u.
Equating residues at u=� j and u=�, we obtain

sj
− =

2b

g

�k
�� j − uk�

�l�j
�� j − �l�

, �4.9�

J− = �
j

sj
− =

2b

g
�
j=0

n−1

�� j − uj� . �4.10�

Similarly, using

Lz�uj� = v j, Lz�u� =
2u − �

g2 + O�1/u� ,

one can express Lz�u� in terms of uj. The z components of
classical spins sj

z are residues of Lz�u� at u=� j �see Eq. �3.2��:

sj
z = sj

−
 � j − �/2 + �k
�uk − �k�

bg
+ �

k

vk

�� j − uk�L−��uk�
� .

�4.11�

It also follows from Eq. �4.2� that v j
2=L2�uj�. This allows

us to express variables v j through uj and the integrals of
motion Hj

v j
2 =

�2uj − ��2

g4 +
4Hn

�g2 + �
k=0

n−1 
 2Hk

g2�uj − �k�
sk

2

�uj − �k�2� ,

�4.12�

j = 0, . . . ,n − 1,

vn =
Hn

�un
=

Hn

�b
. �4.13�

Thus, to determine the evolution of s j�t�= �K̂ j�t�� and b�t�
= �b̂�t�� we only need to derive and solve the equations of
motion for uj�t�.

V. EQUATIONS OF MOTION FOR SEPARATION
VARIABLES

In order to derive the equations of motion for separation
variables uj, we first determine the brackets ul,k= 	Hk ,ul
 for
l ,k=0, . . . ,n−1 using Eqs. �4.12� and �4.4�. This is done by
taking Poisson brackets of both sides of Eq. �4.12� with ul
and solving the resulting system of linear equations for ul,k.

As soon as ul,k are found in terms of uj and v j, we can use
the expression �3.7� for the Hamiltonian in terms of Hj to
determine u̇j

u̇j = 	H,uj
 = �
k

uj,k. �5.1�

Taking Poisson brackets of both sides of Eqs. �4.12� and
�4.13� with ul, we obtain

− ig2v j
 jl = �
k=0

n−1
ul,k

uj − �k
, j,l = 0, . . . n − 1. �5.2�

In order to determine un,k and ul,k for l ,k=0, . . . ,n−1, we
need to invert the matrix

Ajk =
1

uj − �k
, �5.3�

which is called the Cauchy matrix.
This can be done with the help of the following identity

coming from partial fraction decomposition of the left-hand
side:

�l=0

n−1
�u − ul�

�u − up��l=0

n−1
�u − �l�

= �
j=0

n−1
1

u − � j

�l�p
�� j − ul�

�l�j
�� j − �l�

.

�5.4�

To verify this identity note that both sides have the same
poles and that the residues at these poles coincide. Substitut-
ing u=uq in Eq. �5.4�, one derives


qp = �
j=0

n−1
1

uq − � j

�l=1

n
�up − �l�

�l�j
�� j − �l�

�
l�p

� j − ul

up − ul
. �5.5�

Hence

�A−1� jk =
�l=1

n
�uk − �l�

�l�j
�� j − �l�

�
l�k

� j − ul

uk − ul
. �5.6�

It follows from Eqs. �5.2� and �4.9� that
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uj,k = − ig2v j

�l=0

n−1
�uj − �l�

�l�j
�uj − ul�

gsk
−

2b��k − uj�
. �5.7�

Finally, noticing that 0=L−�uj�=2b /g+�ksk
− / �uj −�k� and us-

ing Eqs. �5.1� and �4.12�, we derive

u̇j = −
2i�Q2n+2�uj�

�m�j
�uj − um�

, j = 0, . . . ,n − 1

ḃ = − 2ib��

2
+ �

j=0

n−1

� j − �
k=0

n−1

uk� , �5.8�

where the spectral polynomial Q2n+2�u� is defined as

Q2n+2�u� = g4L2�u��
j=0

n−1

�u − � j�2. �5.9�

By Eq. �3.4�, the coefficients of Q2n+2�u� depend only on the
integrals of motion Hj and parameters � j and g. The equation
of motion for un=b is obtained by substituting Eq. �4.10�
into Eq. �2.2�.

