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Nonadiabatic dynamics of superfluid spin-orbit-coupled degenerate Fermi gas
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3Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
(Received 12 August 2015; published 25 November 2015)

We study a problem of nonadiabatic superfluid dynamics of spin-orbit-coupled neutral fermions in two spatial
dimensions. We focus on the two cases when the out-of-equilibrium conditions are initiated by either a sudden
change of the pairing strength or the population imbalance. For the case of a zero-population imbalance and within
the mean-field approximation, the nonadiabatic evolution of the pairing amplitude in a collisionless regime can
be found exactly by employing the method of Lax vector construction. Our main finding is that the presence of the
spin-orbit coupling significantly reduces the region in the parameter space where a steady state with periodically
oscillating pairing amplitude is realized. For the collisionless dynamics initiated by a sudden disappearance of
the population imbalance, we obtain an exact expression for the steady-state pairing amplitude. In the general
case of quenches to a state with finite population imbalance, we show that there is a region in the steady-state
phase diagram where at long times the pairing amplitude dynamics is governed by the reduced number of the
equations of motion in full analogy with the exactly integrable case.
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I. INTRODUCTION

Starting with the seminal paper by Gor’kov and Rashba
[1], there has been a remarkable resurgence of interest in
the physical properties of spin-orbit-coupled superfluids and
superconductors in the past decade [2–10]. This interest is
largely motivated by the theoretical discovery of topological
insulators and topological superconductors in which spin-orbit
coupling often plays a crucial role by giving rise to the
existence of robust conducting states at a system’s boundaries
on a background of a gapped single-particle spectrum in a
bulk [11–18]. In addition, the recent discovery of supercon-
ductivity at the interface in the oxide-based heterostructures
[19–21] where the inversion symmetry is naturally broken
served as additional motivation for studying both conventional
and unconventional superconductivity in spin-orbit-coupled
systems [22].

Of special interest are the physical properties of topological
insulators and superconductors under external influences that
drive these systems far from equilibrium. In particular, the
concept of Floquet topological insulators has been recently
developed in the context of various systems’ external periodic
driving, which leads to an inversion of the bands with different
parity giving rise to metallic edge states [23–25]. Furthermore,
several groups have generalized the idea of Floquet topological
insulators to Floquet topological s-wave superconductors
[26–31]. Most recently, it has been shown that topological
Floquet superfluidity can be realized in systems where the
periodic driving is self-generated in the process of the
collisionless dynamics [32–34].

However, certain aspects of the pairing dynamics in the
collisionless regime for the spin-orbit-coupled systems have
not been addressed yet. The aim of this paper is to close the
remaining gaps in the studies of this problem. Specifically,
using both exact integrability and numerical analysis, we
investigate how the presence of the spin-orbit coupling affects
the behavior of the pairing amplitude at long times. We con-
sider the standard protocol of inducing far-from-equilibrium

coherent dynamics in fermionic condensates by a fast switch
of one of the system’s parameters. In our model we allow
for a nonzero out-of-plane Zeeman field hZ that gives rise
to the population imbalance between the fermionic atoms in
two hyperfine states. Here we discuss two cases: changes in
the detuning frequency of the Feshbach resonance and in the
population imbalance.

There are three relevant time scales in the problem: The
first time is the perturbation time scale τquench, which we
take to be instantaneous; the second time scale is governed
by the dynamics of the Cooper pairs τ�; and the third
time scale τε accounts for the relaxation due to two-particle
collisions. In what follows we consider the limit τε → ∞ and
analyze the dynamics of the pairing amplitude at long times
t � τ�. Importantly, we also neglect the possibility for the
pairing amplitude to become spatially inhomogeneous, which
is equivalent to an assumption of having a system with a size
much smaller than the superfluid coherence length.

Within the mean-field theory for the reduced BCS model
in the weak-coupling limit, three types of steady states have
been found for the quenches of the pairing strength and
provided the system is initially in its ground state [35–39]:
regime I, a gapless steady state with zero pairing amplitude
�(t → ∞) = 0; regime II, a steady state with the constant
pairing amplitude �(t → ∞) = �∞; and regime III, a steady
state described by the undamped periodic oscillations of
the pairing amplitude. Interestingly, there are no qualitative
changes in the steady-state phase diagram for the quenches
across the s-wave Feshbach resonance [40] as well as for the
two-dimensional chiral superfluids [32,33]. In principle, other
steady states, such as the one in which the pairing amplitude
is a multiperiod function of time, can also be realized [37,41].
However, realization of these states requires that the system is
initially in an excited state.

Perhaps the most surprising result from the earlier studies
of the nonadiabatic pairing problem is the discovery of a
steady state with the periodically oscillating amplitude whose
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analytical expression is given by the Jacobi elliptic function
[35,37,41,42]. Thus, the main thrust of the present work is,
on the one hand, to investigate the fate of that steady state for
a condensate with equal populations and nonzero spin-orbit
coupling. On the other hand, we will also investigate whether
in the model with the population imbalance a system allows the
realization of that steady state, i.e., the pairing amplitude is still
expressed in terms of the Jacobi elliptic function, even though
nonzero-population imbalance precludes the full analytical
description.

