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We study the nonadiabatic dynamics of a two-dimensional p + ip superfluid following an instantaneous
quantum quench of the BCS coupling constant. The model describes a topological superconductor with a
nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time
asymptotics of the order parameter �(t) by exploiting the integrability of the classical p-wave Hamiltonian, which
we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon
the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III},
characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II,
� → �∞, a nonzero constant. Phase III is characterized by persistent oscillations of �(t). For quenches within
phases I and II, we determine the topological character of the asymptotic states. We show that two different
formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states,
must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson
pseudospin texture of the initial state; we show that Q is generically conserved. For Q �= 0, this leads to the
prediction of a “gapless topological” state when � asymptotes to zero. The presence or absence of Majorana
edge modes in a sample with a boundary is encoded in the second winding number W , which is formulated in
terms of the retarded Green’s function. We establish that W can change following a quench across the quantum
critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined
and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show
that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued
quantum number, which is nonzero whenever W �= Q. The pair distribution can in principle be measured using
rf spectroscopy in an ultracold-atom realization, allowing direct experimental detection of the Z2 number. This
has the following interesting implication: topological information that is experimentally inaccessible in the
bulk ground state can be transferred to an observable distribution function when the system is driven far from
equilibrium.
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I. INTRODUCTION

Topology has emerged as a key tool to characterize
phases of quantum many-body particle systems. A recent
application is the classification of topological insulators and
superconductors.1,2 These are distinguished by a topological
winding number in the bulk; when this number is quantized to
a nonzero integer value, it implies the presence of gapless,
delocalized states at the sample surface. Both the bulk
topological invariant and the gapless surface states are argued
to be protected against generic local perturbations.

A natural means to generate nontrivial dynamics in a
topological system is via a global deformation of the system
Hamiltonian, otherwise known as a quantum quench.3–20

Through the evolution induced by a quench, one can probe the
stability of the system topology: When and how can it change?
Under what circumstances does it remain well defined when
the system is coherently driven far away from its ground state?
Finally, can the quench be employed as an experimental tool
to reveal the bulk topology?

In the setup for a quench, a many-particle system is initially
prepared in a particular pure state; this can be taken as the
ground state of some initial Hamiltonian. In addition, we as-
sume that there is a gap to excitations. Performing the quench,

a parameter of the Hamiltonian (such as the interparticle inter-
action strength) is changed over a time interval much shorter
than the inverse excitation gap. The system subsequently
evolves as a highly excited, coherent admixture of many-body
eigenstates of the final, post-quench Hamiltonian. Quantum
quenches have become a standard protocol to investigate
ultracold-atomic systems.3–5,21 Ultracold gases are engineered
to be well isolated from any outside environment or heat bath,
and typically exhibit a high degree of external tunability. The
long-time out-of-equilibrium dynamics induced by a quench in
an isolated many-particle system can show different dynamical
phases as a function of the quench parameters.6–14,22,23

In this work, we probe the response of a two-dimensional
(2D) topological p + ip superfluid1,24,25 to an instanta-
neous quantum quench. We envisage an ultracold fermionic
atom26–37 or molecule38 realization of the system, such that the
effective pairing interaction strength can be tuned externally,
e.g., by manipulating a Feshbach resonance.26–32 Initially,
the system occupies the ground state of the pre-quench
Hamiltonian, residing within either the topologically nontrivial
BCS or trivial BEC phase (see following). Subsequently,
the BCS interaction coupling is deformed instantaneously
to stronger or weaker pairing. We consider quenches both
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within and between the BCS and BEC phases. We calculate
the asymptotic time evolution6–15 using an integrable version
of the p-wave BCS Hamiltonian.39–43 Our treatment is exact
in the thermodynamic limit when pair breaking can be
neglected.6,10,11

An overview of our main results is provided in Sec. II;
these include the following: First, we compute the out-of-
equilibrium phase diagram shown in Fig. 4, as determined
by the exact long-time dynamics of the order parameter �

[which is not the same as the quasiparticle gap for p wave
(see Secs. I A, III B, and Appendix A for a brief review)].
Similar to the s-wave case,6–14 we find that � exhibits one
of three behaviors in the long-time limit t → ∞: for strong-
to-weak pairing quenches within phase I of Fig. 4, �(t) → 0
due to dephasing.13,14 In phase II, which includes the case of
zero quench, �(t) → �∞, a nonzero constant.9,10,12 Finally,
for weak-to-strong pairing quenches within phase III, �(t)
exhibits coherent, undamped oscillations6,12,13 as t → ∞ (see
Fig. 7).

In the ground state, the bulk topology and edge states are
encoded in a Z-valued winding number. We consider two
formulations: the winding of the Anderson pseudospin texture
Q,24,25 and of the retarded single-particle Green’s function
W .24,44,45 In the ground state W = Q, and Q = 1 (Q = 0) in
the weak pairing BCS (strong pairing BEC) phase. We show
that Q does not evolve from its initial value following a quench
(Fig. 8). We identify a “gapless topological” phase, charac-
terized by Q = 1 and limt→∞�(t) = 0. Although equivalent
in equilibrium, we find that Q and W must be regarded as
independent following a quench. In particular, the presence
or absence of Majorana edge modes in a sample with a
boundary is encoded in W , not Q. Moreover, a quench across
the topological quantum phase transition (e.g., from BCS
to BEC) induces a change in W . Whenever limt→∞�(t) =
�∞ �= 0, W nevertheless assumes a quantized value in the
asymptotic steady state (Fig. 9). We discuss implications for
the (dis)appearance of Majorana edge modes.

Some of the results discussed in this paper also appear in an
abbreviated form in Ref. 46. The quench phase diagram and the
asymptotic values of the winding number W for quenches in
phase II are presented in that work, as well as the link between
W and Majorana edge modes. In Ref. 46, we show that a
topologically nontrivial cold-atomic p-wave superfluid could
be induced by quenching from very weak initial coupling to
strong pairing, using a Feshbach resonance. In the nontrivial
case, the order parameter oscillates periodically in time
(phase III), and the presence of edge modes is established
using a Floquet analysis.47–50 We do not discuss Floquet in
this paper. Instead, we provide the detailed derivation of the
phase diagram and the topological characterization of phases
I and II. We consider both formulations Q and W of the bulk
winding number. We compute the long-time dynamics of the
order parameter exactly, using a variant of the Lax construction
employed in the s-wave case.10–14 Finally, in this paper we
search for bulk signatures of the system topology.

Because the topology resides in a quantum mechanical
Berry phase, it is typically difficult to measure a bulk
invariant directly. We show that when � asymptotes to
a nonzero constant and Q �= W , as occurs for a quench
across the quantum critical point, the number of zeros in the

out-of-equilibrium Cooper-pair distribution function is odd,
as demonstrated in Figs. 10 and 13. The parity of these zeros
constitutes a nonequilibrium Z2-valued bulk winding number.
We show that this number can in principle be detected through
the modulation of the absorption amplitude in rf spectroscopy.
This is unique to the nonequilibrium preparation; the winding
number distinguishing the BCS and BEC ground states can
not be ascertained via a bulk rf measurement.

In the remainder of this Introduction, we briefly review the
topological character of 2D p + ip superfluids. We close with
an outline for the organization of this paper.

A. Topological superfluidity in 2D

The topological properties of 2D p + ip superconductors
were originally obtained by Volovik24 in the context of
3He-A, and subsequently discussed in the context of the
fractional quantum Hall effect by Read and Green.25 The
simplest p-wave channel BCS Hamiltonian for spinless (or
spin-polarized) fermions is24

H =
∑

k

′ k2

m
sz

k − 2G

m

∑
k,q

′
k · q s+

k s−
q , (1.1)

where G > 0 is a dimensionless, attractive BCS interaction
strength. Equation (1.1) is expressed in terms of SU (2)
Anderson pseudospin51 operators, defined as follows:

sz
k ≡ 1

2 (c†kck + c
†
−kc−k − 1),

(1.2)
s+

k ≡ c
†
kc

†
−k, s−

k ≡ c−kck,

where ckc
†
q + c

†
qck = δk,q. The primed sums in Eq. (1.1) run

over 2D momenta in the half plane k = {kx ∈ R,ky � 0}; with
{k,q} restricted to this range, the pseudospins satisfy [sa

k ,sb
q] =

iεabcδk,q sc
k. In Eq. (1.1), we have assumed that Cooper pairs

are created and destroyed with zero center-of-mass momentum
only (“reduced BCS” theory).52 This neglects pair-breaking
processes; we address the limitations of this approximation in
the conclusion, Sec. VI.

The Anderson pseudospins provide a simple way to
visualize the ground state of a BCS superconductor. The
expectation 〈sz

k〉 measures the double occupancy of a pair of
states related by time-reversal symmetry; in Eq. (1.2), 〈sz

k〉 = 1
2

(− 1
2 ) implies that the states {k,−k} are occupied (vacant). The

Fermi liquid ground state is a discontinuous domain wall,
as depicted in Fig. 1(a). By contrast, an s-wave paired state
exhibits smooth pseudospin canting near k = kF [Fig. 1(b)]. In
the thermodynamic limit, H in Eq. (1.1) has a p + ip ground

FIG. 1. (Color online) Anderson pseudospin description of (a) a
normal Fermi liquid and (b) an s-wave superconductor, in any number
of spatial dimensions at zero temperature. In this figure, k measures
the radial coordinate along any direction in momentum space.
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FIG. 2. (Color online) Momentum-space pseudospin texture of
the p + ip ground state (a) in the topological BCS phase Q = 1, (b) at
the BCS-BEC quantum phase transition, and (c) in the topologically
trivial BEC phase Q = 0. Here, Q denotes the pseudospin winding
number (skyrmion charge), defined via Eq. (1.6). For a p + ip state,
Q = 1 (Q = 0) when the k = 0 spin 
s0 is up (down). By contrast, Q

is ill defined at the quantum phase transition.

state, defined in terms of the order parameter

�(k) ≡ −2G
∑

q

′
k · q〈s−

q 〉 = �0 (kx − iky). (1.3)

The amplitude �0 is nonzero for any G > 0. The pseudospin
texture for the weak pairing BCS ground state is shown in
Fig. 2(a). The p + ip texture differs from the s-wave one in that
the canting angle in spin space is correlated to the polar angle
φk in momentum space; the result is a topologically nontrivial
(skyrmion) configuration,24,25 discussed in more detail below.

The quasiparticle energy in the p + ip paired state is given
by

Ek =
√(

k2

2
− μ

)2

+ k2�2
0, (1.4)

where μ is the chemical potential. Here, we have set m = 1
since the mass can be factored from H in Eq. (1.1); μ and (�0)2

both carry units of density. The spectrum is fully gapped for
any μ �= 0. In a system with fixed density n, the chemical
potential is a monotonically decreasing function of the pairing

FIG. 3. (Color online) Zero-temperature chemical potential μ as
a function of the ground-state order-parameter amplitude �0 in the
p + ip ground state, for fixed particle density n. The point {�0,μ} =
{�QCP,0} is a quantum phase transition between the topologically
nontrivial BCS and trivial BEC phases. The quasiparticle spectrum
has a gapless Dirac node in the bulk at k = 0 when �0 = �QCP.

amplitude �0:

μ =
[

2πn − �2
0

2
ln

(
2�

e�2
0

)]
θ (�QCP − �)

+
[
�2

0

2
− � exp

(
−4πn

�2
0

− 1

)]
θ (� − �QCP), (1.5)

where � is a high-energy cutoff (see Appendix A for details),
and θ (�) denotes the unit step function. A plot of μ versus �0

is shown in Fig. 3. At the special value �0 = �QCP [defined
via Eq. (A4)], μ = 0. Here, the bulk quasiparticle spectrum
develops a massless Dirac node at k = 0.

�QCP marks a topological quantum phase transition
between the topologically nontrivial, weak pairing BCS phase
(0 < �0 < �QCP) and the trivial, strong pairing BEC phase
(�0 > �QCP).25 These can be distinguished by a bulk topo-
logical invariant. There are several equivalent formulations
of the invariant in equilibrium. We will employ two different
definitions. The first measures the winding of the pseudospin
texture24,25

Q ≡ 8πεabc

∫
d2k

(2π )2

1

k

〈
sa

k

〉
∂k

〈
sb

k

〉
∂φk

〈
sc

k

〉
, (1.6)

where φk denotes the polar angle in momentum space. A
generalized p + ip state can be defined by the pseudospin
configuration

〈s−
k 〉 ≡ 1

2

√
1 − 
2(k) exp[−iφk + i�(k)],

(1.7)〈sz
k〉 ≡ 1

2
(k),

where 
(k) and �(k) are real, continuous functions of k,
independent of φk , |
(k)| � 1, and |
(0)| = −
(k → ∞) = 1.
Then, the integrand reduces to a total derivative, leading to
Q = 1

2 {sgn[
(0)] + 1}. In the p + ip ground state,


(k) = 2μ − k2

2Ek

, �(k) = 0,

so that

Q =
{

1, μ > 0 (BCS),

0, μ < 0 (BEC).
(1.8)

At �0 = �QCP (μ = 0), both 〈
sk=0〉 and Q are undefined.
Pseudospin textures at the critical point and in the BEC phase
are depicted in Figs. 2(b) and 2(c).
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A different formulation of the invariant based upon the
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula53

was derived by Volovik,24 and utilizes the retarded single-
particle Green’s function

Gk(t,t ′) ≡ −i

[
〈{c†−k(t),c−k(t ′)}〉 〈{c†−k(t),c†k(t ′)}〉
〈{ck(t),c−k(t ′)}〉 〈{ck(t),c†k(t ′)}〉

]
θ (t − t ′).

(1.9)

The winding number W is24,44,45

W ≡ εαβγ

3!

∫ ∞

−∞
dω

∫
d2k

(2π )2

× Tr[G−1(∂αG)G−1(∂βG)G−1(∂γG)], (1.10)

where Tr denotes the trace in Nambu (particle-hole) space, and
G ≡ Gk(iω) is the Fourier transform of Gk(t,0), analytically
continued to imaginary frequency. In both the BCS and BEC
ground states, W = Q.

In the BCS phase, the advent of a nonzero bulk wind-
ing number implies the presence of one-dimensional (1D)
chiral Majorana edge states at the boundary of a superfluid
droplet.24,25 Gapless Majorana edge channels are the hallmark
of a topological superconductor.1 When a temperature gradient
is applied across the droplet, these states carry a perpendicular,
dissipationless energy current, with a quantized thermal Hall
conductance25,54,55

κxy = π2kBT

12πh̄
.

Here, T is the average temperature of the bulk. Additional
“Majorana” signatures include isolated zero modes in type-II
vortices.25

B. Outline

This paper is organized as follows. In Sec. II, we provide an
overview of our main results concerning the order-parameter
dynamics and asymptotic winding numbers following a
quench. We discuss implications for Majorana edge states and
rf spectroscopy. These results are derived in the remaining
sections. In Sec. III, we derive the quench phase diagram
from the exact solution to the long-time dynamics. We exploit
a new Lax vector construction for the integrable p-wave
problem. The solution obtains by classifying the isolated
roots of the system’s spectral polynomial. In Sec. IV, we
establish the precise relation between the roots of the spectral
polynomial and the steady-state order-parameter dynamics.
We compute the exact form of the persistent oscillations in
�(t) for weak-to-strong quenches, and we present formulas
relating the period and amplitude of these to the isolated
roots. In Sec. V, we derive the out-of-equilibrium pseudospin
and Cooper-pair distribution functions. Using these results,
for quenches wherein �(t) asymptotes to a finite constant
(which may be zero), we derive the power-law approach to this
value. We also compute the asymptotic values of the winding
numbers W and Q, defined above. We conclude with open
questions in Sec. VI.

Various technical details are relegated to the Appendices.
Ground-state properties, including the tunneling density of
states, are reviewed in Appendix A. Appendix C supplies

additional results on persistent order-parameter oscillations
in a narrow sliver of the quench phase diagram. Finally, in
Appendix D we compute the coherence factors and single-
particle Green’s functions following the quench.

II. p+i p SUPERFLUID QUENCH: KEY RESULTS

A. Chiral p-wave BCS model

To study quench dynamics in a 2D p + ip superfluid, we
consider a “chiral” variant41 of the model in Eq. (1.1), defined
via

H =
∑

k

′
k2 sz

k − G
∑
k,q

′
(kx − iky)(qx + iqy) s+

k s−
q , (2.1)

where the mass m = 1. The relation between Eqs. (1.1)
and (2.1) follows from

k · q = 1
2 [(kx − iky)(qx + iqy) + (kx + iky)(qx − iqy)] ,

discarding the second term. In the thermodynamic limit, H

in Eq. (2.1) possesses the same p + ip ground state (BCS
product wave function)52 as Eq. (1.1), in both the topologically
nontrivial BCS and trivial BEC phases. However, the model
in Eq. (2.1) breaks time-reversal symmetry explicitly, and
preferentially selects kx − iky over kx + iky pairing. These
are degenerate in the time-reversal-invariant Hamiltonian of
Eq. (1.1).

We work with Eq. (2.1) instead of Eq. (1.1) because
the former is of Richardson-Gaudin56–58 type and therefore
integrable;39–43 e.g., equilibrium properties can be extracted
exactly via the Bethe ansatz. We can absorb the polar phase
into the pseudospins s−

k → exp(−iφk)s−
k , and sum spins along

arcs in momentum space:


sk ≡ 1

π

∫ π

0
dφk 
sk. (2.2)

As a result, Eq. (2.1) reduces to an effective “1D” model

H =
∑

i

εis
z
i − G

∑
i

√
εis

+
i

∑
j

√
εj s

−
j , (2.3)

where εi ≡ k2
i . The Heisenberg equations of motion for the

pseudospins are
d

dt
〈
si〉 = −〈 
Bi × 
si〉,

(2.4)
Bi ≡ −εi ẑ − 2
√

εi(�xx̂ + �yŷ),

� ≡ �x − i�y ≡ −G
∑

i

√
εis

−
i . (2.5)

In the first equation, we take the expectation 〈· · · 〉 with respect
to the initial state. Due to the infinite-ranged nature of the
interactions in the BCS Hamiltonian, self-consistent mean
field theory becomes exact in the thermodynamic limit.51,56

This is because � is an extensive variable depending upon
all N of the spins in the system, and can be replaced by its
expectation value in the limit N → ∞. For a global quench,
the instantaneous state of the system is described by a BCS
product wave function at all times, albeit one parametrized
by time-dependent coherence factors.6 This implies that the
problem reduces to solving Eq. (2.4), treating the spins and �

as classical variables.6,9–11
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In Appendix B, we demonstrate that the classical dynamics
following from a p + ip initial pseudospin configuration is
in fact identical when generated by either Eq. (1.1) or (2.1);
we therefore expect our predictions hold for the full quantum
dynamics of Eq. (1.1) as well, in the thermodynamic limit.
The main approximation employed in this work is not tied
to the distinction between Eqs. (1.1) and (2.1), but rather the
neglect of pair-breaking processes. These are always present,
break the integrability of the BCS Hamiltonian, and should
ultimately induce thermalization. We will discuss time scales
relevant to pair breaking in Sec. VI.