An almost identical derivation of equations of motion for
separation variables can be performed for the mean-field
BCS model �3.10� using its vector Lax representation �3.11�
leading to the following equations of motion:

u̇j = −
2i�Q2n+2

BCS �uj�

�m�j
�uj − um�

, j = 0, . . . ,n − 1

J̇− = − 2iJ−�gJz + �
j=0

n

� j − �
k=0

n−1

uk� , �5.10�

where the spectral polynomial for the BCS model is defined
as

Q2n+2
BCS �u� =

1

g2LBCS
2 �u��

j=0

n

�u − � j�2. �5.11�

VI. THE SOLUTION

Here we obtain the general solution for the mean-field
dynamics of the fermion-oscillator �spin-oscillator� model
�1.1� and �1.3� by mapping it onto the corresponding BCS
model. The solution, therefore, can be read off from the
known general solution of the mean-field BCS problem.9

By comparing equations of motion �5.8� for the spin-
oscillator model with those for BCS model �5.10�, we ob-
serve that they coincide upon a replacement

�
j=0

n

� j + gJz → �
j=0

n−1

� j +
�

2
, J− → b, Q2n+2

BCS �u� → Q2n+2�u� .

�6.1�

Thus, the mean-field dynamics of the spin-oscillator
model �1.3� with n spins and a bosonic field coincides with

that of the BCS model �3.9� with n+1 spins. This allows us
to immediately write down the solution for the time-

dependent averages s j�t�= �K̂ j�t�� and b�t�= �b̂�t��

b�t� = �J−�BCS, s j�t� = �s j�t��BCS. �6.2�

The explicit form of �J−�BCS and �s j�t��BCS in terms of hyper-
elliptic functions can be found in Ref. 9 �see Eqs. �3.22�–
�3.24� of Ref. 9�.

The dynamics of s j�t�= �K̂ j�t�� and b�t�= �b̂�t�� is typical
of a classical integrable system with n+1 degrees of
freedom37 �recall that n is the number of nondegenerate
single-particle levels � j in the fermion-oscillator model
�1.1��. The typical motion is quasiperiodic with n+1 incom-
mensurate periods. For example, a Fourier transform of

b�t�= �b̂�t�� shows n+1 basic frequencies. The system uni-
formly �ergodically� explores the invariant torus—the
n+1-dimensional portion of the 2n+2-dimensional phase
space allowed by the integrals of motion �3.5� and �3.6�,
returning arbitrarily close to the initial point at irregular in-
tervals.

We found that in the thermodynamic limit n→� �Ref. 31�
the solution simplifies for most physical initial conditions.
The return time diverges in this limit. The dynamics of b�t� is
particularly simple—it decays, typically as a power law, to a
steady state where �b�t�� is either constant or is characterized
by a few independent frequencies.32 However, the motion of
the spin system still contains a continuum of frequencies.
The final steady state of �b�t�� depends on the initial condi-
tions.

VII. FEW SPIN SOLUTIONS

The evolution described in the previous section occurs for
most initial conditions and is stable against small perturba-
tions of the Hamiltonian by the Kolmogorov-Arnold-Moser
theorem even if these perturbations destroy the integrability.
However, there always exists a set of points of measure zero
in the phase space, where the motion is characterized by only
a few incommensurate frequencies, while the stability is not
guaranteed.37 Below we consider a family of such solutions,
which we call m-spin solutions with m�n. The reason is that
in these cases the dynamics of n spins and the bosonic field
in Hamiltonian �1.3� degenerates to that of m�n spins and
the bosonic field.

Few spin solutions are constructed by choosing integrals
of motion Hj �i.e., the initial conditions� so that 2�n−m�
roots of the spectral polynomial Q2n+2�u� defined in Eq. �3.4�
become double degenerate. Suppose u=E0 is a double root43

of Q2n+2�u� and note that, since Q2n+2�E0�=L2�E0�=0, set-
ting, e.g., un−1�t�=E0 solves the equation of motion �5.8� for
the variable un−1. Therefore, we can “freeze” one of the sepa-
ration variables in this root. Then L−�E0�=0, and it follows
from Lz

2�u�+L−�u�L+�u�=L2�u� that Lz�E0�=0. Thus, one can
factor out �u−E0� from all components of the Lax vector and
show that it is proportional to the Lax vector of the spin-
oscillator model with n−1 spins. Similarly, if there are 2
pairs of double degenerate roots, the number of spins reduces
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to n−2, etc. This procedure is followed in detail in Ref. 9
using a different method.