B. Nonequilibrium phase diagram
and asymptotic order-parameter dynamics

We consider quenches in the model of Eq. (2.1) [or,
equivalently, Eq. (2.3)]. The system is initially prepared in
the p + ip ground state of the pre-quench Hamiltonian Hi ,
which has interaction strength Gi and amplitude �

(i)
0 . At time

t = 0, the coupling is instantaneously deformed Gi → Gf .
We can label the quench by the initial pairing amplitude �

(i)
0

and the quench parameter

β ≡ 2π

(
1

gf

− 1

gi

)
, (2.6)

where

g ≡ GL2/4 (2.7)

is the interaction strength that remains well defined in the ther-
modynamic limit; L is the linear system size. The case of zero
quench has β = 0; β > 0 (β < 0) signifies a quench towards
weaker (stronger) pairing in the post-quench Hamiltonian Hf .
Although g carries units of length squared and is therefore
formally irrelevant in a renormalization group (RG) sense, the
integrals necessary to compute the quench dynamics are at
most logarithmically divergent in the high-energy ultraviolet
cutoff �. These can be evaluated to logarithmic accuracy.
Parameters (�0)2, μ, β, and the fixed particle density n carry
the same units; the latter sets the natural scale.

A quench {�(i)
0 ,β} can also be specified via “quench

coordinates” {�(i)
0 ,�

(f )
0 }, where �

(f )
0 denotes the pairing

amplitude associated to the ground state of Hf . This is not
to be confused with the dynamic variable �(t), which evolves
away from its initial value for any β �= 0. Using the BCS
Eq. (A2) in Appendix A, we can express β = β(�(i)

0 ,�
(f )
0 ), a

function of the pre- and post-quench Hamiltonian ground-state
order-parameter amplitudes, with β(�0,�0) = 0. An explicit
formula appears in Eq. (3.39).

In this work, we employ a generalized Lax construction10,11

to solve the integrable dynamics of the classical pseudospins
governed by Eq. (2.3), given a p + ip paired initial state.
The key to the solution is the so-called “spectral polynomial”
Q2N (u; β), defined via a suitable Lax vector norm (see
Sec. III A for details). For a system of N spins, Q2N (u; β)
is a rank-2N polynomial in an auxiliary parameter u; it is
also a conserved integral of motion for any value of u. The
polynomial coefficients (which are also integrals of motion)
are complicated functions of the pseudospins {
sj }. The spectral
polynomial encodes all essential aspects of the quench.10–13 It

is a function of the post-quench coupling strength Gf , and of
the pre-quench state; the coefficients can be evaluated in terms
of the spin configuration at t = 0.

There is a separation of global versus local dynamics in
the BCS quench problem. The long-time evolution of the
order parameter is determined by the isolated roots10–12 of
Q2N (u; β). These always appear in pairs and are few in number
for a quench. In a quench with M isolated pairs, �(t → ∞)
is governed by an effective M-spin problem, with parameters
specified by the roots.12 Once the asymptotic dynamics of �(t)
is determined, more detailed information can be extracted. In
particular, the pseudospin distribution required to compute
winding numbers and Green’s functions in the limit t → ∞
follows from the conservation of the spectral polynomial and
the behavior of �(t).

Our results for the order-parameter dynamics are sum-
marized in Fig. 4, which shows the nonequilibrium phase
diagram. The initial pre-quench state is labeled by �

(i)
0 on

FIG. 4. (Color online) Exact interaction strength quench phase
diagram, extracted from the isolated roots of the spectral polynomial.
The vertical axis measures the initial pairing amplitude �

(i)
0 . �QCP

marks the equilibrium BCS-to-BEC topological quantum phase
transition. The horizontal axis specifies the post-quench Hamiltonian
through �

(f )
0 , which is the order parameter the system would exhibit

in its ground state. The diagonal line �
(i)
0 = �

(f )
0 is the case of no

quench. Off-diagonal points to the left (right) describe strong-to-weak
(weak-to-strong) pairing quenches, wherein the dynamic variable
�(t) evolves away from its initial value. Similar to the s-wave case
(Refs. 6–14), the p + ip system exhibits three different dynamical
phases defined by the long-time asymptotics (t → ∞) of �. In phase
I, �(t) → 0 due to dephasing (Refs. 13 and 14) in II, �(t) → �∞,
a nonzero constant (Refs. 10 and 12), and in phase III, �(t) shows
persistent oscillations (Refs. 6, 12, and 13). The dashed purple line is
the nonequilibrium continuation of the quantum phase transition,
in the sense that the asymptotic value of the chemical potential
μ∞ ≡ limt→∞μ(t) vanishes. This leads to a change in the retarded
Green’s function winding number W (Fig. 9, below). For this plot and
all subsequent figures, we choose the Fermi energy EF = 2πn = 5.18
and the energy cutoff � = 50EF , so that �QCP = 1.54.

104511-5



FOSTER, DZERO, GURARIE, AND YUZBASHYAN PHYSICAL REVIEW B 88, 104511 (2013)

the vertical axis; the post-quench Hamiltonian is identified
by �

(f )
0 (the ground-state pairing amplitude of Hf ) on the

horizontal. The diagonal line �
(i)
0 = �

(f )
0 corresponds to the

ground state (no quench), while points to the left (right) of
this line indicate strong-to-weak (weak-to-strong) quenches.
Each point in this diagram represents a specific quench. As
in previous studies of the s-wave case,6–14 we find that the
p + ip order parameter exhibits only three different classes of
long-time dynamics, labeled {I,II,III} in Fig. 4. For strong-to-
weak pairing quenches in phase I, �(t) decays to zero due to

FIG. 5. (Color online) Asymptotic values of the nonequilibrium
order parameter induced by various quenches. In (a), we plot
limt→∞ �(t) = �∞ as a function of the post-quench ground-state
amplitude �

(f )
0 , for fixed values of the initial �

(i)
0 . Curves (i)–(iv),

respectively, correspond to �
(i)
0 /�QCP = {1.2,0.5,0.3,0.00651}; each

gives �∞ along a horizontal cut across the quench phase diagram in
Fig. 4. The value of �∞ is determined by the isolated roots in Eq. (4.3).
For the quench specified by {�(i)

0 ,�
(f )
0 }, the roots are computed from

the conserved spectral polynomial [Eqs. (3.34)]. The dashed vertical
line marks the boundary separating phases III and II at �

(i)
0 = 0. The

portion of curve (iv) to the left of this line in fact represents quenches
in phase III, while the portion to the right resides in phase II. Instead
of asymptoting to a constant, �(t) executes periodic amplitude and
phase motion in phase III. For a given �

(f )
0 to the left of the dashed

line, the value of the curve (iv) specifies the average (|�+| + |�−|)/2,
where |�±| denote the turning points of the orbit in the complex �

plane. Phase III orbits (Ref. 59) associated to the quenches marked A
and B appear in (b).

dephasing; this is the case of zero isolated pairs in Q2N (u; β).
Phase I is an example of gapless superconductivity: pair
oscillations produce a continuous frequency spectrum with no
isolated frequencies separated from the continuum.13,14 The
Riemann-Lebesgue lemma then implies that �(t → ∞) = 0.
Quenches in phase II exhibit �(t) → �∞ as t → ∞, where
�∞ is a nonzero constant. In this case, there is a single
pair of isolated roots in Q2N (u; β). Finally, weak-to-strong
quenches in phase III induce persistent oscillations in �(t);
here, Q2N (u; β) has two isolated pairs of roots.

A key difference from previous work6,9–14 is that the
chemical potential μ(t) is also a dynamical variable here. This
occurs because we consider quenches to and from intermediate
and strong pairing, wherein μ deviates from the Fermi energy
even in the ground state [Eq. (1.5) and Fig. 3]. In phase II,
the chemical potential asymptotes to a constant μ∞, which
is positive (negative) to the left (right) of the dashed purple
line shown in Fig. 4. This line is the nonequilibrium extension
of the topological quantum phase transition at �0 = �QCP.
As discussed in the following, the asymptotic value (t → ∞)
of the Green’s function winding number W [Eq. (1.10)]
associated with Majorana edge modes changes across this line.

In phases II and III wherein the order parameter re-
mains nonzero, the quantitative description of the asymptotic
dynamics is entirely encoded in the isolated roots ofQ2N (u; β).
These solve a particular transcendental equation in the thermo-
dynamic limit, and can be extracted for any quench. Results for
the asymptotic order parameter �∞ and chemical potential μ∞
amplitudes are plotted for horizontal cuts across the quench
phase diagram in Figs. 5(a) and 6. Persistent oscillations in
phase III are depicted in Figs. 5(b) and 7. In the latter, the
result obtained from the isolated roots is compared to a direct
simulation of 5024 coupled spins.

C. One quench, two winding numbers

Our main purpose is to characterize the dynamics of the
system topology following a global quench. We compute the
winding numbers Q and W , respectively, defined by Eqs. (1.6)
and (1.10) for quenches in the dynamical phases I–III of Fig. 4.

In the initial BCS or BEC ground state, Q = W . We
find that the pseudospin winding number Q does not change

FIG. 6. (Color online) Asymptotic value of the nonequilibrium
chemical potential limt→∞ μ(t) = μ∞ for quenches in phase II, as
a function of the post-quench ground-state amplitude �

(f )
0 , for fixed

values of the initial �
(i)
0 . Curves (i)–(iii) correspond to the associated

quenches in Fig. 5(a). The dashed line is the ground-state curve
[Eq. (1.5)].
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FIG. 7. (Color online) Example of persistent order-parameter
oscillations following a quench. The coordinates {�(i)

0 ,�
(f )
0 } =

{0.00503,0.108} place this quench in phase III of Fig. 4. The blue solid
curve is the result of numerical simulation for classical pseudospins
(5024 spins). The red dashed curve obtains from the effective two-spin
analytical solution, the parameters of which are extracted from the
isolated roots of the spectral polynomial Q2N (u; β) (see text).

following a quench, as indicated in Fig. 8. By contrast, the
retarded Green’s function winding W undergoes a dynamical
transition for a quench across the quantum critical point. We
argue below that W determines the presence or absence of chi-
ral Majorana edge modes in the post-quench asymptotic state
for quenches in phase II. A quench in which W �= Q as t → ∞
incurs a nonequilibrium topological quantum phase transition.

In phase II of Fig. 4 wherein {�(t),μ(t)} → {�∞,μ∞}
as t → ∞, W = 1 (W = 0) when μ∞ > 0 (μ∞ < 0). These
regions are indicated in Fig. 9. The dashed purple line has
μ∞ = 0, and is the extension of the topological quantum
critical point into the nonequilibrium phase diagram.

FIG. 8. (Color online) Quench phase diagram: Pseudospin wind-
ing number Q. We find that Q is unchanged from its initial value,
such that Q = 1 (Q = 0) for an initial BCS �

(i)
0 < �QCP (BEC

�
(i)
0 > �QCP) state. The highlighted region B is a “topological

gapless” phase. Throughout phase I of Fig. 4, �(t) vanishes as
t → ∞. In subregion B, the pseudospin texture nevertheless retains
a nonzero winding Q = 1 [Fig. 12 and Eq. (2.8)]. The state can be
visualized as a skyrmion texture as in Fig. 2(a), but now the tilted
pseudospins precess at different frequencies about ẑ in spin space [see
Eq. (2.8)]. The notion of smooth topology for the evolving texture
remains well defined for times up to the inverse level spacing.

FIG. 9. (Color online) Quench phase diagram: Retarded Green’s
function winding number W and Majorana edge modes. In phase
II of Fig. 4, {�(t),μ(t)} → {�∞,μ∞} as t → ∞, with �∞ a
nonzero constant. Along the dashed purple line, μ∞ = 0; this is
a nonequilibrium extension of the ground-state quantum phase
transition; see also Fig. 6. To the left (right) of this line, μ∞ > 0
(μ∞ < 0), leading to W = 1 (W = 0). W is ill defined in the
gapless phase I. Phase III, wherein �(t) exhibits persistent amplitude
and phase oscillations [Figs. 5(b) and 7] is topologically nontrivial
(Ref. 46). Both phase III and the W = 1 region of phase II support
gapless Majorana edge modes. The former is confirmed by the Floquet
analysis in Ref. 46, while the latter is established here via Eq. (2.11)
and the surrounding discussion.

Phase II quenches in which W changes relative to Q occur
in two regions. Strong-to-weak pairing quenches across the
critical point (�(i)

0 > �QCP, �
(f )
0 to the left of the μ∞ = 0

line) have Q = 0 and W = 1, region C in Fig. 10. Weak-
to-strong quenches across the nonequilibrium quantum phase
boundary (�(i)

0 < �QCP, �
(f )
0 to the right of the μ∞ = 0 line)

have Q = 1 and W = 0, region H in Fig. 10. Our methods
allow access to the asymptotic behavior; we do not compute
the transient kinetics of the topological transition wherein W

changes.
We now discuss implications specific to the particular

winding numbers.

FIG. 10. (Color online) Sectioned phase diagram. Regions C and
H include strong-to-weak and weak-to-strong quenches across the
quantum critical point at �0 = �QCP.
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1. Nonequilibrium gapless topological phase

The conservation of the pseudospin winding number Q

[Eq. (1.6)] is simple to understand. Under the dynamics in-
duced by Eq. (2.1), spins along equal-radius arcs in momentum
space evolve collectively. For a p + ip initial state, the relative
canting of spins with equal k is determined by the polar phase
φk , and this does not change; the spin texture is chiral at
any time t � 0. The pseudospins can be parametrized as in
Eq. (1.7), with 
(k) and �(k) now time-dependent parameters.
The effective dynamics are captured by the “1D” model in
Eq. (2.3). The spin at zero energy is stationary because it is
decoupled from � [see Eq. (2.4)]. By continuity, low-energy
spins remain close to the zero-energy spin over a time interval
of order of the inverse level spacing, beyond which the notion
of smooth topology becomes meaningless. Up until this time,
Q is conserved.

This has interesting implications in phase I of Fig. 4,
wherein �(t) decays to zero. At sufficiently long times,
the effective magnetic field acting upon spin 
si reduces to

Bi = −εi ẑ. However, the gapless phase is not a Fermi liquid
ground state, which would have spins aligned along the
field,60 nor can it be understood as a finite-temperature normal
fluid. Instead, phase I is a quench-induced state of gapless
superconductivity with a nonzero superfluid density.14 The
spin configuration can be parametrized as


si(t) = 1
2

√
1 − γ 2

i {cos(εi t + �i)x̂

+ sin(εi t + �i)ŷ} + 1
2γi ẑ, (2.8)

where �i is some constant phase. The precession frequency
of a spin at radius ki is εi = k2

i , twice the bare energy. The
parameter γi gives the z projection of the ith spin in the t → ∞
limit. This is the “distribution function” for the Anderson
pseudospins, equivalent to the fermion mode occupation
minus one, which characterizes the out-of-equilibrium state.
The zero-temperature Fermi liquid would have γi = sgn(εi −
2EF ), with EF the Fermi energy. For the quench, we compute
γi exactly in the thermodynamic limit using the conservation
of the Lax vector norm.

In Figs. 11 and 12, we plot 2sz
i = γi for representative

quenches in regions A and B of Fig. 8. The pseudospin
distributions resemble those of the initial, pre-quench ground
state with pairing amplitude �

(i)
0 , and the winding Q is the

same. Nevertheless, the post-quench state is gapless, due to
dephasing of the spins. In particular, a quench in region
B induces a “gapless topological” state with Q = 1 and
�(t → ∞) = 0. The state can be visualized as an undulating
(time-evolving) variant of the skyrmion texture shown in
Fig. 2(a), where the pseudospin 
sk precesses about ẑ at
frequency k2 [Eq. (2.8)].

Knowledge of γi allows the self-consistent determination
of �(t). For an initial state not at the quantum critical point
�

(i)
0 �= �QCP, we find that

�(t → ∞) ∝ c1

�

(
1

t

)
exp(−2i�t) + c2

1

t2
, (2.9)

where c1,2 are constants and � is the high-energy cutoff
appearing in, e.g., Eq. (1.5). Ignoring the high-frequency,
cutoff-dependent piece, the dominant decay is 1/t2. By

FIG. 11. (Color online) Asymptotic (infinite-time) pseudospin
distribution function for a representative quench in the gapless
region A of Fig. 8. The solid blue curve is the result of numerical
simulation for 5024 classical pseudospins; the red dashed curve is the
analytical solution obtained from the Lax construction. The dotted
gray line gives the initial ground-state distribution. Although the
initial and asymptotic distributions share the same winding Q = 0,
in the latter case �(t) has decayed to zero, due to the dephasing
of precessing pseudospins [Eqs. (2.8) and (2.9)]. By contrast, in
the ground state each pseudospin is aligned along its magnetic
field. The quench coordinates are {�(i)

0 ,�
(f )
0 } = {1.56,0.00211}, and

kD ≡ 4
√

4πn = 12.9.

contrast, for �
(i)
0 = �QCP the cutoff-independent decay law

is slower:

�(t → ∞) ∝ c̃1

�

(
1

t

)
exp(−2i�t) + c̃2

1

t3/2
. (2.10)

2. Asymptotic Bogoliubov–de Gennes spectrum and edge states

The retarded Green’s function winding W in Eq. (1.10)
is well defined as t → ∞ in phase II of Fig. 4, whereupon
{�(t),μ(t)} → {�∞,μ∞}. As discussed above, W changes
from its initial value Q for quenches across the topological
quantum critical point, regions C and H in Fig. 10. This
follows from solving the Bogoliubov–de Gennes equation in
the asymptotic steady state:

i
d

dt
Gk(t,t ′) =

[
− k2

2 + μ∞ (kx + iky)�∞
(kx − iky)�∞ k2

2 − μ∞

]
Gk(t,t ′),

(2.11)

FIG. 12. (Color online) The same as Fig. 11, but for a point in the
gapless region B of Fig 8. In this case Q = 1, and the decay of �(t)
to zero implies that the fluctuating region B is a “topological gapless”
phase. The quench coordinates are {�(i)

0 ,�
(f )
0 } = {0.750,0.00224}.
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subject to the initial condition

lim
δt→0+

Gk(t + δt ,t) = −i

[
1 0

0 1

]
. (2.12)

Technically, it is the magnitude |�(t)| that asymptotes to a
finite constant in phase II: Using the definition in Eq. (2.5),
the phase of the order parameter winds according to �(t) →
�∞ exp(−2iμ∞t). In Eq. (2.11) and all following equations
in this section, we work in the rotating frame that eliminates
this phase.60 The functionGk(t,t ′) encodes only the asymptotic
pairing amplitude and chemical potential, not the nonequilib-
rium spin distribution function. The solution to Eq. (2.11) is
identical to that in the BCS or BEC ground state, but with
�∞ and μ∞ determined by the quench. Equation (1.10) then
implies that W = 1 (W = 0) for μ∞ > 0 (μ∞ < 0). This
is specific to the retarded function; other Green’s functions
(e.g., Keldysh) do depend upon the asymptotic pseudospin
configuration.

The question of Majorana edge modes in the spectrum of a
system with a boundary is determined by solving the effective
Bogoliubov–de Gennes mean field Hamiltonian HBdG in the
appropriate geometry. For the quench, we have

HBdG(t) =
∑

k

′{
[k2 − 2μ(t)]sz

k + k�(t)s+
k + k∗�∗(t)s−

k

}
,

(2.13)

where k ≡ kx − iky . Since HBdG and Gk(t,t ′) encode the
same information as t → ∞, one expects edge modes in the
asymptotic spectrum when W = 1.

We conclude that Majorana edge modes appear when W �=
0 in the post-quench state. This implies that the edge spectrum
can change following a quench across the critical point. In
region C of Fig. 10, the initially trivial BEC state develops
edge modes in the HBdG spectrum, while the modes present
in the initial BCS state disappear from the spectrum in region
H. Using a Floquet analysis,47–50 we have established that
phase III also hosts gapless Majorana edge modes. Details
appear elsewhere.46

Within the bulk integrable theory, we can not determine the
occupation of edge states following a quench. This is because
a spatial edge breaks the integrability. In future work, we will
investigate possible experimental signatures of the edge states
following a quench, such as a quantized dissipationless energy
current.25,54,55 The characterization of Majorana zero modes
following a quench in a 1D topological superconductor has
been studied numerically,61 for a parameter change in a
noninteracting (non-self-consistent) Bogoliubov–de Gennes
model.

D. A new Z2: Parity of the nonequilibrium
Cooper-pair distribution

We have established above that the two different formu-
lations of the bulk topological invariant, although equivalent
in equilibrium, can differ following a quench, and we have
discussed implications for the presence or absence of chiral
Majorana modes at the edge of the sample. Are there any
experimentally accessible bulk signatures of the topological
transition that occur when W �= Q? Here, we discuss one

possibility in the parity of zeros of the Cooper-pair distribution
function, defined in the following.

For a quench in which the order parameter asymptotes to a
nonzero constant (phase II of Fig. 4), the pseudospins precess
around the “effective ground-state field”


Bi = −(εi − 2μ∞)ẑ − 2
√

εi�∞x̂. (2.14)

The solution is


si(t) = 1

2

√
1 − γ 2

i {cos[2E∞(εi)t + �i]B̂i × ŷ

+ sin[2E∞(εi)t + �i]ŷ} − γi

2
B̂i , (2.15)

where B̂i ≡ 
Bi/| 
Bi |, E∞(ε) ≡ E(ε; �∞,μ∞), and

E(ε; �0,μ) =
√(

ε

2
− μ

)2

+ ε�2
0. (2.16)

In Eq. (2.15), γi is the “Cooper-pair distribution,” which
measures the projection of the pseudospin onto − 
Bi . [Note
that this is different from the definition employed in the
gapless case, Eq. (2.8).] In the ground state, γi = −1 for all
pseudospins, while the configuration with γi = +1 for all i is a
metastable negative-temperature state. We refer to a spin with
γi = −1 as a ground-state pair, while γi = +1 is an excited
pair.62

For the quench, we compute γi exactly in the limit t → ∞
using the conservation of the Lax vector norm. We find that γi

exhibits an odd number of zeros whenever W �= Q, whereas
the number of zeros is even (and typically zero) when W = Q.
Two examples are shown in Fig. 13: The first is a quench
across the quantum critical point from strong-to-weak pairing,

FIG. 13. (Color online) Nonequilibrium winding number: parity
of zeros in the Cooper-pair distribution function of phase II,
for representative quenches in regions C and D (Fig. 10). The
Cooper-pair distribution function is the pseudospin projection γ (k)
at each momentum k onto the effective field − 
B(ε = k2). The latter
encodes the asymptotic global parameters {�∞,μ∞} [see Eqs. (2.14)
and (2.15)]. Distributions C (blue solid line) and D (red dashed
line) belong to quenches in the corresponding regions highlighted
in Fig. 10. Whenever Q �= W (Q = W ), γ (k) exhibits an odd (even)
number of zeros, illustrated here by curve C (D) (cf. Figs. 8 and 9).
The parity of these zeros is a Z2-valued quantum number that can
in principle be extracted from a rf spectroscopic measurement in a
cold-atomic realization of the quench. The quench coordinates for
curves C and D are {�(i)

0 ,�
(f )
0 } = {1.65,0.359} and {1.47,0.365},

respectively. Both curves were obtained from the analytical solution.
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region C in Fig. 10 with W = 1 and Q = 0. The second is
a strong-to-weak quench within the BCS phase, region D in
Fig. 10 with W = Q = 1.

The presence of an odd number of zeros in γi is required by
the conservation of the pseudospin winding Q. The effective
field in Eq. (2.14) “winds” when W = 1 (μ∞ > 0). When W

obtained in the asymptotic steady state differs from its initial,
pre-quench value, γi must also “wind” so that the pseudospin
index Q is conserved. Thus, the parity of the number of zeros in
γi constitutes a new Z2-valued index that encodes the retarded
Green’s function invariant W , which can change following a
quench.

The Cooper-pair distribution appears in the amplitude for
photon absorption or emission via rf spectroscopy.62 In a cold-
atomic realization, absorption of a rf photon can destroy an
Anderson pseudospin by breaking a Cooper pair. The photon
is absorbed by one partner, which is subsequently excited to a
different internal state, denoted below as “3.” An atom in state
3 does not participate in pairing.

The rf-induced tunneling Hamiltonian is

HT = T
∑

k

[eiωLt c
†
kdk + e−iωLtd

†
kck]. (2.17)

Here, dk annihilates a state-3 atom with momentum k and
ωL > 0 is the frequency of the rf source. We denote the total
number of state-3 atoms by

Nd ≡
∑

k

d
†
kdk.

In the asymptotic steady state following a quench in phase II, a
straightforward linear response calculation gives the rf current〈

d

dt
Nd (t)

〉
= 2πν0T

2 εω�2
∞

|ω|∣∣ω + �2∞
∣∣θ (εω)A(ω), (2.18)

where

A(ω) = {[1 − γ (εω)][1 − n(d)(εω)]

− [1 + γ (εω)]n(d)(εω)} θ (ω)

+{[1 + γ (εω)][1 − n(d)(εω)]

− [1 − γ (εω)]n(d)(εω)} θ (−ω). (2.19)

In these equations, θ (ε) denotes the Heaviside unit step
function, and n(d)(ε = k2) is the initial occupation of atoms
in state 3, equal to 〈d†

kdk〉0. The frequency ω is defined by

ω ≡ ωL − E3,2,

where E3,2 > 0 denotes the atomic transition energy between
states 3 and 2. We ignore high-frequency processes that involve
counter-rotating terms with ωL → −ωL. In Eq. (2.18), ν0

denotes the bare density of states [Eq. (3.3)] and the mode
energy εω/2 is defined in Eq. (2.20).

Equation (2.19) follows from simple kinematics. The first
term proportional to [1 − n(d)] describes the process wherein
a photon with energy ωL > E3,2 is absorbed by a ground-state
Cooper pair with initial energy −E(εω), exciting one partner to
state 3 with energy εω/2 + E3,2 − μ∞. The remaining unpaired
fermion carries energy zero since sa

kc
†
k |0〉 = sa

kc
†
−k |0〉 = 0,

where modes {k,−k} are vacant in |0〉. The conservation of

energy gives

ω − E∞(εω) = εω

2
− μ∞,

which has the unique solution

εω = ω(ω + 2μ∞)

�2∞ + ω
. (2.20)

The second term in Eq. (2.19) proportional to n(d) is the inverse
stimulated emission process. The third term describes the
destruction of an excited-state Cooper pair due to a photon
absorption with ωL < E3,2, again creating a state-3 atom with
energy εω/2 + E3,2 − μ∞ and an unpaired particle with zero
energy. Energy balance is

ω + E∞(εω) = εω

2
− μ∞,

with εω again given by Eq. (2.20) and ω < 0. The fourth
term is the inverse emission process. The factor θ (εω) in
Eq. (2.18) disallows unphysical processes requiring negative
mode energies.

Conceptually, the simplest situation has an initially empty
state-3 band; then, n(d)(ε) = 0 for all ε. Equation (2.19) implies
that the Cooper-pair distribution function γ (ε) can in principle
be extracted from the rf spectroscopy current. However,
this result ignores complications involving “off-diagonal”
processes62 that can become important for transitions involv-
ing states far from the Fermi energy. We defer a full treatment
to future work.

III. QUENCH PHASE DIAGRAM

In this section, we derive the quench phase diagram in
Fig. 4. Ground-state properties of the model are reviewed in
Appendix A.

A. Lax construction, spectral polynomial, separation variables

Our starting point is the “1D” Hamiltonian in Eq. (2.3).
This can be derived from the 2D chiral p-wave model39,41 in
Eq. (2.1) by a canonical rescaling of the pseudospins,

s−
k → exp(−iφk) s−

k , s+
k → exp(iφk) s+

k , (3.1)

where φk is the polar angle of k. Applying Eq. (3.1) to H

in Eq. (2.1) eliminates the phases of the complex momenta
appearing in the pairing term. Pseudospins with the same
momentum radius evolve collectively. For each k, we sum
spins along the arc in Eq. (2.2) to obtain a single radial
pseudospin 
sk . The Hamiltonian reduces to Eq. (2.3), where
εi ≡ k2

i and 
si ≡ 
ski
. At any time t following a quench, the full

2D spin configuration is easily reconstructed.
In what follows, we switch frequently between discrete and

continuum formulations of the problem. The connection is
given by ∑

i

⇔ ν0

∫ 2(�+μ)

0
dε , (3.2)

where

ν0 ≡ L2

8π
(3.3)
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is the (bare) density of states and L denotes the linear
system size. On the right-hand side of Eq. (3.2), � is the
high-energy cutoff; the chemical potential is incorporated here
as a convenience (see Appendix A). Using these conventions,
all spins have (
si)2 = 1

4 .
Although the model in Eq. (2.3) is classically integrable

as we demonstrate below, the spin equations of motion in
Eq. (2.4) are not directly useful. Instead, we introduce a new
Lax vector construction inspired by the s-wave case10–12,56,57

and the Bethe-ansatz formulation41–43 of the p-wave model.
For a system of N pseudospins, we define the Lax vector

components

L+(u) ≡
N∑

i=1

√
εis

+
i

εi − u
, L−(u) ≡

N∑
i=1

√
εis

−
i

εi − u
,

(3.4)

Lz(u) ≡
N∑

i=1

εis
z
i

εi − u
+ 1

2G
,

where G is the interaction strength in Eq. (2.3). In these
equations, u denotes an arbitrary complex-valued parameter.
We also introduce a Lax vector norm

L2(u) ≡ uL+(u)L−(u) + [Lz(u)]2. (3.5)

Unlike the s-wave case,10–12,56,57 the norm is not Euclidean.
This is a key distinction that produces a different structure
for isolated roots of the spectral polynomial, defined in the
following.

Employing canonical Poisson bracket relations for the spins{
sa
i ,sb

j

} = δij ε
abcsc

j , (3.6)

it is easy to show that

{L+(u),L−(v)} = 2

[
Lz(u) − Lz(v)

u − v

]
,

{Lz(u),L+(v)} = uL+(u) − vL+(v)

u − v
, (3.7)

{Lz(u),L−(v)} = −uL−(u) − vL−(v)

u − v
.

These in turn imply that

{L2(u),L2(v)} = 0. (3.8)

The Lax norm L2(u) is a generator for integrals of motion.
Explicitly,

L2(u) =
∑

i

Hi

u − εi

+
∑

i

ε2
i

4(u − εi)2
+ 1

4G2
, (3.9)

where Hi denotes a central-spin-type Hamiltonian

Hi = − 1

G
εis

z
i + εis

+
i s−

i

+
∑
j �=i

{
εi

√
εiεj [s+

i s−
j + s+

j s−
i ] + 2εiεj s

z
i s

z
j

(εi − εj )

}
.

(3.10)

There are N independent Hi’s in a system of N spins. Because
Eq. (3.8) holds for generic u and v, it implies that the Hi’s are

mutually conserved:

{Hi,Hj } = 0. (3.11)

The BCS Hamiltonian in Eq. (2.3) is given by the sum

H = −G
∑

i

Hi. (3.12)

For the spin dynamics generated by H [Eq. (2.4)], the Lax
components evolve according to

d 
L(u)

dt
= det

⎡⎢⎣ x̂ ŷ uẑ

2�x 2�y u

Lx(u) Ly(u) Lz(u)

⎤⎥⎦, (3.13)

where 
L ≡ x̂Lx + ŷLy + ẑLz and L± = Lx ± iLy .
We define the spectral polynomial

Q2N (u) ≡ G2
N∏

j=1

(u − εj )2L2(u). (3.14)

This is a polynomial of degree 2N in u, with coefficients
that depend upon (a) the coupling strength G and (b) the
pseudospin configuration {
si}. Equation (3.13) implies that
L2(u) and Q2N (u) are integrals of motion.

For a quench, the roots of Q2N (u) provide the key to
determine the long-time asymptotic dynamics. Part of the
story involves trading the spins for a more convenient set of
coordinates. From Eq. (3.4), we write

L−(u) = �

G

∏N−1
β=1 (u − uβ)∏N
j=1(u − εj )

. (3.15)

In this equation, we have formed a common denominator.
The numerator is a polynomial in u of degree N − 1 with
zeros {uβ}, which we term separation variables.10,63,64 Each
uα is a complicated function of all N {s−

i }, the precise form
of which we will not need. The separation variables satisfy
the Poisson bracket relations {uα,uβ} = 0. The prefactor in
Eq. (3.15) follows by expanding the numerator and matching
the coefficient of uN−1 with Eq. (3.4), using Eq. (2.5).

The BCS evolution of the Lax vector in Eq. (3.13) implies
that

dL−(u)

dt
= −i[uL−(u) − 2�Lz(u)] + ∂L−(u)

∂u

(
du

dt

)
,

allowing for a time-dependent parameter u. Evaluating this
equation for a separation variable gives

0 = 2i�Lz(uα) + �

G

∏
β �=α(uα − uβ)∏N
j=1(uα − εj )

(
duα

dt

)
. (3.16)

Using Eqs. (3.5) and (3.14), we obtain the equations of motion

duα

dt
= −2i

√
Q2N (uα)∏

β �=α(uα − uβ)
. (3.17)

The spins have been entirely eliminated in favor of cou-
pled equations for the separation variables. One can also
derive the following equation of motion for �(t), employing
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Eqs. (2.4), (2.5), and (3.15):

d�

dt
= i�

⎡⎣N−1∑
β=1

uβ −
∑

j

εj − 2GH − 2|�|2
⎤⎦ . (3.18)

Separation variables are in general complex valued; to solve
the equations of motion in (3.17), one has to choose a proper
branch of

√
Q2N (u) in the plane of complex u. This can be

done by connecting pairs of roots of the polynomial Q2N (u)
with branch cuts. Separation variables can not cross these cuts
in their motion. Note that the number of separation variables
(N − 1) is one less than the number of the branch cuts (N ).

B. Ground-state roots and spectral transitions

In the BCS or BEC ground state, the pseudospins satisfy

s−
i = −

√
εi�0

2E(εi ; �0,μ)
, sz

i = − (εi − 2μ)

4E(εi ; �0,μ)
, (3.19)

where E(ε; �0,μ) is the quasiparticle energy, defined by
Eq. (2.16). We take �0 real and positive without loss of
generality. Spin 
si lies along the field 
Bi + 2μẑ, which
incorporates μ so as to fix the total density n. The pairing
amplitude in Eq. (2.5) solves the BCS equation

1

G
=

∑
i

εi

2E(εi ; �0,μ)
. (3.20)

Equation (1.5) determines μ in terms of the density n and
�0. Equation (A2) relates these to the interaction strength (see
Appendix A 1 for details).

We evaluate the ground-state spectral polynomial
[Eq. (3.14)] by combining Eqs. (3.19), (3.4), and (3.5). The
result is

Q2N (u) = G2

4
(u − u

(+)
0 )(u − u

(−)
0 ) [PN−1(u)]2 ,

(3.21a)

PN−1(u) ≡
N∏

j=1

(u − εj ) F (u; �0,μ), (3.21b)

F (u; �0,μ) ≡
N∑

i=1

εi

2(u − εi)E(εi ; �0,μ)
. (3.21c)

PN−1(u) denotes a polynomial of degree N − 1 in u. The
zeros of F (u) fall between adjacent mode energies {εj ,εj+1},
the latter non-negative and nondegenerate. The N − 1 distinct,
positive real zeros of F (u) are the roots of PN−1(u). Each of
these is a doubly degenerate root of Q2N (u). The remaining
two roots u

(±)
0 solve E(u; �0,μ) = 0 [Eq. (2.16)]:

u
(±)
0 = 2[μ − (�0)2 ± �0

√
(�0)2 − 2μ]. (3.22)

We first consider the 2(N − 1) positive real roots ofQ2N (u).
Equation (3.5) implies that each such root u0 also satisfies
L−(u0) = 0, i.e., u0 is a separation variable [Eq. (3.15)].
Equation (3.17) shows that this is a stationary solution to the
equations of motion. Thus, in the BCS ground state, the N − 1

separation variables {uα} are locked to the N − 1 distinct,
positive real roots of Q2N (u).

The single pair of isolated roots in Eq. (3.22) encodes key
macroscopic features of the superfluid state: the order parame-
ter �0 and the chemical potential μ. These are constrained by
Eq. (1.5) for a fixed particle density n (Fig. 3). Roots u

(±)
0 take

values away from the positive real axis for all �0 > 0 [except
at the critical point �0 = �QCP, Eq. (3.25)], and can not serve
as stationary solutions for separation variables. Different from
the s-wave case, the isolated roots for p wave can be complex
or negative real, due to the non-Euclidean norm in Eq. (3.5).