First, let us consider the general case when the number of
spins effectively reduces from n to m�n. We have

L�u� = �1 + �
j

dj

u − � j
�Lt�u� , �7.1�

where dj are time-independent constants and Lt�u� is the Lax
vector of the m-spin problem

Lt�u� =
1

g2� 2gbx

2gby

2u − ��
� + �

k=0

m−1
tk

u − �k
. �7.2�

The m-spin system has its own m arbitrary “energy levels”
�k. Its dynamics is governed by the spin-oscillator Hamil-
tonian �2.3� for m spins with new parameters replacing � j and
�.

Hm = �
k=0

m−1

2�ktk
z + ��b̄b + g�

k=0

m−1

�b̄tk
− + btk

+� . �7.3�

Matching the residues at poles at u=� j on both sides of Eq.
�7.1�, we express the original spins s j in terms of collective
spins tk

s j = djLt�� j� . �7.4�

Constants dj are determined from the above equation using
s j

2= 1
4 . We have

dj =
�s j�ej

�Lt
2�� j�

=
ej

2�Lt
2�� j�

, ej = ± 1. �7.5�

Finally we have to match the residues at u=�k and the
u→� asymptotic. This leads to the following m+1 equa-
tions:

1 + �
j=0

n−1
dj

�k − � j
= 0, k = 0, . . . ,m − 1

� = �� − 2�
j=0

n−1

dj . �7.6�

Equations �7.6� constrain the lengths of new spins tk, i.e., the
coefficients of the spectral polynomial Q2m+2�u�
=g4Lt

2�u��k=0
m−1�u−�k�2 of the m-spin system �see Eq. �3.4��.

Indeed, using Eq. �7.5�, one can cast the constraints Eq. �7.6�
into the form

�
j=0

n−1
ej� j

l−1

�Q2m+2�� j�
=

2

g2
lm, l = 1, . . . ,m �7.7�

�� = � + 2�
k=0

m−1

�k − �
j=0

n−1
g2ej� j

m

�Q2m+2�� j�
. �7.8�

To obtain m-spin solutions explicitly, one has to choose pa-
rameters �k, resolve the m+1 constraints �7.7� and �7.8� for
the lengths of spins tk and frequency ��, and solve for the

dynamics of the m-spin Hamiltonian �7.3�. The dynamics can
be obtained from the general solution �6.2� by replacing n
→m and the set of 	� j
 with 	�k
.

Let us illustrate the construction of m-spin solutions by
considering the cases m=0 and m=1 in more detail.

m=0. The 0-spin solutions correspond to the eigenstates
of quantum Hamiltonians �1.1� and �1.3�, obtained within the
mean-field approximation. The corresponding configurations
of classical spins are equilibrium states for the classical
Hamiltonian �2.3�.

For m=0 the dynamics is governed by the Hamiltonian

H0=��b̄b with an obvious solution b=b0e−i���t+��, where
b0= �b�t��=const. Further, using Eqs. �7.2�, �7.4�, and �7.5�,
we obtain

Lt
2�u� =

1

g4 �4g2b0
2 + �2u − ���2� , �7.9�

�ĉj↓ĉj↑� = sj
− =

ejgb

�4g2b0
2 + �2� j − ���2

, �7.10�

�n̂j� − 1 = 2sj
z =

2ej�2� j − ���
�4g2b0

2 + �2� j − ���2
.

The frequency �� and the gap 	0=gb0 have to satisfy a
single constraint �7.8� that now reads

�� = � − �
j=0

n−1
g2ej

�4g2b0
2 + �2� j − ���2

. �7.11�

We see from Eq. �7.10� that all spins rotate uniformly
around the z axis with a frequency ��. This rotation can be
eliminated, i.e., �� can be set to zero, by an appropriate
choice of the chemical potential. Then, Eq. �7.11� is the ana-
log of the BCS gap equation. The configuration of spins
�7.10� corresponds to the product BCS wave function. The
latter can be straightforwardly reconstructed from the knowl-

edge of s j = �K̂ j� as fixing the average of spin-1
2 uniquely

fixes its quantum state. The choice of signs ej = +1 for all j
corresponds to the ground state, while choosing one of the
signs to be −1 corresponds to an excited state–pair excitation
of the fermionic condensate.