For the p-wave model, the pattern of isolated roots is
tied to the strength of the pairing as measured by �0.
Three special values �Coh < �MR < �QCP separate four
domains. These are implicitly defined through Eq. (A3) in
Appendix A 2, which specifies the relation of each to the chem-
ical potential. All three pairing amplitudes {�Coh,�MR,�QCP}
are of order

√
4πn/ ln(�/2πn), and differ by terms of

size
√

n[ln(�/2πn)]−3/2; explicit values are transcribed in
Eq. (A4). In the following, we describe the four pairing
domains in terms of the isolated roots, and via spectral features
detectable in the tunneling density of states (TDoS). Both are
depicted in Fig. 14.

For the weakest coupling strengths such that �0 < �Coh,
the minimum of the quasiparticle spectrum E(ε; �0,μ) occurs
at a nonzero mode energy ε0 ≡ 2(μ − �2

0). The quasiparticle
gap is

Emin ≡ E(ε0; �0,μ) = �0

√
2μ − �2

0, �0 < �Coh. (3.23)

In this regime, the TDoS ν(ω) possesses a coherence peak at
the gap edge [Eq. (A6) in Appendix A 2 and Fig. 14(b)]. The
corresponding isolated roots form a complex conjugate pair
with positive real part. At �0 = �Coh [where μ = (�Coh)2,
Eq. (A3)], the TDoS coherence peak and the real part of u

(±)
0

both vanish. For stronger pairing, the bulk quasiparticle gap is
determined by the chemical potential, and resides at ε = 0:

Emin = E(0; �0,μ) = |μ|, �0 � �Coh. (3.24)

Increasing the interaction strength (yet remaining within the
topologically nontrivial BCS phase), the roots move into the
left-hand complex plane. At �0 = �MR [μ = (�MR)2/2],
the roots collapse to a degenerate value on the negative real
axis. This is a point (for fixed density) on the “Moore-Read”
line discussed in Ref. 41. Although gapped, the spectrum
E(ε; �MR,μ) exhibits zero curvature (Appendix A 2). As �0

is further increased towards the topological phase transition at
�QCP, the roots split along the negative real axis; u

(+)
0 (u(−)

0 )
becomes less (more) negative. At the critical point �0 = �QCP

and μ = 0, the quasiparticle gap vanishes as indicated by the
TDoS in Fig. 14(b). The roots are

u
(+)
0 = 0, u

(−)
0 = −4(�QCP)2. (3.25)

Entering the BEC phase with �0 > �QCP (and μ < 0), u
(+)
0

retreats back along the negative axis. Throughout the BEC
phase, the TDoS is gapped, and u

(±)
0 remain nondegenerate

and negative real.
Thus, the three thresholds �0 = {�Coh,�MR,�QCP} corre-

spond to three special configurations of the isolated roots in
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FIG. 14. (Color online) Isolated roots and ground-state spectral
transitions. (a) shows the positions of the isolated root pair u

(±)
0

[Eq. (3.22)] in the ground-state spectral polynomial, for increasing
values of �0. Particular root configurations are labeled (1)–(4). For
�0 < �Coh (1), the isolated roots are a conjugate pair with positive
real part. At �0 = �Coh (2), the roots become purely imaginary. At
�0 = �MR (“Moore-Read,” see text) (3), the roots become negative
real and degenerate. For �MR < �0 < �QCP, the roots split and travel
along the negative real axis. At �0 = �QCP (4), the retreating root hits
zero. The thresholds {�Coh,�MR} lie within the BCS phase (μ > 0),
while �QCP marks the topological transition. All are defined explicitly
in Appendix A 2, Eqs. (A3) and (A4). For �0 > �QCP (BEC), both
roots are again nondegenerate and negative real. The zero-temperature
tunneling density of states ν(ω) is shown for the corresponding root
positions in (b). The weak pairing coherence peak visible in the
trace (1 → 2) disappears for �0 � �Coh. The difference between the
“soft” and “hard” gaps in the BCS (2 → 3 → 4) and BEC regimes is
a coherence factor effect. The spectrum is gapless at �0 = �QCP (4).

the p + ip ground state, marked (2), (3), and (4) in Fig. 14(a).
Nonequilibrium extensions of all three appear in the quench
phase diagram as the lines marked βCoh, βMR, and βQCP in
Fig. 15, discussed in the following.

C. Roots of the spectral polynomial and the asymptotic behavior

An instantaneous quench of the BCS coupling strength
sends Gi → Gf in Eq. (2.3). The initial condition is taken
as the (BCS or BEC) p + ip ground state of the pre-quench
Hamiltonian. Following the quench, the spins evolve according
to Eq. (2.4), and �(t) is self-consistently determined by (2.5),
with G = Gf .

We label the strength of the quench by β, defined in terms of
{Gi,Gf } via Eqs. (2.6) and (2.7). We denote the corresponding
spectral polynomial as Q2N (u; β) [Eq. (3.14)]. This is a
function of the instantaneous spin state {
si(t)}. Because it is
an integral of motion, we can evaluate Q2N (u; β) at t = 0
in terms of the pre-quench ground-state spin configuration in
Eq. (3.19), wherein the initial pairing amplitude �

(i)
0 is related

to Gi via the BCS Eq. (3.20).

In the ground state, all but two of the 2N roots of Q2N (u; 0)
reside along the positive real axis; the remaining isolated roots
u

(±)
0 in Eq. (3.22) are determined by the pairing amplitude

�0 and the chemical potential μ. Various equilibrium spectral
transitions (including the topological BCS-BEC transition) are
encoded in the isolated root positions (see Fig. 14).

Because a quench is a violent perturbation to the many-pair
superfluid, one expects to find a different pattern of roots in
Q2N (u; β) for any β �= 0. In particular, for a finite number of
spins, all of the real, doubly degenerate, positive ground-state
roots split into complex-conjugate pairs for an arbitrarily weak
quench. However, the splitting for most roots turns out to be
small, of the order of the level spacing. In fact, whenQ2N (u; β)
is evaluated at points {�(i)

0 ,�
(f )
0 } throughout the quench phase

diagram in Fig. 4, for even a modest number (e.g., 100) of
spins, one finds that all but a few roots always cluster around
the positive real axis, even for “large” quenches. As β carries
units of density, a large quench has |β| � n.

For all quenches depicted in Fig. 4, including those across
the topological quantum phase transition (e.g., �

(i)
0 > �QCP

and �
(f )
0 < �QCP), we find that Q2N (u; β) exhibits zero, one,

or two isolated pairs of roots. An isolated pair is well separated
from the positive real u axis, as is the case for the ground-
state pair u

(±)
0 in Eq. (3.22). The following picture therefore

emerges, identical to the s-wave10–14 case: The pattern of roots
in Q2N (u; β) for a quench is similar to that of the ground state,
except that the number M of isolated root pairs can change.
There is also a small splitting of the remaining 2(N − M) roots
away from the positive real u axis.

The importance of the spectral polynomial roots can be
appreciated from the following argument. SupposeQ2N (u) has
a positive real zero u0, i.e., Q2N (u0) = 0. Zeros of the spectral
polynomial coincide with the zeros of L2(u) and because by
definition this quantity is non-negative when u > 0, any real
positive root of L2(u) must also be a double root. Further,
since both terms in Eq. (3.5) are non-negative for u > 0, it
follows that u0 must be a root of both Lz(u) and L−(u). But,
the roots of L−(u) are defined to be the separation variables.
This implies that one of the separation variables must coincide
with the positive real root: uβ(t) = u0. It is then “frozen” in
time; this is consistent with the equations of motion because
both sides of Eq. (3.17) vanish for uβ(t) = u0 = const.

Note that uβ = u0 also drops out from the equations of
motion for the remaining separation variables. Indeed, we
haveQ2N (uα) = (uα − u0)2 Q2N−2(uα) because u0 is a double
root of Q2N (u); the factor of (uα − u0) in the numerator of
Eq. (3.17) cancels (uα − uβ) in the denominator. Note also
that the order of the spectral polynomial drops by two. It turns
out that this kind of reduction occurs for our quench initial
conditions in the continuum, N → ∞, limit. As a result, the
order of the spectral polynomial drops dramatically to either 0,
2, or 4, and the resulting equations of motion can be explicitly
solved.

Suppose there are N − M real double roots {u(β)
0 }. The

spectral polynomial in Eq. (3.14) then reduces to

Q2N (u) =
N−M∏
β=1

(
u − u

(β)
0

)2Q2M (u), (3.26)
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where Q2M (u) is a polynomial of order 2M whose roots are
isolated. Now N − M separation variables are equal to the
roots, and the remaining nontrivial M − 1 variables uα satisfy,
as a consequence of Eq. (3.17),

duα

dt
= −2i

√
Q2M (uα)∏

β �=α(uα − uβ)
. (3.27)

These are the reduced equations of motion for the remaining
M − 1 separation variables, which have the same form as the
original equations of motion for N − 1 variables.

It is possible to reduce the number of degrees of freedom for
this problem by using an explicit (“Lax reduction”) procedure,
whose outcome allows one to find the asymptotic behavior of
the order parameter. We introduce M collective spin variables

σr , where r = 1,2, . . . ,M . They satisfy the same Poisson
bracket relations as the original spins [Eq. (3.6)]. The collective
spins have their own Lax vector 
Lσ defined analogously to
Eq. (3.4) as

L±
σ (u) ≡

M∑
r=1

√
χr σ±

r

χr − u
,

(3.28)

Lz
σ (u) ≡

M∑
r=1

χrσ
z
r

χr − u
+ 1

2G
.

Here, the parameters {χr} are chosen in such a way that


L(u) = A(u) 
Lσ (u), (3.29)

where

A(u) ≡ 1 +
N∑

j=1

dj

εj − u
. (3.30)

Matching the residues of the poles with Eq. (3.4), we require
that

N∑
j=1

dj

εj − χr

=−1, r ∈ {1, . . . ,M} (3.31a)

s±
i = di√

εi

L±
σ (εi), sz

i = di

εi

Lz
σ (εi), i ∈ {1, . . . ,N}.

(3.31b)

The first Eq. (3.31a) constrains the parameters {χr}, while
Eq. (3.31b) determines the coefficients

di = − εiζi

2
√

L
(σ )
2 (εi)

, (3.32)

where L
(σ )
2 (u) ≡ uL+

σ L−
σ (u) + (Lz

σ )2(u) and ζi ∈ ±1. To
obtain Eq. (3.32) we have used the fact that 
s2

i = 1
4 . The

spectral polynomial indeed takes the form in Eq. (3.26).
The effective spin variables {
σr} evolve according to the

same Hamiltonian in Eq. (2.3) except with energies {χr} and
with M spins instead of the original N . The order parameter is
expressed in terms of {
σr} in the same way as 
si in Eq. (2.5),
that is

� = −G

M∑
r=1

√
χrσ

−
r

N∑
i=1

di

χr − εi

= −G

M∑
r=1

√
χrσ

−
r .

(3.33)

As discussed above, the roots of the spectral polynomial for
a quench Q2N (u; β) fall into two classes. This equation can be
studied numerically or analytically for some finite large value
of N . Such a study reveals that most of the roots come in
complex-conjugate pairs that lie close to the real axis. Their
imaginary parts scale as 1/N for large N . For each such root
pair there is a separation variable that remains close to it (at
a distance of order 1/N) at all times. We call these variables
continuum separation variables and the respective zeros of√

L2(u) continuum roots. [Recall that L2(u) is proportional
to Q2N (u; β) through Eq. (3.14).] In the thermodynamic limit
N → ∞, the continuum roots of

√
L2 merge with its poles into

a cut on the real axis. However, several of the zeros, which we
can call the isolated roots, remain far from each other even in
the thermodynamic limit.

The contribution of the continuum separation variables to
the equations of motion (3.17) for the isolated ones as well as
to Eq. (3.18) vanishes as t → ∞. This can be shown explicitly
assuming the joined Fourier spectrum of the continuum
separation variables is continuous. Then, for example,∑

β

uβ →
∫

A(ω)eiωtdω → 0

as t → ∞. Here, the summation is over continuum separation
variables only. Thus, at large times �(t) and the isolated
separation variables are given by an effective M-spin solution,
as outlined above.

With this information, it is straightforward to construct the
large-time asymptotic solutions of the equations of motion.
For example, in phase II the spectral polynomial has one pair
of isolated roots. That means that the reduced problem has
only one collective spin (M = 1), and the order parameter
behaves as �(t) = �∞ exp(−2iμ∞t), as follows from the
solution of the equations of motion for just one spin. In turn,
it is possible to relate �∞ and μ∞ to the position of that
isolated root, by calculating the spectral polynomial for this
single-spin problem. Phases I and III, respectively, correspond
to zero and two-spin problems associated to zero and two
pairs of isolated roots. The precise relations between the
isolated roots and the order-parameter dynamics in phases II
and III are determined in Sec. IV.

D. Spectral polynomial and isolated roots for a quench

The spectral polynomial is defined by Eqs. (3.14), (3.5),
and (3.4), where explicit factors of the coupling G take the
post-quench value Gf . We evaluate this in terms of the initial
pre-quench state in Eq. (3.19) with {�0,μ} = {�(i)

0 ,μ
(i)
0 },

where the chemical potential μ(i)
0 is that associated to the initial

pre-quench order parameter �
(i)
0 via Eq. (1.5). The result is

Q2N (u; β) = G2
f

N∏
j=1

(u − εj )2L2(u; β), (3.34a)

L2(u; β) =
(

ν0

2

)2{
[E(i)(u)f (i)(u)]2

+β
(
u − 2μ

(i)
0

)
f (i)(u) + β2

}
, (3.34b)

where the “quench parameter” β was defined in Eq. (2.6). In
Eq. (3.34), we have introduced the following quantities that
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FIG. 15. (Color online) Detailed quench phase diagram. The
dynamical phase boundaries β

(±)
c were obtained from a numerical

solution to Eqs. (3.40), using Eq. (3.39). The pairing amplitude values
�Coh, �MR, and �QCP mark spectral transitions in the equilibrium
ground state, as described in Sec. III B and illustrated in Fig. 14.
Explicit values appear in Eqs. (A3) and (A4). The lines marked βCoh,
βMR, and βQCP are the nonequilibrium extensions of these ground-state
spectral transitions, as discussed in Sec. III F.

characterize the pre-quench state:

E(i)(u) = E
(
u; �(i)

0 ,μ
(i)
0

)
,

(3.35)
f (i)(u) = 2

ν0
F
(
u; �(i)

0 ,μ
(i)
0

)
,

where F denotes the function appearing in the ground-state
spectral polynomial [Eq. (3.21c)], and ν0 is the density of
states in Eq. (3.3).

In the remainder of this section, we demonstrate how to
extract isolated roots from Eq. (3.34) in the thermodynamic
limit, and we establish the boundaries of the phase diagram
in Fig. 4. We also determine the nonequilibrium extensions of
the special pairing amplitudes {�Coh,�MR,�QCP} discussed in
Sec. III B.

The roots of Q2N (u; β) in Eq. (3.34) satisfy

f (i)(u) = − β

E (i)
1,2(u)

, (3.36a)

E (i)
1,2(u) ≡

(
u

2
− μ

(i)
0

)
∓ i�

(i)
0 u1/2, (3.36b)

where we have solved the quadratic equation for f (i). In
the thermodynamic limit, the left-hand side of this equation
becomes [via Eq. (3.21c)]

f (i)(u) =
∫ 2[�+μ

(i)
0 ]

0
dε

ε

(u − ε)E(i)(ε)
. (3.37)

To logarithmic accuracy in the cutoff �,

f (i)(u; ζ )

= −2 ln

[
2�(

�
(i)
0

)2 + 2
∣∣μ(i)

0

∣∣ θ(−μ
(i)
0

)
]

+ u

E(i)(u)

× ln

{
ζu

[
u + 2

(
�

(i)
0

)2 − 2μ
(i)
0 + 2E(i)(u)

]
2
[
u
(
�

(i)
0

)2 − uμ
(i)
0 + 2

(
μ

(i)
0

)2 + 2
∣∣μ(i)

0

∣∣E(i)(u)
]
}

.

(3.38)

The parameter ζ determines the branch cut in the complex u

plane; taking the principal branch for ln(z), the cut lies along
the positive (negative) u axis for ζ = −1 (ζ = 1).

In the thermodynamic limit, isolated roots are solutions
to Eqs. (3.36) and (3.38) for u away from the positive
real axis (so that we should take ζ = −1). A given quench
is defined by the initial pairing amplitude �

(i)
0 and the

quench parameter β [Eq. (2.6)]. Alternatively, one can specify
coordinates {�(i)

0 ,�
(f )
0 } in the quench phase diagram (Fig. 4).

β is determined through the ground-state BCS equation for the
initial and final coupling strengths through Eq. (A2), leading to

β = 2μ
(f )
0 ln

[
2�e(

�
(f )
0

)2 + 2
∣∣μ(f )

0

∣∣θ(−μ
(f )
0

)
]

− 2μ
(i)
0 ln

[
2�e(

�
(i)
0

)2 + 2
∣∣μ(i)

0

∣∣θ(−μ
(i)
0

)
]

. (3.39)

E. Threshold roots: Dynamical phase boundaries

A quench located within the dynamical phases marked I, II,
or III in Fig. 4, respectively, exhibits zero, one, or two isolated
pairs of spectral polynomial roots. To determine the boundaries
of these regions, we look for threshold conditions, wherein a
complex-conjugate pair first separates from or merges with the
positive real axis. To that end, we write

u → u ± i sgn(β)η,

where η denotes a positive infinitesimal, and we take u real
and positive on the right-hand side of this equation. The real
and imaginary parts of Eq. (3.36) then imply that

f (i)(u; 1) = − sgn(β)
π

√
u

�
(i)
0

(
u
2 − μ

(i)
0

)
E(i)(u)

, (3.40a)

|β| = π
√

u

�
(i)
0

E(i)(u). (3.40b)

For the generic quench, two pieces of information such as
{�(i)

0 ,β} must be specified to determine the isolated roots.
In Eq. (3.40), |β| is no longer a free parameter, as we have
constrained the imaginary part of u to be infinitesimal. For
a given �

(i)
0 and sgn(β), the real positive roots of Eq. (3.40)

determine |β| and �
(f )
0 as functions of �

(i)
0 , leading to one-

parameter curves in the phase diagram shown in Fig. 4.
The phase boundaries are labeled β

(±)
c in Fig. 15, which

depicts a more detailed version of the quench phase diagram.
These curves were obtained through the numerical solution of
Eq. (3.40), using Eq. (3.39) to determine �

(f )
0 . In the following,
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we derive analytical results for quenches from a weakly paired
initial BCS state.