There is also an important class of 0-spin solutions that is
obtained by setting b0=0. We see from Eq. �7.10� that in this
case all spins are along the z axis, sj

z=ej /2= ± 1
2 . The con-

straint �7.11� is now irrelevant, because all xy components
vanish. The choice of signs ej =sign � j, where � j are counted
from the Fermi level, yields the Fermi ground state. Other
choices correspond to the excitations of the Fermi gas. All
these states are stationary with respect to the mean-field dy-
namics. For a finite number of pairs, they are nonstationary
with respect to the quantum Hamiltonian �1.1�. Thus, their
initial evolution is entirely governed by quantum corrections
�cf. Refs. 10, 11, and 35�.

m=1. In this case the dynamics reduces to that of a single
collective spin t coupled to an oscillator, i.e., it is governed
by the classical counterpart of the Dicke model �1.4�
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H1 = 2�tz + ��b̄b + g�b̄t− + bt+� . �7.12�

Using Eq. �7.10�, one can express original spins in terms of
the collective spin and the bosonic field

sj
− =

ej�� j − ��b + gejt−

2g�Q4�� j�
, sj

z =
ej�2� j − ����� j − �� + g2tz

2g2�Q4�� j�
.

�7.13�

To complete the construction of 1-spin solutions, we need to
choose a positively defined polynomial Q4�u� so that it sat-
isfies two constraints �7.7� and �7.8� and solve for the dy-
namics of the classical Dicke model �7.12�. In this case there
is only one nonstationary separation variable u0 and equa-
tions of motion �5.8� take the following form:

u̇0
2 + 4Q4�u0� = 0,

ḃ = − ib�� + 2� − 2u0� . �7.14�

These equations can be solved in terms of elliptic functions.
This is not surprising, since the model �7.12� is, in fact,
equivalent to a spherical pendulum and its solution has al-
ready been obtained in Refs. 33 and 35.

The 1-spin solutions were originally obtained in Refs. 12
and 13 where they were used to describe the evolution be-
ginning from a state infinitesimally close to the normal
ground state.

VIII. CONCLUSION

In this paper we obtained the mean-field dynamics of the
fermion-oscillator model �1.1�. In the mean-field approxima-
tion, the problem reduces to a classical Hamiltonian model.

We derived integrals of motion for both the classical �2.3�
and the quantum �1.1� models and showed that the dynamics
of the fermion-oscillator model �1.1� maps onto that of the
BCS model. This was used to derive an explicit general so-
lution for the mean-field dynamics of the fermion-oscillator
model with an arbitrary finite number n of degrees of free-
dom.

The typical dynamics is quasiperiodic with n incommen-
surate frequencies. The system ergodically explores the part
of the phase space allowed by integrals of motion, returning
arbitrarily close to its initial state at irregular time intervals.
We have also constructed a class of particular, few-spin, so-
lutions, for which the dynamics reduces to that of m collec-
tive spins governed by the same classical model. The case
m=0 corresponds to the eigenstates of the fermion-oscillator
Hamiltonian �1.1�.

An interesting problem is to obtain and describe the ther-
modynamic limit31 of the solution. For most physical initial
conditions the dynamics considerably simplifies in this

limit.32 In particular, we found that �b̂�t�� decays, typically as

a power law, to a steady state where ��b̂�t��� is either a con-
stant �cf. Refs. 2, 3, 7, and 11� or oscillates with few inde-
pendent frequencies �cf. Fig. 2 in Refs. 4 and 6�. The motion
of the spin system still contains a continuum of frequencies.

The steady state of ��b̂�t��� depends on the initial conditions.
It is also interesting to study quantum and finite tempera-

ture effects. Quantum corrections to the mean-field dynamics
can become important when the bosonic mode is weakly

populated.35 For example, normal states where �b̂†b̂�
= �ĉj↓ĉj↑�=0 are stationary in the mean-field approximation
�2.2�, but are not stationary with respect to quantum dynam-
ics �2.1�.
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