1. Threshold roots at weak initial and final pairing
{�(i)

0 ,�
( f )
0 } � �QCP

For weak initial pairing defined as �
(i)
0 � �QCP, the

threshold root

u
(1)
c ≡ 2μ

(i)
0 � 4πn + O

(
�

(i)
0

)2
(3.41)

solves Eq. (3.40) for both sgn(β) = ±1. The corresponding
quench parameters are

β
(±)
c = ±(2π )2n. (3.42)

Equation (3.39) reduces to �
(i)
0 /�

(f )
0 � exp(β/8πn) for

{�(i)
0 ,�

(f )
0 } � �QCP. Phase boundaries corresponding to

Eq. (3.42) are given by the lines

�
(i)
0 = e±π/2�

(f )
0 . (3.43)

These are plotted in Fig. 15. The weak pairing thresholds in
Eq. (3.43) correspond to the straight-line portions of the curves
marked β

(±)
c near the origin {�(i)

0 ,�
(f )
0 } = {0,0} in Fig. 15.

We can go further and determine the roots throughout
the weak pairing BCS-to-BCS region of the quench phase
diagram. In phases II and III with {�(i)

0 ,�
(f )
0 } � �QCP, an

isolated root can be parametrized as

u � u
(1)
c + 2iδ. (3.44)

Employing the branch of Eq. (3.36) with the minus sign
[E (i)

1 (u)] and using ζ = −1 in Eq. (3.38), a single complex-
conjugate isolated pair obtains for quenches satisfying β <

β
(+)
c . For β � β

(+)
c , there are no isolated roots (phase I in

Fig. 15). We define

B ≡ π

2

(
β

β
(+)
c

)
, (3.45a)

δ√
4πn�

(i)
0

≡
{

cos(θ ), 0 � δ <
√

4πn�
(i)
0

cosh(θ ), δ �
√

4πn�
(i)
0 .

(3.45b)

We note that since (�QCP)2 is of order 4πn [Eq. (A4)], we
have

√
4πn�

(i)
0 � u

(1)
c for �

(i)
0 � �QCP; the imaginary part

of the root is always much smaller than the real part in this
regime. Using the above definitions, we find that δ is encoded
in the transcendental equations

θ tan

(
θ

2

)
= B, 0 � θ � π

2
, 0 � B � π

2
(3.46)

θ tanh

(
θ

2

)
= |B|, 0 < θ, B < 0.

The first equation applies to strong-to-weak quenches, up to the
boundary of phase II with phase I, B = θ = π/2. The second
equation holds for weak-to-strong quenches in phases II and
III. Both equations have exactly one solution in their regions
of validity.

The second branch of Eq. (3.36) with the plus sign [E (i)
2 (u)]

has zero (one) isolated pair of complex-conjugate roots for
β > β

(−)
c (β < β

(−)
c ). Employing Eq. (3.45) to specify the

imaginary part the root δ in terms of θ , we find the equations

θ cot

(
θ

2

)
= |B|, 0 � θ � π

2
, − 2 < B � −π

2
(3.47)

θ coth

(
θ

2

)
= |B|, 0 � θ, B < −2.

The two pairs of isolated roots that distinguish phase III
solve Eqs. (3.46) and (3.47) with B < −π/2. Equations (3.46)
and (3.47) turn out to be identical to the corresponding
equations in the s-wave case.13,14

2. Phase III termination at strong final pairing �
( f )
0 ∼ �MR

For �
(i)
0 � �QCP, the threshold Eq. (3.40) admits an

additional solution for sgn(β) < 0 (weak-to-strong quenches),
given by

u
(2)
c =

{
2�

(i)
0

π
ln

[
2�(

�
(i)
0

)2

]}2

. (3.48)

This threshold root in fact locates the phase III-II boundary
near the bottom of the phase diagram. Unlike u

(1)
c [Eq. (3.41)],

this additional isolated root vanishes as �
(i)
0 → 0. The reason

for this is as follows. In the next section, we discuss the
nonequilibrium extension of the topological quantum critical
point, indicated by the dashed curve labeled βQCP in Fig. 15.
The βQCP line is uniquely defined in phase II by the feature
that it possesses a vanishing isolated root. Since the phase
III-II boundary merges with the βQCP line when �

(i)
0 → 0, the

threshold root u
(2)
c also vanishes in that limit.

Via Eq. (3.39), the quench parameter associated with the
phase III boundary is

β
(−)
c

(
�

(i)
0

) = βQCP
(
�

(i)
0

) − u
(2)
c ln

(
8π2n2

�u
(2)
c

)
, (3.49)

valid in the same limit. In this equation, βQCP(�(i)
0 )

parametrizes the nonequilibrium topological transition line
[Eq. (3.50)]. At �

(i)
0 = 0, the threshold root u

(2)
c = 0 and

β
(−)
c (0) coincides with βQCP(0). The corresponding quench

phase diagram coordinates are {�(i)
0 ,�

(f )
0 } � {0,�MR} as

shown in Fig. 15 [see Eq. (3.51) in the next section].

F. Nonequilibrium topological and spectral transitions

In the ground state, the topological quantum phase transi-
tion at {�0,μ} = {�QCP,0} corresponds to the isolated root
configuration u

(±)
0 in Eq. (3.25). This is the only pairing

amplitude associated to a vanishing isolated root; for any
nonzero �0 �= �QCP, both u

(±)
0 have finite separation from

the positive real axis. For quenches in phase II of Figs. 4
and 15, the chemical potential μ(t) and the order parameter
�(t), respectively, asymptote to constants μ∞ and �∞, with
the latter nonzero. Phase II is characterized by a single pair of
isolated roots. As discussed in Sec. IV A, {�∞,μ∞} have the
same relation to the isolated roots u(±) of the quench spectral
polynomial Q2N (u; β) as {�0,μ} have to u

(±)
0 in the ground

state [cf. Eqs. (3.22) and (4.3)].
We can define a nonequilibrium extension of the topolog-

ical phase transition through the condition μ∞ = 0, which
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corresponds to the vanishing of an isolated root of Q2N (u; β).
For a given �

(i)
0 , let us denote the quench parameter β ≡ βQCP

that yields a vanishing isolated root in phase II. At u = 0,
Eqs. (3.36) and (3.38) yield

βQCP
(
�

(i)
0

) = −2μ
(i)
0 ln

[
2�(

�
(i)
0

)2 + 2
∣∣μ(i)

0

∣∣ θ(−μ
(i)
0

)
]

.

(3.50)

Note that the ground-state critical point satisfies this equation
since βQCP = 0 for zero quench and μ

(i)
0 = 0 locates the

ground-state transition. As discussed in Sec. II C2, the Green’s
function winding number W defined via Eq. (1.10) changes
across this line (Fig. 9), indicating the presence or absence of
edge states in the spectrum of the asymptotic Bogoliubov–de
Gennes Hamiltonian. The topological transition (dashed) line
drawn in Figs. 4 and 15 was obtained by solving Eq. (3.39)
numerically to calculate �

(f )
0 from �

(i)
0 , using Eq. (3.50).

In the limit �
(i)
0 → 0 (very weak initial pairing), the

topological transition line βQCP terminates at a particular value
of �

(f )
0 in Fig. 15. Equations (3.50) and (3.39) imply that for

β(�(i)
0 ,�

(f )
0 ) = βQCP(�(i)

0 ),

lim
�

(i)
0 →0

�
(f )
0 � �MR, (3.51)

up to terms of size
√

n[ln(�/2πn)]−5/2. By contrast, the
ground-state pairing amplitudes �Coh and �QCP differ from
�MR by terms of order

√
n[ln(�/2πn)]−3/2. [Equation (A4)

gives explicit formulas for {�Coh,�MR,�QCP}.]
We conclude that the topological transition in the nonequi-

librium phase diagram deviates from the equilibrium line
�

(f )
0 = �QCP for �

(i)
0 � �QCP. At �

(i)
0 = 0, the transition

βQCP is such that �
(f )
0 � �MR, which is of the same order

as, but smaller than, �QCP. The boundary β
(−)
c separating

dynamical phases II and III also terminates at this point.
In the ground state, the quasiparticle energy gap Emin occurs

at nonzero (zero) momentum for �0 < �Coh (�0 � �Coh)
[Eqs. (3.23) and (3.24)]. The isolated ground-state roots
u

(±)
0 in Eq. (3.22) are purely imaginary at the transition

�0 = �Coh, marked (2) in Fig. 14(a). The dotted curve labeled
βCoh in Fig. 15 is the nonequilibrium extension, obtained via
the numerical solution of Eqs. (3.36) and (3.38) (ζ = −1)
locating one pair of purely imaginary isolated roots for a given
�

(i)
0 . Along this curve, the asymptotic values {�∞,μ∞} satisfy

μ∞ = (�∞)2 (3.52)

[cf. Eq. (4.3)].
Throughout phase II, the order parameter approaches its

asymptotic value via a power-law-damped oscillation. The
precession of the pseudospins in the asymptotically constant
field 
Bi [Eq. (2.14)] implies that the self-consistent time
evolution of � can be expressed as

�(t) − �∞ ∝
∫

dε α(ε) exp [−i2E∞(ε)t] , (3.53)

where E∞(ε) = E(ε; �∞,μ∞) is the asymptotic dispersion
relation [Eq. (2.16)]. In Sec. V C2, we show that Eq. (3.53)

evaluates to

�(t) = �∞ + ct−α cos(�t + φ),

where c is a constant and we ignore “nonuniversal” corrections
of order 1/�. We will find that α = 1

2 and � = 2Emin to
the left of the βCoh curve. For quenches to the right of the
βCoh line in Fig. 15, α = 2 and � = 0 (excluding certain
special cases). The changes in α and � are associated to the
transition in the asymptotic dispersion relation, as determined
by {�∞,μ∞}. For �∞ < (μ∞)2 (left of βCoh), the minimum
in E(ε; �∞,μ∞) ≡ Emin at nonzero ε results in a nontrivial
saddle point for the dynamics. This disappears when Emin

moves to ε = 0 [�∞ � (μ∞)2, quenches to the right of the
βCoh curve].

As discussed in Sec. III B, the amplitude �MR corresponds
to a doubly degenerate, negative real root pair in the ground-
state polynomial Q2N (u). Such a pair is marked (3) in
Fig. 14(a). We look for a nonequilibrium extension in the form
of a doubly degenerate, negative real isolated root u = −v < 0
satisfying

Q2N (−v; β) = d

dv
Q2N (−v; β) = 0.

From Eqs. (3.34) and (3.36), these conditions become

β =
[(

v

2
+ μ

(i)
0

)
− �

(i)
0

√
v

]
f (i)(−v; −1) (3.54a)

=
d
dv

[E(i)(−v)f (i)(−v; −1)]2

f (i)(−v; −1) + (
v + 2μ

(i)
0

)
d
dv

f (i)(−v; −1)
. (3.54b)

On the first line, we have selected the branch of
Eq. (3.36) that includes the ground-state solution {�0,μ,β} =
{�MR,�2

MR/2,0}; the other branch gives v ∼ O(1/�), which
is beyond the logarithmic accuracy employed here. In the limit
of weak initial pairing �

(i)
0 � �QCP, Eq. (3.54) reduces to

√
v ln

(
e�v

8π2n2

)
� �

(i)
0 ln

[
2�(

�
(i)
0

)2

]
.

This has the solution

√
vc =

�
(i)
0 ln

[
2�

(�(i)
0 )2

]
2W0

{
ln

[
2�

(�(i)
0 )2

]
�

(i)
0

4πn

√
e�
2

} , (3.55)

valid for v � 8π2n2/e�. In this equation, W0(z) denotes the
k = 0 branch of Lambert’s W function. The quench parameter
is

βMR
(
�

(i)
0

) = βQCP
(
�

(i)
0

) + vc + √
vc�

(i)
0 ln

[
2�(

�
(i)
0

)2

]
.

(3.56)

Like the spectral transition line βCoh, βMR converges to βQCP as
�

(i)
0 → 0; all three curves coalesce at �(f )

0 � �MR [Eq. (3.51)]
for vanishing initial interaction strength, as shown in Fig. 15.
The dotted-dashed curve in this figure marked βMR was
obtained through the numerical solution to Eq. (3.54), using
Eq. (3.39).
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Summarizing, in phase II of the quench phase diagram in
Fig. 15, the same patterns of isolated roots that appear in the
ground state (diagonal line) also appear for quenches (β �= 0).
Implications of the lines βCoh and βQCP for asymptotic quench
dynamics are discussed in detail in Sec. V.

IV. STEADY-STATE ORDER-PARAMETER DYNAMICS

In this section, we determine the generalized steady-
state behavior of �(t) in the limit t → ∞. We include the
case exhibiting persistent oscillations, phase III in Fig. 4.
Calculations of the approach to the steady state are deferred
until Sec. V.

A. Phase II: Constant �(t) → �∞

In phase II of Fig. 4, there is a single pair of isolated roots.
The reduced problem [Lax reduction, Eqs. (3.28) and (3.29)]
has one collective spin 
σ and zero separation variables. The
order parameter solves a version of Eq. (3.18) with N = 1.
The solution is

�(t) = �∞ exp(−2iμ∞t + iφ0), (4.1)

μ∞ − χ

2
= Gχσz, (4.2)

where χ is the mode energy. We relate {�∞,μ∞} to the roots
of the reduced spectral polynomial. Equation (3.4) implies that

Lz
σ (u) = 1

G

[(
χ

2 − μ∞
)

u − χ
+ 1

2

]
.

Using Eqs. (3.5), (3.14), and (3.28), the spectral polynomial is

Q2(u) = 1
4 (u − u(+))(u − u(−)),

with roots

u(±) = 2[μ∞ − (�∞)2 ± �∞
√

(�∞)2 − 2μ∞]. (4.3)

We interpret μ∞ as the out-of-equilibrium chemical
potential because the N -spin ground state has �(t) =
�0 exp(−2iμt). This follows from using Eq. (3.19) as the
initial condition to Eq. (2.4): Due to the mismatch between

Bi in the equation of motion (EOM) and the ground-state
field 
Bi + 2μẑ, the pseudospins uniformly precess s−

i (t) =
s−
i (0) exp(−2iμt). This can be eliminated by moving to a

rotating frame.60 {�∞,μ∞} have the same relation to the iso-
lated roots u(±) of the quench spectral polynomial Q2N (u; β)
as {�0,μ} have to u

(±)
0 in the ground state [Eq. (3.22)].

For a quench, the pairing amplitude and chemical potential
evolve from the initial pre-quench state. The isolated root pair
for Q2N (u; β) determines limt→∞{�(t),μ(t)} = {�∞,μ∞}
via Eq. (4.3). By contrast, the approach to the asymptotic
steady state (typically a power-law-damped oscillation) is
governed by the full N -spin distribution function. This is
computed exactly in the thermodynamic limit in Sec. V A.

B. Phase III: Oscillating order parameter

In phase III, Q2N (u; β) exhibits two isolated pairs of roots.
The pair confined to this region nucleates along the boundary
marked β

(−)
c in Fig. 15. The second pair persists into phase II.

At weak initial and final coupling {�(i)
0 ,�

(f )
0 } � �QCP, these

solve Eqs. (3.47) and (3.46), respectively.
The isolated roots entirely confined to III always appear as

a complex-conjugate pair, with a positive real part. In what
follows, we denote this pair as

u1,± ≡ u1,r ± iu1,i, u1,{r,i} � 0. (4.4)

The isolated pair that persists into phase II also occurs as a
complex-conjugate pair throughout the bulk of phase III; we
denote this pair as

u2,± ≡ u2,r ± iu2,i, u2,i � 0. (4.5)

In Fig. 15, there is a very narrow sliver in phase III
bounded on the left (right) by the βMR (β(−)

c ) curve, of
width ∼√

n[ln(�/2πn)]−5/2 � {�Coh,�MR,�QCP} [cf. the
text surrounding Eq. (3.51)]. Within this sliver, the second pair
of roots is negative real (to the right of the βMR line). In this
section, we consider quenches in the bulk of phase III, wherein
the isolated roots always occur in two complex-conjugate
pairs. The sliver with negative real roots is considered in
Appendix C.

1. Pairing energy EOM

As argued in Sec. III C, the asymptotic dynamics of �(t)
for the quench will be the same as in the two-spin solution,
which we now derive. We first decompose the complex pairing
amplitude into modulus and phase components:

� ≡
√

R exp(−iφ), (4.6)

where R is the pairing energy. For the BCS problem with
two spins 
σ1,2, conservation of the total energy Eσ and of the
z-angular momentum Jσ imply that

R
G

+ Eσ = χ1σ
z
1 + χ2σ

z
2 , (4.7a)

Jσ = σ z
1 + σ z

2 , (4.7b)

where χ1,2 are the mode energies [cf. Eq. (3.28)] and R is the
pairing energy defined by Eq. (4.6). Expressing the spins in
terms of the latter, we have

σ z
p ≡ ap

R
G

+ bp,

a1,2 = ± 1

(χ1 − χ2)
, (4.8)

b1,2 = ±
(

Eσ − χ2,1Jσ

χ1 − χ2

)
.

According to the reduction formula (3.31b), the z compo-
nent of the ith spin in the N -spin problem is expressed in terms
of 
σ1,2 via

sz
i = di

εi

Lz
σ (εi) ≡ ai

R
G

+ bi. (4.9)

Equation (3.32) implies that the constant ai is given by

ai = Gεiζi

2
√
Q4(εi)

, (4.10)
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where ζi = ±1 and we have introduced the fourth-order
spectral polynomial for the two-spin problem

Q4(u) ≡ G2(u − χ1)2(u − χ2)2L
(σ )
2 (u). (4.11)

In this equation, L(σ )
2 (εi) denotes the reduced Lax norm defined

below Eq. (3.32).
The constants {ai,bi} must satisfy

N∑
i=1

ai = 0,

N∑
i=1

bi = J,

(4.12)
N∑

i=1

εiai = 1,

N∑
i=1

εibi = H.

The two equations on the first line follow from particle
conservation (J is the conserved total z spin). The remaining
equations encode energy conservation; H is the Hamiltonian
in Eq. (2.3).

We differentiate Eq. (4.9) to obtain

−i
ai√
εiR

Ṙ
G

= exp(iφ)s−
i − exp(−iφ)s+

i , (4.13)

where ẋ ≡ dx/dt and we have used Eq. (2.4). We also have

d

dt
[exp(iφ)s−

i + exp(−iφ)s+
i ]

= ai√
εiR

φ̇Ṙ
G

− √
εi

ai√
R

Ṙ
G

.

We define

Ȧ ≡ 1

2
√

R
φ̇Ṙ, (4.14)

so that

exp(iφ)s−
i = ai

G
√

εi

(
−i

1

2
√

R
Ṙ + A − εi

√
R
)

+ ci . (4.15)

Equation (2.5) implies that

N∑
i=1

√
εici = 0. (4.16)

We compute the modulus squared of Eq. (4.15):

− 1

4R
Ṙ2 = εiR2 + εi

(
εi + 2G

bi

ai

)
R

− 2εi

(
G

√
εici

ai

+ A

)√
R + 2

G
√

εici

ai

A + A2

+ G2εi

a2
i

(
b2

i + c2
i − 1

4

)
. (4.17)

Multiplying both sides by ai and summing over i, we solve for
A to find

A = 1

2
R3/2 + 2m

√
R + ψ√

R
+ γ, (4.18)

where

2m ≡
∑

i

aiε
2
i

2
+ GH,

ψ ≡
∑

i

G2εi

2ai

(
b2

i + c2
i − 1

4

)
, (4.19)

γ ≡ −
∑

i

Gε
3/2
i ci .

Equation (4.17) becomes

− 1

4R
Ṙ2 = R3

4
+ 2mR2 +

(
ci

√
εiG

ai

+ γ

)
R3/2 + O(R).

(4.20)

We therefore require that ci
√

εiG

ai
≡ κ , independent of i.

Equation (4.19) implies that

γ = −κ. (4.21)

Equation (4.17) reduces to

−Ṙ2 = R4 + 8mR3 + 8ρR2 + 4σR + 4ψ2, (4.22)

where

ρ ≡ Gεibi

ai

+ 1

2

(
ψ + ε̃2

i

)
,

σ ≡ G2εi

a2
i

(
b2

i − 1

4

)
− 2ψε̃i, (4.23)

ε̃i ≡ εi − 2m.

Solving for ai and bi , we obtain

ai = Gεiζi

2
√[

1
2

(
ε̃2
i + ψ

) − ρ
]2 − εi (2ψε̃i + σ )

, (4.24a)

bi = ai

Gεi

[
ρ − 1

2

(
ε̃2
i + ψ

)]
, (4.24b)

where ζi = ±1. Equation (4.22) is an elliptic equation of
motion for the pairing energy R.

Comparing Eqs. (4.10) and (4.24a), we determine that the
two-spin spectral polynomial can be expressed as

Q4(u) = 4

{[(
u

2
− m

)2

+ ψ

4
− ρ

2

]2

−u

[
ψ

(
u

2
− m

)
+ σ

4

]}
. (4.25)

Equations (4.22) and (4.25) express the pairing energy dynam-
ics and the reduced spectral polynomial in terms of a common
set of parameters {m,ρ,σ,ψ}.

For most quenches in phase III (to the left of the βMR line
in Fig. 15), the isolated roots u1,± and u2,± take the form of
two complex-conjugate pairs [Eqs. (4.4) and (4.5)]. Expanding
Eq. (4.25) and matching powers of u to the anticipated form,
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we find that

m = 1

4
(u1,r + u2,r),

ρ = −1

4

(
u2

1,i + u2
2,i

) + 1

2
U 2

r − 3ψ

2
, (4.26)

σ = Ur

2

(
u2

2,i − u2
1,i

) − 4ψm,

where

Ur = 1
2 (u1,r − u2,r). (4.27)

The parameter ψ has two solutions in terms of the roots,

ψ± = 1
8

[ − (
u2

1,i + u2
2,i

) − 2u1,ru2,r ± 2|u1||u2|
]
, (4.28)

where |u| =
√

u2
r + u2

i
is the modulus of the complex root

u. The physical solution is ψ = ψ+ since this gives positive
turning points for the positive-definite pairing energy R, as
shown below.

2. Pairing energy dynamics

We first consider a quench confined to the weak pairing
BCS region with {�(i)

0 ,�
(f )
0 } � �QCP. In phase III, the

corresponding roots take the form u{1,2},± � 2μ
(i)
0 ± 2iδ1,2,

where δ1,2 is of order
√

μ
(i)
0 �

(i)
0 � μ

(i)
0 . Here, μ

(i)
0 � 2πn

denotes the chemical potential in the initial state; see Sec. III E1
for details. To leading order, Eqs. (4.26)–(4.28) simplify as
follows:

m � μ
(i)
0 , ρ � −1

4

(
u2

1,i + u2
2,i

)
,

σ �
(
u2

1,i − u2
2,i

)2

32μ
(i)
0

, (4.29)

Ur ∼ O
(
�

(i)
0

)2
, ψ+ ∼ O

(
�

(i)
0

)4
.

Given that R ∼ O(�(i)
0 )2 and retaining only the leading terms,

Eq. (4.22) reduces to

Ṙ2 � 8μ
(i)
0 R(R+ − R)(R − R−),

(4.30)
R± = 1

8μ
(i)
0

(u1,i ± u2,i)
2.

This has the same structure as the previously studied s-wave
case.6,10,12,13 The turning points of the modulus |�±| ≡ √

R±
are proportional to the sum and difference of the isolated root
pairs’ imaginary parts. At the boundary of phase III marked
β

(−)
c in Fig. 15, the imaginary part of pair one vanishes |u1,i| →

0, leading to the collapse of the oscillatory amplitude.
Equation (4.30) has the solution

|�|(t) = ui√
2μ

(i)
0

dn

(
uit

∣∣∣∣u1,iu2,i

u2
i

)
,

(4.31)
ui ≡ 1

2
(u1,i + u2,i),

where |�| = √
R and dn (z|M) denotes the Jacobi elliptic

function (M = k2 is the modulo parameter). Just inside of
phase III near the boundary with II, the period of |�|(t)

FIG. 16. (Color online) Persistent order-parameter oscillations
following a quench. The same as Fig. 7, but for quench coordinates
{�(i)

0 ,�
(f )
0 } = {0.00503,0.961}.

is T � 2π/u2,i ∼ O(
√

μ
(i)
0 �

(i)
0 )−1, valid in the weak pairing

limit {�(i)
0 ,�

(f )
0 } � �QCP.

Next, we consider general phase III quenches. Using
Eqs. (4.26)–(4.28) and taking ψ = ψ+, the fourth-order
polynomial in Eq. (4.22) can be factored. The result is

Ṙ2 = (R+ − R)(R − R−)(R + R̃+)(R + R̃−), (4.32a)

where

R± ≡ 1
2 [
√

(|u1| − u1,r) ± √
(|u2| − u2,r)]2,

(4.32b)
R̃± ≡ 1

2 [
√

(|u1| + u1,r) ± √
(|u2| + u2,r)]2.

The above is an elliptic EOM for the pairing energy R, which
executes undamped periodic motion between the turning
points R− � R � R+.

In Figs. 7 and 16, representative order-parameter oscilla-
tions for phase III quenches are shown. The blue solid curves
are the results of numerical simulations of the BCS Hamilto-
nian in Eq. (2.3) for 5024 classical Anderson pseudospins. The
red dashed curves in these figures are solutions to Eq. (4.32a),
with parameters in Eq. (4.32b) extracted from the roots.

We define

R0 ≡ R+ + R−
2

, Rd ≡ R+ − R−
2

, (4.33)

and introduce dimensionless amplitude y via

R(t) ≡ R0 + Rd y(t),

y1 ≡ R0 + R̃−
Rd

, (4.34)

y2 ≡ R0 + R̃+
Rd

.

The relative amplitude y is constrained to −1 � y � 1, while
1 � y1 � y2. Equation (4.32a) becomes

ẏ2 = R2
d (1 − y2)(y + y1)(y + y2). (4.35)

The solution may be written as

y(t) = 2y2 cn2 (αt |M) − (y2 + 1)

(y2 + 1) − 2 cn2 (αt |M)
, (4.36)
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where cn (z|M) denotes the Jacobi elliptic function (M = k2

is the modulo parameter). In terms of the roots,

R0 = 1

2
(|u1| + |u2| − u1,r − u2,r ),

Rd = √|u1| − u1,r

√|u2| − u2,r,

y2 = |u1| + |u2| + √|u1| + u1,r

√|u2| + u2,r

Rd

, (4.37)

M = u1,iu2,i

α2
,

α = 1

2

√
(u1,r − u2,r)2 + (u1,i + u2,i)2.

The physical period T of R(t) is

T = 4K(M)

2α
, (4.38)

where K(M) is the complete elliptic integral of the first kind
(and M = k2).

Consider quenches near the phase boundary within III such
that u1,i → 0, i.e., quench coordinates {�(i)

0 ,�
(f )
0 } lying just

below the curve β
(−)
c in Fig. 15. Here, Eqs. (4.34) and (4.36)

simplify to

R(t) � R0 + Rd cos(�ct),

R0 � |u2| − u2,r

2
+ O(u1,i)

2,

(4.39)

Rd �
√

|u2| − u2,r

2u1,r

u1,i + O(u1,i)
3,

�c �
√

(u1,r − u2,r)2 + u2
2,i + O(u1,i).

The orbit collapses for u1,i → 0, wherein isolated pair one
merges with the continuum along the real axis. This is the
phase boundary marked β

(−)
c in Fig. 15.

Finally, we consider quenches along the small segment of
the βMR line in Fig. 15 which intrudes into phase III near
{�(i)

0 ,�
(f )
0 } = {0,�MR}. For a discussion of the βMR line and its

termination at �
(i)
0 = 0, see Sec. III F, Eqs. (3.51) and (3.56).

Along this line, the second root pair becomes negative real
and degenerate: u2,± = −v2 < 0. The solution in Eq. (4.36)
reduces to

y(t) = y2 cos(�MRt) − 1

y2 − cos(�MRt)
,

(4.40)
�MR =

√
(u1,r + v2)2 + u2

1,i.

3. Order-parameter phase dynamics

Equations (4.14) and (4.18) imply that the pairing amplitude
phase φ in Eq. (4.6) satisfies

φ̇ = 3

2
R + 2m − ψ+

R
. (4.41)

From Eqs. (4.26), (4.28), and (4.39), one can show that at the
boundary separating phases II and III where u1,i = 0,

φ̇ = |u2| = 2μ∞,

which is the expected result. Here, we have used Eq. (4.3) to
relate the remaining pair of isolated roots u2,± to μ∞.

V. NONEQUILIBRIUM WINDING NUMBERS
AND OBSERVABLES

In this section, we calculate the long-time asymptotic spin
distribution function from the conservation of the Lax norm.
Using this result, we compute the winding numbers Q and W

and the approach of �(t) to its asymptotic constant value in
phases I and II of the phase diagram (Fig. 4). We relate the
parity of zeros in the Cooper-pair distribution (introduced in
Sec. II D) to Q and W , and to the rf spectroscopy amplitude
in Eq. (2.19). Additional results, including the Bogoliubov
amplitudes uk(t) and vk(t) as well as single-particle Green’s
functions are relegated to Appendix D.

As discussed in Sec. IV A, in phase II the asymptotic
behavior of the order parameter is �(t) = �∞ exp(−2iμ∞t).
It is the modulus of � that goes to a constant, but the
phase winds at the frequency 2μ∞. This includes the ground
state (zero quench) with μ∞ = μ

(i)
0 , due to the chemical

potential shift of the field relative to 
Bi in Eq. (2.4). Unless
otherwise noted, in this section we will work in the rotating
frame s−

i (t) → s−
i (t) exp(2iμ∞t) when discussing phase II

(cf. Ref. 60). In this frame, �(t) → �∞ (constant).

A. Pseudospin distribution function

In phases I and II of the quench phase diagram in Fig. 4, �(t)
asymptotes to a constant �∞ (equal to zero in I). In the long-
time limit, the effective magnetic field 
Bi seen by Anderson
pseudospin 
si is given by Eq. (2.14). This is identical to the field
in an “effective” ground state with pairing amplitude �∞ and
chemical potential μ∞. In the actual BCS or BEC ground state,
each spin is parallel to its associated field.60 For a quench, the
situation is different. As t → ∞, each spin precesses about its
field with an energy-dependent frequency, as in Eq. (2.15). The
pseudospin distribution function γi determines the projection
of the spin onto the field in this equation. [In phase I, we
should take B̂i = −ẑ and μ∞ = 0; this reconciles Eqs. (2.8)
and (2.15). In phase II, γ is referred to as the Cooper-pair
distribution in Sec. II D.]

The conservation of the Lax norm (spectral polynomial)
allows the determination of γi in Eq. (2.15). As t → ∞, the
Lax components in Eq. (3.4) become

L±(u; t) = ν0

∫ ε�

0
dε

√
ε [sx(ε; t) ± isy(ε; t)]

ε − u
,

(5.1)

Lz(u; t) = ν0

∫ ε�

0
dε

[
εsz(ε; t)

ε − u

]
+ πν0

gf

.

In these equations, we have converted to the continuum via
Eq. (3.2); gf is the post-quench coupling strength [Eq. (2.7)],
and sa(εi ; t) ≡ â · 
si(t) [a ∈ {x,y,z}] is the continuum version
of the precessing spin in Eq. (2.15). The energy cutoff in
Eq. (5.1) is

ε� ≡ 2
[
� + μ

(i)
0

]
(5.2)

[see Eqs. (3.2) and (3.37)].
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For �∞ �= 0, all three Lax components in Eq. (5.1)
contain both oscillating and constant terms. Our procedure
to determine γ (ε) is as follows: We sit at some fixed complex
value of u away from the positive real axis. Next, we take
t → ∞. The oscillatory terms in L{±,z}(u; t) vanish in this
limit, as can be seen through repeated integration by parts.65

The result is

Lx(u; ∞) = ν0

2

∫ ε�

0
dε γ (ε)

ε�∞
(ε − u)E∞(ε)

,

Ly(u; ∞) = 0, (5.3)

Lz(u; ∞) = ν0

2

∫ ε�

0
dε γ (ε)

ε
(

ε
2 − μ∞

)
(ε − u)E∞(ε)

+ πν0

gf

.

Finally, we let u approach the positive real axis and evaluate
the Lax components at u → u ± iη, with u and η positive and
real on the right-hand side. We obtain

Lx(u ± iη; ∞) = ν0

2

[
J (u) ± iπ

u�∞
E∞(u)

γ (u)

]
,

Lz(u ± iη; ∞) = ν0

2

{
K(u) ± iπ

[
u
(

u
2 − μ∞

)
E∞(u)

]
γ (u)

}
,

(5.4a)

where

J (u) ≡ P

∫ ε�

0
dε

(
1

ε − u

)
εγ (ε)�∞
E∞(ε)

,

(5.4b)

K(u) ≡ P

∫ ε�

0
dε

(
1

ε − u

)
εγ (ε)

(
ε
2 − μ∞

)
E∞(ε)

+ 2π

gf

.

In these equations, P denotes the principal value. Combining
Eqs. (5.4) and (3.5) determines the Lax norm at infinite time
L2(u ± iη; t = ∞). We equate this to Eq. (3.34b), which gives
L2(u) in terms of the pre-quench state, leading to

u

{
J (u) ± iπ

u�∞
E∞(u)

γ (u)

}2

+
{
K(u) ± iπ

[
u
(

u
2 − μ∞

)
E∞(u)

]
γ (u)

}2

= I∓(u), (5.5)

where the initial state is encoded in

I∓(u) ≡ β2 + [E(i)(u)f (i)(u; 1) ∓ iπu]2

+β

(
u − 2μ

(i)
0

)
E(i)(u)

[E(i)(u)f (i)(u; 1) ∓ iπu]. (5.6)

The form of f (i)(u; 1) is given by Eq. (3.38). Equation (5.5)
implies that

s±

√√√√
I∓(u) − u

[
J (u)

(
u
2 − μ∞

) − K(u)�∞
]2

E2∞(u)

=
(

u
2 − μ∞

)
K(u) + u�∞J (u)

E∞(u)
± iπuγ (u), (5.7)

with {s+,s−} ∈ ±1.
We take the difference of the ±iη prescriptions in Eq. (5.7)

to obtain

γ (u) = 1

2iπu

{
s+

√
I−(u) − u

[
�(u)

E∞(u)

]2

− s−

√
I+(u) − u

[
�(u)

E∞(u)

]2}
, (5.8)

where

�(u) ≡ J (u)

(
u

2
− μ∞

)
− K(u)�∞

= −�∞

{
2π

gf

−
∫ ε�

0
dε [−γ (ε)]

ε

2E∞(ε)

}
= 0. (5.9)

That � = 0 is explained as follows. Clearly, this holds in
phase I, wherein �∞ = 0. To see why � vanishes for �∞ > 0
(phase II), we note that the term in brackets on the second
line of Eq. (5.9) is the continuum version of the BCS
equation [Eqs. (3.20) and (A1a)] for effective spins of “length”
−γ (ε)/2. Indeed, the Lax components at infinite time in
Eq. (5.3) appear as though evaluated for a ground state with
{�0,μ} = {�∞,μ∞}, for effective spins aligned along the field
as in Eq. (3.19), but with a renormalized spin length set by
γ (ε) (which is the projection onto the field of the physical,
precessing pseudospins).

We therefore conclude that

γ (ε) = s

2iπε
[
√

I−(ε) −
√

I+(ε)], (5.10)

which is independent of {�∞,μ∞}. Relative to Eq. (5.8), we set
s+ = s− ≡ s ∈ ±1 to obtain a real amplitude. Equation (5.10)
holds throughout phases I and II. Note that γ (ε) → −1 as
ε → ∞ for any quench since the particle density is finite and
all spins are aligned along −ẑ for sufficiently large energies.
Subject to this boundary condition, the physical branch (sign
s) of Eq. (5.10) changes at an energy ε whenever γ (ε) → 0
with a nonzero slope, so as to produce a continuous distribution
function.

A more useful but equivalent expression is

γ (ε) = s

√√√√
1 − 1

2(πε)2

[
N (ε) −

√{
N 2(ε) − ε

[
2πε�

(i)
0 β

E∞(ε)

]2}]
, (5.11a)

where

N (ε) ≡
[(

ε

2
− μ

(i)
0

)
f (i)(ε; 1) + β

]2

+ ε
[
�

(i)
0 f (i)(ε; 1)

]2 + (πε)2. (5.11b)
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Equation (5.11a) gives a manifestly real formula for γ (ε); one
must still choose the branch s ∈ ±1 as a function of energy so
as to produce a continuous distribution function.

Finally, we note that the expression for γ (ε) in Eqs. (5.10)
or (5.11a) also applies in phase III, if suitably interpreted. In
this case, −γ (ε)/2 denotes the projection of spin 
s(ε) in the
post-quench asymptotic state onto the reduced spin solution

sred(ε). The reduced spin solution is defined such that 
sred(ε)
satisfies Eq. (3.31b) in terms of the collective variables 
σ1,2,
as discussed in Sec. IV B.

B. Winding numbers

1. Green’s function winding W

The winding number W in Eq. (1.10) depends upon the
asymptotic form of the retarded Green’s function Gk(t,t ′). As
discussed in Sec. II C2, this function satisfies the Bogoliubov–
de Gennes equation (2.11), subject to the initial condition
in (2.12). It is therefore independent of the distribution function
γ (ε), which does not appear in these equations. This is
confirmed by a calculation in Appendix D, which yields the
explicit form for Gk(t,t ′) in Eq. (D13). This result is identical
to that for a system in its ground state, except that here
the order parameter �∞ and the chemical potential μ∞ are
determined by the quench through the single isolated pair of
roots [Eq. (4.3)].

The winding number W therefore depends only upon
sgn(μ∞) in phase II, and takes the values shown in Fig. 9, as
discussed in Sec. III F. By the argument in Sec. II C2, W = 1
(W = 0) signals the presence (absence) of edge states in the
Bogoliubov–de Gennes quasiparticle spectrum following a
quench in phase II. By contrast, W is ill defined in the gapless
phase I.

2. Pseudospin winding Q

As explained in Sec. II C1, starting from an initial p +
ip state in either the BCS or BEC phases, the evolving spin
distribution can be parametrized at any time t as in Eq. (1.7),
where 
(k) and �(k) are time dependent. Equation (1.6) then
implies that the pseudospin winding number Q is given by

Q = 1
2 {sgn[
(k = 0)] + 1} . (5.12)

As t → ∞, the momentum-space pseudospin texture is
reconstructed from Eqs. (2.8) and (2.15) in phases I and
II, respectively. The latter is transcribed in Eq. (D1) of
Appendix D.

We consider first the gapless phase I. The winding Q =
1
2 {γ (0) + 1}. From Eqs. (5.11), one can check that

lim
ε→0

|γ (ε)| =
{

1, μ
(i)
0 �= 0,

0, μ
(i)
0 = 0,

(5.13)

where μ
(i)
0 is the pre-quench chemical potential, with μ

(i)
0 > 0

(μ(i)
0 < 0) indicating a BCS (BEC) initial state. We conclude

that Q is well defined throughout the gapless phase I, except for
a quench starting from the quantum critical point �(i)

0 = �QCP.
To compute Q, we must determine the branch of

Eq. (5.11a) (i.e., s = ±1) relevant for ε → 0. We know that
limε→∞ γ (ε) = −1, so that the branch is s = −1 at large ε.

The branch switches every time γ goes to zero with a nonzero
slope, so as to preserve the continuity. We find that in the
gapless phase I,

lim
ε→0

γ (ε) =
{

−1, μ
(i)
0 < 0 ⇒ Q = 0,

+1, μ
(i)
0 > 0 ⇒ Q = 1.

(5.14)

In other words, Q is conserved in the gapless phase. This
can be understood in various ways. The pseudospin winding
number can not change unless (a) the spin distribution develops
a discontinuity or a diabolical point,24 or (b) a skyrmion-
number changing process (hedgehog) occurs in momentum
time. Scenario (a) can not occur within a finite-time interval
because the time evolution is a smooth deformation. Scenario
(b) can not happen for the reduced p-wave BCS Hamiltonian
dynamics [which are identical for Eqs. (1.1) and (2.1), as
shown in Appendix B].

The conservation of Q in phase I wherein �(t) → 0 leads
to the notion of a “gapless topological phase.” This occurs
for quenches in the region marked B, Fig. 8. Those in A
are topologically trivial. Corresponding topological and trivial
pseudospin textures appear similar to those in Figs. 2(a)
and 2(c), but now these textures undulate in time: The spins
at radius k precess about ẑ with frequency k2 [Eq. (2.8)].
In Figs. 11 and 12, γ (ε) is plotted against k = √

ε for
representative quenches in A and B, respectively.

Next, we consider phase II. As discussed above and in
Sec. II C2, in the limit t → ∞, the retarded Green’s function
winding number W is completely determined by μ∞. This
appears in 
B(ε), the continuum version of Eq. (2.14). The
latter can be viewed as an effective ground-state field, which
“winds” whenever W �= 0 (recall that spins are aligned along
the field in the actual ground state). For W = 1, we have
μ∞ > 0 and B̂(0) = ẑ (“winding”), while W = 0 implies that
μ∞ < 0 and B̂(0) = −ẑ (“nonwinding”). As shown in Fig. 9,
W undergoes a dynamical topological transition for quenches
across the quantum critical point. In particular, W evolves from
trivial to nontrivial or vice versa for quenches in the regions
marked C and H in Fig. 10.

The pseudospin winding Q is determined by sz(0). Since
|γ (0)| = 1 for μ

(i)
0 �= 0 [Eq. (5.13)], Eq. (2.15) implies that

Q = 0 for γ (0)Bz(0) = 1 and Q = 1 for γ (0)Bz(0) = −1.
For a given phase II quench {�(i)

0 ,�
(f )
0 }, let us denote the

initial value of the Green’s function winding as W0, while W∞
is the asymptotic value as t → ∞. Imposing continuity on the
function γ (ε), we find that

γ (0) =
{+1, W∞ �= W0,

−1, W∞ = W0.
(5.15)

In other words, the Cooper-pair distribution γ (ε) “winds” from
−1 at ε → ∞ to +1 at ε = 0 whenever W in the asymptotic
post-quench state differs from its value in the initial state. As
a result, we determine that Q is conserved for all quenches in
phase II, so that Eq. (5.15) can be rewritten as

γ (0) =
{+1, W �= Q,

−1, W = Q,
(5.16)

where both winding numbers are computed in the asymptotic
steady state.
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FIG. 17. (Color online) The Cooper-pair distribution function
γ (k) as in Fig. 13, but plotted for representative quenches in regions
E (red dashed line) and H (blue solid line) of phase II. The quench
coordinates for E are {�(i)

0 ,�
(f )
0 } = {0.972,1.25}, while the quench

coordinates for H are {�(i)
0 ,�

(f )
0 } = {0.972,1.55}. Regions E and H

are specified in Fig. 10.

Plots of γ (ε) for phase II quenches in regions {C,D,E,H}
marked in Fig. 10 appear in Figs. 13 and 17. Because quenches
in regions C and H have W �= Q and therefore γ (0) = +1, we
deduce that the number of zeros in γ (ε) is odd for quenches in
these regions. By contrast, γ (ε) must exhibit an even number
of zeros for quenches wherein W = Q, including those in D
and E. A quench therefore imprints a new Z2 index upon the
Cooper-pair distribution function, in the form of its parity of
zeros. By contrast, γ (ε) = −1 for all mode energies ε in both
the BCS and BEC ground states.

For an ultracold-atomic realization of the p + ip superfluid,
the Cooper-pair distribution can in principle be measured in rf
spectroscopy, as discussed in Sec. II D.

C. Approach to the steady state

1. Phase I: Decay to zero

In the continuum limit, the post-quench order parameter in
Eq. (2.5) is given by

�(t) = − gf

2π

∫ ε�

0
dε

√
ε s−(ε; t). (5.17)

The order parameter can be self-consistently determined by
linearizing the spin equations of motion in Eq. (2.4). In phase I,
�(t) decays to zero as t → ∞, and s−(ε; t) can be written as
a sum of the pure precession in Eq. (2.8), plus a fluctuation:

s−(ε; t) ≡ s−
∞(ε; t) + δs−(ε; t),

(5.18)
s−
∞(ε; t) = 1

2

√
1 − γ 2(ε) exp {−i [εt + �(ε)]} .

The continuum limit of Eq. (2.4) can be written as

ṡz(ε; t) = i
√

ε[�∗s−(ε; t) − �s+(ε; t)],
(5.19)

ṡ−(ε; t) = i[2
√

ε�sz(ε; t) − εs−(ε; t)],

where ẋ = dx/dt . Equation (5.19) is invariant under the
effective time-reversal transformation

sz(ε; t) → sz(ε; −t),

s±(ε; t) → s∓(ε; −t),

�(t) → �∗(−t).

These relations are also satisfied by the initial condition (3.19)
for the pre-quench p + ip state with real �0. Therefore, we
can set �(ε) = 0 in Eqs. (2.8), (2.15), and (5.18).

To linear order in the smallness of �(t),

δṡ−(ε; t) = i[
√

εγ (ε)�(t) − εδs−(ε; t)], (5.20a)

�(t) = �∞(t) + δ�(t), (5.20b)

�∞(t) ≡ − gf

4π

∫ ε�

0
dεA(ε) e−iεt , (5.20c)

δ�(t) = − gf

2π

∫ ε�

0
dε

√
ε δs−(ε; t), (5.20d)

A(ε) ≡ √
ε
√

1 − γ 2(ε). (5.20e)

In these equations, �∞(t), δ�(t), and δs−(ε; t) all vanish by
assumption as t → 0.

We first calculate �∞(t), which exhibits the same power-
law decay as the full �(t). The latter is also computed explicitly
below. For an initial state not at the quantum critical point
(μ(i)

0 �= 0), Eqs. (5.11) and (5.20e) imply that

A(ε) = c ε + O(ε2),
(5.21)

c ≡ β�
(i)
0∣∣μ(i)

0

∣∣(β + 2μ
(i)
0 ln

[
2�

(�(i)
0 )2+2|μ(i)

0 |θ(−μ
(i)
0 )

]) ,

where {�(i)
0 ,μ

(i)
0 } characterize the initial state and β > 0 is

the quench parameter [Eq. (2.6)]. Because A(ε) is a regular
(if complicated) function over the integration interval, we can
evaluate Eq. (5.20c) via repeated integration by parts. The
leading result is

�∞(t) = gf

4π

[
c

t2
+ 1

it
A(ε�) exp(−iε�t)

]
.

The energy cutoff ε� was defined in Eq. (5.2). Via Eqs. (5.11)
and (5.20e), one can show that A(ε�) = d/� + O(�)−2 with
d a cutoff-independent constant, leading to

�∞(t) = gf

4π

[
c

t2
− i

d

� t
exp(−iε�t)

]
. (5.22)

This has the form given by Eq. (2.9), which consists of a cutoff-
independent 1/t2 decay plus a “nonuniversal” oscillating
term proportional to 1/�t . The latter is technically beyond
the logarithmic accuracy to which we have been working
throughout, but can be important when comparing against
numerics.

By contrast, for a quench starting from the quantum critical
point (with �

(i)
0 = �QCP and μ

(i)
0 = 0), one finds that

A(ε) = √
ε − c̃ ε3/2 + O(ε5/2), (5.23)

with c̃ a constant. The square root leads to the slower
t−3/2 decay law in Eq. (2.10); the ultraviolet gives the same
nonuniversal contribution.

We can also determine the precise form of �(t). Ignoring the
cutoff-dependent term, the 1/t2 decay of �∞(t) in Eq. (5.22)
enters as a source in the right-hand side of Eq. (5.20a). As a
result, δs−(ε; t) ∝ 1/t2 and we can drop the time derivative on
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the left-hand side, which decays faster. We thereby obtain

δs−(ε; t) = 1√
ε
γ (ε)�(t),

and using Eq. (5.20d)

δ�(t) = gf �(t)

2π
(ε� − 8πn) . (5.24)

Here, we have expressed the conserved particle density n

through the distribution function

n = 1

8π

∫ ε�

0
dε [1 + 2sz(ε)] = 1

8π

∫ ε�

0
dε [1 + γ (ε)] .

Using Eq. (5.20b), Eq. (5.24) simplifies to

�(t) = �∞(t)[
1 + gf

2π
(8πn − ε�)

]
= 1{

μ
(f )
0 ln

[
2�e

(�(f )
0 )2

]
− μ

(i)
0

} c

4t2
. (5.25)

On the second line, we have employed the BCS equation (A2).
Here, μ

(i)
0 (μ(f )

0 ) denotes the chemical potential associated to
�

(i)
0 (�(f )

0 ) in the BCS ground state. For a quench in phase I,
we have μ

(f )
0 � 2πn, while μ

(i)
0 � 2πn. We note that only

logarithmic dependence upon the cutoff appears in the final
expression.

2. Phase II: Decay to �∞ > 0

We will evaluate the counterpart of Eq. (5.20c) for quenches
wherein the order parameter asymptotes to a nonzero constant.
The precessing spin in Eq. (2.15) has the minus component

s−
∞(ε; t) = 1√

ε
{α1(ε) cos [2E∞(ε)t]

− iα2(ε) sin [2E∞(ε)t] + α3(ε)} , (5.26)

where

α1(ε) ≡ A(ε)

(
ε
2 − μ∞

)
2E∞(ε)

,

α2(ε) ≡ 1

2
A(ε), (5.27)

α3(ε) ≡ γ (ε)
ε�∞

2E∞(ε)
,

and the amplitude A(ε) was defined in Eq. (5.20e).
Inserting Eq. (5.26) into Eq. (5.17), the static term involving

α3(ε) evaluates to

− gf

2π

∫ ε�

0
dε α3(ε) = �∞, (5.28)

where we have used Eq. (5.9). Thus, the spin distribution
reconstructed from the conservation of the Lax norm is
consistent with the pairing amplitude �∞ computed from
the isolated root pair. The time-dependent part of the order
parameter is given by

δ�∞(t) = − gf

2π

∫ ε�

0
dε {α1(ε) cos [2E∞(ε)t]

− iα2(ε) sin [2E∞(ε)t]} . (5.29)

To compute Eq. (5.29), we must distinguish two regimes.
For quenches with �2

∞ < μ∞, the dominant contribution
comes from a saddle point at nonzero ε. This is the re-
gion of phase II to the left of the line marked βCoh in
Fig. 15, as discussed above Eq. (3.52) in Sec. III F. For
quenches in this regime, E∞(ε) reaches its minimum value
(the nonequilibrium spectral gap) Emin = �∞

√
2μ∞ − �2∞

at ε0 = 2(μ∞ − �2
∞) > 0:

E∞(ε) = Emin + (ε − ε0)2

8Emin
+ · · · .

The saddle point gives

δ�∞(t) � −gf

√
Emin

2πt
[α− cos(2Emint) − α+ sin(2Emint)] ,

α∓ ≡ α1(ε0) ∓ iα2(ε0). (5.30)

This is qualitatively the same behavior as obtained for weak
BCS-to-BCS quenches in the s-wave case.12,66

The saddle-point contribution in Eq. (5.30) vanishes when
ε0 → 0 (μ∞ = �2

∞). For �2
∞ > μ∞, the minimum of E∞(ε)

occurs at ε = 0 (see Sec. III B for further discussion of the
spectrum). Equation (5.29) can then by evaluated by repeated
integration by parts. Note that

α1(ε) = α2(ε)[− sgn(μ∞) + O(ε)],

leading to

δ�∞(t) � gf sgn(μ∞)

4π

∫ ε�

0
dεA(ε) e2iE∞(ε) sgn(μ∞)t . (5.31)

This is the phase II generalization of Eq. (5.20c), valid
for �2

∞ > μ∞. Equations (5.21) and (5.23) imply that the
cutoff-independent part of the decay is 1/t2 for �

(i)
0 �= �QCP

and 1/t3/2 for �
(i)
0 = �QCP. At ε = 0, the phase factor

e2iE∞(ε) sgn(μ∞)t → e2iμ∞t ; this is eliminated by moving back
to the “lab” frame.

We conclude that Eqs. (2.9) and (2.10) also describe the
decay of δ�(t) ≡ [�(t) − �∞] for phase II quenches to the
right of the βCoh line in Fig. 15. By contrast, quenches to the
left of this line within phase II exhibit slower, oscillatory decay
according to Eq. (5.30), due to the saddle-point contribution.

VI. CONCLUSION

A. Pair-breaking processes

In this paper, we have computed the quench dynamics
of a p + ip superfluid in the collisionless regime. This is
a nonadiabatic evolution of the initial state in which pair-
breaking processes are neglected. The preconditions necessary
to observe our results in an experiment are that

tquench � 1

Emin
� tpb, (6.1)

where tquench is the duration of the quench (zero for the instanta-
neous quench studied here), Emin is the minimum quasiparticle
energy (quasiparticle gap), and tpb is the time scale associated
to inelastic pair-breaking processes. The various predictions
presented in this paper describe the post-quench asymptotic
steady state. Provided the bounds in Eq. (6.1) are met, we
expect our results to hold for times t such that 1

Emin
� t � tpb.
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For BCS-to-BCS quenches entirely confined to the weak
pairing regime,

Emin = �
(i)
0

√
2μ

(i)
0 − (

�
(i)
0

)2 � �
(i)
0

√
4πn.

Fermi liquid theory then implies the order-of-magnitude
estimate

tpb ∼ 1

Emin

[
μ

(i)
0

Emin

]
� 1

Emin
, (6.2)

implying the existence of a large window over which the
collisionless dynamics computed in this paper can be observed.
The investigation of pair-breaking processes upon quenches
originating or terminating beyond the weak coupling regime
remains an important subject for future work.

B. Summary and open questions

In summary, we have investigated quantum quenches in 2D
topological p-wave superfluids. The post-quench dynamics
has been computed via classical integrability. Within the
classical approximation, our treatment is exact. Because of the
infinite-ranged nature of the interactions in the reduced BCS
Hamiltonian, we expect that our results apply to the quantum
model in the thermodynamic limit.

We constructed the quench phase diagram, and extracted the
exact asymptotic order-parameter �(t) dynamics, finding that
either (1) �(t) goes to zero, (2) �(t) goes to nonzero constant,
or (3) �(t) exhibits persistent oscillations. These results are
qualitatively the same as the s-wave case.6–14

The key difference from previous work is that here we
have characterized the quench-induced dynamics of the system
topology. We found that the pseudospin winding number
Q is unchanged by the quench, leading to the prediction
of a “gapless topological state”. By contrast, the retarded
Green’s function winding number W can undergo a dynamical
transition. This happens, e.g., for quenches across the quantum
critical point separating the topologically nontrivial BCS and
trivial BEC phases. In the asymptotic steady state wherein
the order parameter goes to a constant, the corresponding
Bogoliubov–de Gennes Hamiltonian is expected to possess
edge states in a finite geometry whenever W �= 0.

While W determines the existence of edge modes following
a quench, we have not determined the occupancy of these
states. The difficulty is that introducing an edge breaks the inte-
grability of our momentum-space BCS model. A fundamental
question is whether these nonequilibrium topological steady
states support the kind of quantized thermal conductance
expected in an equilibrium p-wave superconductor.54,55 A
related question is the formation, preservation, or destruction
of Majorana zero modes following a quench in 1D topological
superconductor; this was studied numerically for a noninter-
acting model in Ref. 61.

Another interesting open problem relates to the role of
topological defects in thermalization. Once pair-breaking
processes are included, the theory is no longer integrable. One
therefore expects thermalization at the longest times. How does
this occur? One possibility is that topological defects, which
can appear either as phase vortices in real space, or hedgehog

instantons in momentum time, proliferate and scramble the
topological order.

Finally, we have determined that the parity of zeros in the
Cooper-pair distribution is odd whenever Q �= W , i.e., when-
ever W undergoes a dynamical transition. We have argued
that the Cooper-pair distribution should be observable in rf
spectroscopy in an ultracold-atomic or molecular realization
of the 2D p + ip superfluid. By contrast, the same response
does not distinguish the BCS from BEC phases in the ground
state.

Probing the Cooper-pair distribution can therefore provide
a bulk signature of the topological properties of the system
when it is driven far from equilibrium by a quench. In this
way, a quantum quench can be used to transfer topological
entanglement normally hidden from experiment into a physical
observable, i.e., a nonequilibrium distribution function.
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APPENDIX A: GROUND STATE

1. BCS equations

In the thermodynamic limit, the BCS equations for the
pairing amplitude �0 and particle density n are

1

g
= 1

2π

∫ 2(�+μ)

0
dε

ε/2√(
ε
2 − μ

)2 + (�0)2ε

, (A1a)

n = 1

8π

∫ 2(�+μ)

0
dε

⎡⎣1 − ( ε
2 − μ)√(

ε
2 − μ

)2 + (�0)2ε

⎤⎦ , (A1b)

where ε = k2, and we have cut these integrals off at a single-
particle energy k2/2 = � + μ. (The inclusion of μ simplifies
the analysis; results are obtained to logarithmic accuracy in
� � |μ|.) The BCS coupling G in Eq. (2.1) is related to g via
Eq. (2.7). The dimensionful interaction strength g is nonzero in
the thermodynamic limit, and carries units of inverse density.
Equation (A1a) is the continuum version of Eq. (3.20), using
Eq. (3.2).

Integrating Eq. (A 1) and discarding terms proportional to
inverse powers of �, one obtains Eq. (1.5) for the chemical
potential and

1

g
− 1

gQCP
= μ

π
ln

[
2�e

�2
0 + 2|μ|θ (−μ)

]
. (A2)

In this equation, gQCP is the coupling strength at the BCS-BEC
transition μ = 0,

1

gQCP
= �

π
− 4n.
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The linear divergence in Eq. (A1a) has been absorbed into
1/gQCP. Because a quench is completely specified by the
initial order parameter �

(i)
0 and the difference of the initial

and final coupling strengths [Eq. (2.6)], gQCP plays no role in
the dynamics.

2. Spectral transitions and tunneling density of states

We first note three special values of �0, defined implicitly
through the chemical potential equation (1.5):

μ(n,�Coh) = (�Coh)2,

μ(n,�MR) = 1
2 (�MR)2, (A3)

μ(n,�QCP) = 0.

Since μ is a monotonically decreasing function of �0 [Eq. (1.5)
and Fig. 3], we have �Coh < �MR < �QCP. Each of these
values corresponds to a particular transition or anomalous
point in the shape of the quasiparticle energy spectrum. To
see this, we rewrite the quasiparticle energy Ek in Eq. (1.4) in
terms of ε = k2 [Eq. (2.16)]:

E(ε; �0) =
√(

ε

2
− μ

)2

+ (�0)2ε.

For sufficiently weak pairing, the minimum of E with
respect to ε occurs slightly below 2EF , where EF denotes the
Fermi energy. As �0 (or equivalently, the coupling strength)
is increased, this minimum moves to smaller energies. At
�0 = �Coh, it reaches zero. For �0 < �Coh [μ > (�Coh)2],
the tunneling density of states exhibits a coherence peak (van
Hove singularity) above its threshold value [see Fig. 14(b) and
Eq. (A6)]. The coherence peak disappears for �0 � �Coh. At
the special point �0 = �MR, the curvature of E(ε) vanishes
everywhere:

E(ε; �MR) = 1
2 [ε + (�MR)2].

The condition �0 = �MR for variable density n was termed
the “Moore-Read” line in Ref. 41. Finally, the BCS-BEC
quantum phase transition occurs at μ = 0, �0 = �QCP. Here,
the spectrum exhibits a gapless Dirac node at ε = 0,

E(ε; �QCP) = �QCP

√
ε + ε2/4(�QCP)2.

Equations (1.5) and (A3) can be solved to obtain

�Coh =
√

ϒ(n; 1),

�MR =
√

ϒ(n; 0), (A4)

�QCP =
√

ϒ(n; −1),

where

ϒ(n; x) ≡ − 4πn

W−1
[− 2πn

�
exp(−x)

]
� 4πn

ln
(

�
2πn

) + x + ln
[
ln

(
�

2πn

) + x
] .

Here, W−1(z) is the k = −1 branch of Lambert’s W function.

The tunneling density of states measured at a tip potential
V is given by52

ν(V ) ≡
∫

d2k
(2π )2

|uk|2δ(Ek − V )

= 1

8πV

∫
dε

(
ε

2
− μ + V

)
δ[E(ε; �0) − V ], (A5)

where uk = 1√
2

√
1 + (k2/2 − μ)/Ek is a coherence factor.

Performing the integration, one obtains

ν(V ) = 1

2π

[
V − (�0)2√
V 2 − V 2

min

]
× θ (V − Vmin) θ (μ − V ) θ (�Coh − �0)

+ 1

4π
θ (V − |μ|)

[
1 + V − (�0)2√

V 2 − V 2
min

]
. (A6)

In this equation, θ (ε) denotes the unit step function. The
first term in Eq. (A6) is nonzero only for weak pairing
strengths such that �0 � �Coh. In this range, the single-
particle excitation gap is [Eq. (3.23)]

Vmin = �0

√
2μ − (�0)2, (A7)

and ν(V ) exhibits a coherence peak above this energy, as shown
in Fig. 14(b). For �0 > �Coh, only the second term in Eq. (A6)
contributes. The minimum of E(ε) occurs at ε = 0, where
the single-particle excitation gap is |μ| [Eq. (3.24)]. This is
nonzero on both sides of the BCS-BEC transition. On the
BCS side (�Coh < �0 < �QCP), ν(V ) in Eq. (A6) vanishes
continuously at V = μ; on the BEC side (�0 > �QCP), there
is a discontinuous jump [see Fig. 14(b)]. The difference is a
coherence factor effect due to |uk|2 in Eq. (A5).

APPENDIX B: CLASSICAL DYNAMICS IN THE CHIRAL
p-WAVE MODEL

In this Appendix, we establish the equivalence of dynamics
generated from a p + ip initial state using the “real” p-wave
Hamiltonian in Eq. (1.1) and the chiral one in Eq. (2.1). For
the Hamiltonian in Eq. (1.1), the equations of motion are

ṡz
k = i

2
[Bks

+
k − B∗

ks−
k ],

(B1)
ṡ−

k = −i
[
k2s−

k + Bks
z
k

]
,

where

Bk ≡ 4G
∑

q

′
k · q s−

q . (B2)

For a time-dependent p + ip state, we can write

s−
k ≡ e−iφk s−

k , sz
k ≡ sz

k . (B3)

Equation (B1) becomes

ṡz
k = iG

∑
q

′
kq

[
s−
q s+

k − s−
k s+

q

]
,

(B4)

ṡ−
k = −i

(
k2s−

k + 2G
∑

q

′
kq s−

q sz
k

)
,
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where we have used the fact that∑
q

′
exp(−2iφq) → ν0

∫
dε

∫ π

0

dφq

π
exp(−2iφq) = 0.

In this last equation, we convert to the continuum via Eq. (3.2).
Defining 
si ≡ 
ski

, Eq. (B4) takes the form

ṡz
i = i

√
εi[�

∗s−
i − �s+

i ],

ṡ−
i = i

{
2
√

εis
z
i � − εis

−
i

}
, (B5)

� ≡ −G
∑

j

√
εj s

−
j .

These are identical to Eq. (2.4).

APPENDIX C: PHASE III DYNAMICS FOR NEGATIVE
REAL ROOTS

In Sec. IV B, we computed the asymptotic dynamics for
�(t) through the bulk of phase III. Equations (4.34)–(4.38)
give the evolution of the squared modulus R(t) ≡ |�(t)|2
everywhere in III to the left of the line marked βMR in Fig. 15.
All coefficients are determined by the two pairs of isolated
roots u1,± and u2,±, which come in complex-conjugate pairs

[Eqs. (4.4) and (4.5)]. For a given quench {�(i)
0 ,β}, these solve

Eqs. (3.36).
These results do not apply to a very narrow phase III

sliver of width ∼√
n[ln(�/2πn)]−5/2 � {�Coh,�MR,�QCP}

in Fig. 15. This is the region bounded on the left (right)
by the βMR (β(−)

c ) curve. Within this sliver, the roots u2,±
are nondegenerate, negative, and real. Quenches in phases II
and III between the lines marked βMR and βQCP in Fig. 15
are nonequilibrium versions of the BCS ground state with
�MR < �0 < �QCP. The corresponding root configurations
lie between those marked (3) and (4) in Fig. 14(a).

In this Appendix, we transcribe the order-parameter dy-
namics for quenches in this sliver. Instead of Eq. (4.5), the
second isolated pair is

u2,{a,b} ≡ −v2,{a,b} < 0.

Equations (4.32a) and (4.32b) are replaced by

Ṙ2 = (R+ − R)(R − R−)
[
(R − Rr)2 + R2

i

]
, (C1a)

R± ≡ 1
4 [

√
v2,b + √

v2,a ± √
2(|u1| − u1,r)]2,

(C1b)
Rr + iRi ≡ 1

4 [
√

v2,b − √
v2,a + i

√
2(|u1| + u1,r)]2.

The solution is

R(t) ≡ R0 + Rd z(t), (C2)

z(t) =
(
1 + z2

0

) {zc,r[1 + cn2(θt |N )] + (1 + |zc|2) cn(θt |N )}{
(1 + z0zc,i)2 + 2zc,r

(
1 + z2

0

)
cn(θt |N ) + z2

0z
2
c,r + [

(z0 − zc,i)2 + z2
c,r

]
cn2(θt |N )

} , (C3)

where zc ≡ zc,r + izc,i. In terms of the roots,

R0 = 1

4
[2(|u1| − u1,r) + (

√
v2,a + √

v2,b)2], Rd = 1√
2

√|u1| − u1,r(
√

v2,a + √
v2,b),

zc,r = −
√

2(|u1| + √
v2,a

√
v2,b)√|u1| − u1,r(

√
v2,a + √

v2,b)
, zc,i =

√|u1| + u1,r(
√

v2,b − √
v2,a)√|u1| − u1,r(

√
v2,b + √

v2,a)
,

(C4)

z0 =
{
u2

1,i + (u1,r + v2,a)(u1,r + v2,b) +
√[

u2
1,i + (u1,r + v2,a)2

] [
u2

1,i + (u1,r + v2,b)2
]}

u1,i(v2,b − v2,a)
,

N = 1

1 + z2
0

, θ = {[
u2

1,i + (u1,r + v2,a)2
] [

u2
1,i + (u1,r + v2,b)2

]}1/4
.

The physical period T of R(t) is

T = 4K(N )

θ
, (C5)

where K(N ) is the complete elliptic integral of the first kind
(and N = k2).

APPENDIX D: GREEN’S FUNCTIONS

In this Appendix, we compute single-particle Green’s
functions in the long-time limit for quenches in phase II of

the diagram in Fig. 4. Throughout this appendix, we work
in the rotating frame employed in Sec. V such that the order
parameter itself (and not only its modulus) asymptotes to a
constant.

1. Post-quench coherence factors

In phase II, the asymptotic spin configuration is given by
Eq. (2.15), where γi = γ (εi) in Eq. (5.11a). Following the
discussion surrounding Eq. (3.1), the spins in the 2D k plane
evolving from an initial p + ip state are reconstructed as
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follows:

2s−
k (t) =

{√
1 − γ 2

k

[(
ξk

Ek

)
cos(2Ekt) − i sin(2Ekt)

]
+ γk

(
k�∞
Ek

)}
exp(−iφk),

2sz
k(t) = −

√
1 − γ 2

k

(
k�∞
Ek

)
cos (2Ekt) + γk

(
ξk

Ek

)
,

ξk ≡
(

k2

2
− μ∞

)
, Ek ≡

√
ξ 2
k + k2�2∞, (D1)

where φk is the polar angle in momentum space, and �∞ and
μ∞ refer to the post-quench steady-state (not ground-state)
values. Comparing to Eq. (2.15), we have set the phase shifts
�i = 0 (see Sec. V C). The pre-quench parameters �

(i)
0 and

μ
(i)
0 enter through the distribution function

γk ≡ γ (ε = k2), (D2)

the latter evaluated in Eq. (5.11a).
In the thermodynamic limit, the many-body wave function

assumes a BCS product form with time-dependent coherence
factors,

|�(t)〉 =
∏

k

′
[uk(t) + vk(t) s+

k ]|0〉, (D3)

where |0〉 is the vacuum (all pseudospins down). In this state,
the expectations of Anderson pseudospin Schrödinger picture
operators are given by

〈�(t)| s+
k |�(t)〉 = v∗

kuk(t),

〈�(t)| s−
k |�(t)〉 = u∗

kvk(t), (D4)

〈�(t)| sz
k |�(t)〉 = 1

2 (|vk|2 − |uk|2)(t).

The coherence factors solve the same Bogoliubov–de
Gennes equation as the retarded Green’s function Gk(t,t ′)
[Eq. (2.11)]. In the large-time limit,

i
d

dt

[
uk(t)

vk(t)

]
=

[−ξk k∗�∞
k�∞ ξk

][
uk(t)

vk(t)

]
, (D5)

where k ≡ kx − iky . Different from Gk(t,t ′), the coherence
factors “remember” details of the pre-quench state through the
initial condition at t = 0. The general solution to Eq. (D5) is

uk(t) = (Ek − ξk) Ake
−iEkt + (Ek + ξk) Bke

iEkt ,
(D6)

vk(t) = [Ake
−iEkt − Bke

iEkt ]�∞k e−iφk ,

where the undetermined complex constants Ak and Bk satisfy

1 = [
(Ek − ξk)2 + k2�2

∞
] |Ak|2

+ [
(Ek + ξk)2 + k2�2

∞
] |Bk|2. (D7)

For the p-wave problem, one coherence factor must have odd
parity; we have chosen vk in Eq. (D6).

Using Eq. (D6), one can compute the expectation values in
Eq. (D4). Comparing the results to that of the Lax calculation

in Eq. (D1), we determine that

uk(t) = 1

2

√
(1 + γk) (Ek − ξk)

Ek

e−iEkt+i�k

+ 1

2

√
(1 − γk) (Ek + ξk)

Ek

eiEkt+i�k ,

vk(t) = 1

2

√
(1 + γk) (Ek + ξk)

Ek

e−iEkt−iφk+i�k

− 1

2

√
(1 − γk) (Ek − ξk)

Ek

eiEkt−iφk+i�k , (D8)

where �k is an undetermined time-independent phase.
The ground state (zero quench) has γk = −1 for all k, lead-

ing to uk(t) =
√

1
2 (1 + ξk/Ek) exp(iEkt + i�k) and vk(t) =

−
√

1
2 (1 − ξk/Ek) exp(iEkt − iφk + i�k), as expected.

2. One-particle Green’s functions and structure factors

The dynamic single-particle Green’s functions can be
computed from the coherence factors. For example,

Gk,>(t,t ′) ≡ −i 〈�(t)| cke
−iH (t−t ′)c

†
k|�(t ′)〉

= −iu∗
k(t)uk(t ′)

×〈0| ck

∏
q �=k

′
[u∗

q(t) + v∗
q(t) c−qcq]e−iHkt

×eiHkt ′
∏
q′ �=k

′
[uq′ (t ′) + vq′ (t ′) c

†
q′c

†
−q′ ]c

†
k|0〉,

(D9)

where Hk is the interacting (and time-independent) BCS
Hamiltonian in Eq. (2.1) excluding the mode {k,−k}:

Hk =
∑
q�=k

′
q2sz

q − G
∑

q1,q2 �=k

′
q1q∗

2 s+
q1

s−
q2

. (D10)

Above, we have used the fact that eik2sz
kc

†
k |0〉 = c

†
k |0〉. Equa-

tion (D9) becomes

Gk,>(t,t ′) = −iu∗
k(t)uk(t ′)

×〈0| ck

∏
q �=k

′
[u∗

q(0) + v∗
q(0) c−qcq]

×
∏
q′ �=k

′
[uq′ (0) + vq′ (0) c

†
q′c

†
−q′ ]c

†
k|0〉

= −iu∗
k(t)uk(t ′). (D11)

In these manipulations, we have used the fact that in mean field
theory, the many-body BCS state can always be expressed as
product over modes of either a coherent admixture of empty
and doubly occupied levels, or alternatively a singly occupied
(“blocked”) level.
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We thereby obtain the following Green’s functions:

iGk,>(t,t ′) = 〈�i | ck(t) c
†
k(t ′) |�i〉 =

(
Ek − ξkγk

2Ek

)
cos[Ek(t − t ′)] + i

(
Ekγk − ξk

2Ek

)
sin[Ek(t − t ′)]

+ k�∞
2Ek

√
1 − γ 2

k cos[Ek(t + t ′)], (D12a)

−iGk,<(t,t ′) = 〈�i | c†k(t ′) ck(t) |�i〉 = v∗
k(t ′) vk(t) =

(
Ek + ξkγk

2Ek

)
cos[Ek(t − t ′)]

− i

(
Ekγk + ξk

2Ek

)
sin[Ek(t − t ′)] − k�∞

2Ek

√
1 − γ 2

k cos[Ek(t + t ′)], (D12b)

G+
k (t,t ′) = 〈�i |c†k(t) c

†
−k(t ′)|�i〉 = v∗

k(t) uk(t ′)

=
{

ξk

2Ek

√
1 − γ 2

k cos[Ek(t + t ′)] + γk

k�∞
2Ek

cos[Ek(t − t ′)] + i

2

√
1 − γ 2

k sin[Ek(t + t ′)]

+ i
k�∞
2Ek

sin[Ek(t − t ′)]
}
eiφk , (D12c)

G−
k (t,t ′) = 〈�i | c−k(t) ck(t ′) |�i〉 = u∗

k(t) vk(t ′) = [G+
k (t ′,t)]∗. (D12d)

In these equations, |�i〉 denotes the initial pre-quench BCS, BEC, or quantum critical state.
Using these results, the retarded Green’s function in Eq. (1.9) evaluates to

Gk(t,t ′) = −i

[
G(1)

k (t − t ′) G(2)
k (t − t ′)

−[
G(2)

k (t − t ′)
]∗ [

G(1)
k (t − t ′)

]∗

]
θ (t − t ′), (D13a)

where

G(1)
k (t) ≡ cos (Ekt) + i

(
ξk

Ek

)
sin (Ekt) , G(2)

k (t) ≡ −i

[
(kx + iky)�∞

Ek

]
sin (Ekt) . (D13b)

The retarded function in Eq. (D13) is a function only of the time difference (t − t ′), and is independent of γk . It satisfies Eq. (2.11)
with the initial condition in Eq. (2.12). By contrast, the other Green’s functions in Eq. (D12) depend upon both the relative and
average (t + t ′) times, and upon the nonthermal Cooper-pair distribution function γk .
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