Let us briefly summarize our results. In the first part of
the paper we analyze the effect of the spin-orbit coupling
on the steady-state phase diagram. We find that steady state
III is realized in a much narrower region of the phase
diagram. In particular, we find that the size of region III
is inversely proportional to the strength of the spin-orbit
coupling. Qualitatively, this effect is due to the lifting of the
Kramers degeneracy by the spin-orbit coupling. Since the total
pairing amplitude is determined by the pairing in two chiral
bands and the collective collisionless dynamics is reduced to
a motion of two effective variables, large spin-orbit coupling
effectively hinders the appearance of the steady state with
periodically oscillating amplitude.

The remaining part of our discussion concerns the nature of
the steady state for the quenches in the population imbalance.
This problem has been recently studied by Dong et al. [34]
by solving the Bogoliubov–de Gennes equations numerically.
Here we show that for the quenches to the state with equal
atomic populations, the superfluid dynamics for the pairing
amplitude can in fact be found exactly. Specifically, we obtain
an exact expression for the steady-state pairing amplitude and
analyze the steady-state phase diagram as a function of the
population imbalance in the initial state. Our results for this
part are generally in agreement with those reported in Ref. [34].
Then we continue with the discussion for the quenches to
a state with a finite population imbalance. For this part we
have to resort to a numerical analysis of the equations of
motion. Our main finding is that when the finite value of
the population imbalance exceeds some critical value, we
observe the dynamical reduction in the number of quantities
describing the system’s dynamics. In other words, the order
parameter dynamics is described by the same equations of
motion as in integrable case of a zero-population imbalance.
This implies that we are able to find an analytical form for
the pairing amplitude at long times, although the parameters
of the solution cannot be determined exactly from the initial
conditions.

In the next section we introduce the model, briefly review its
ground-state properties, and derive the equation of motion that
describes the superfluid dynamics in terms of real functions.
In Sec. III we analyze the possible steady states that appear as
a result of quench in the pairing strength for equal atomic
populations. In the first part of Sec. IV we discuss the
steady-state diagram for the quenches to the state with a
zero-population imbalance, while in the second part we present
the results of the numerical simulations for the quenches
into a state with a nonzero-population imbalance. Section V
is followed by the concluding discussion of our results. In
Appendixes A and B we provide the details of the derivation
of the equations of motion.

II. MODEL

Our starting point is the BCS Hamiltonian in the presence
of the spin-orbit interaction in two spatial dimensions and the
Zeeman magnetic field term [1,15,16,34]

H =
∑
kαβ

[(
ξkδαβ − hZσ z

αβ

) + αSO(�
k · �σ )
]
ĉ
†
kαĉkβ

−g
∑
kk′

ĉ
†
k↑ĉ

†
−k↓ĉ−k′↓ck′↑, (2.1)

where ĉ
†
kα is a fermionic creation operator with momentum

k and spin projection α, g > 0 is the pairing strength, �
k =
(ky,−kx), αSO is the Rashba spin-orbit coupling constant, hZ

is a Zeeman field that determines the degree of the population
imbalance, ξk = k2/2 − μ is the single-particle energy taken
relative to the chemical potential μ, and we set the mass of the
fermions to m = 1. In passing we note that this model, strictly
speaking, is not applicable to the system of charged fermions
since the orbital effects will dominate the Pauli limiting effects.

The noninteracting part of the Hamiltonian (2.1) can be
diagonalized, which yields a new spectrum

εkλ = ξk − λ

√
h2

Z + (αSOk)2, λ = ±1. (2.2)

We can now perform the unitary transformation from the orig-
inal operators to new operators, which describe the fermionic
excitations in chiral bands. The analysis of the ground-state
properties of the model (2.1) can be considerably simplified
after we employ the mean-field theory approximation in the
particle-particle channel and then make a unitary transforma-
tion from the original operators ĉkλ to a fermionic operators in
chiral basis âkλ. The resulting mean-field Hamiltonian reads

H =
∑
kλ

εkλâ
†
kλâkλ − �

2

∑
kλ

λη∗
kkâ

†
kλâ

†
−kλ

−�

2

∑
kλ

ηk̃kâ−kλâkλ + H.c. (2.3)

Here, for convenience, we introduced the following
momentum-dependent functions: ηk = exp[i tan−1(ky/kx)]
and

k = αSOk

Rk
, ̃k = hZ

Rk
,

Rk =
√

h2
Z + (αSOk)2.

(2.4)

Formally, the model (2.3) is analogous to the model discussed
by Sato et al. [15,16]. The crucial difference in our case,
however, is that the pairing gap � is not proximity induced
and instead must be determined self-consistently:

� = g
∑
kλ

ηk[λk〈â−kλâkλ〉 + ̃k〈â−kλâkλ〉]. (2.5)

The mean-field Hamiltonian (2.3) can be diagonalized. We
find that the single-particle spectrum consists of four bands
ω±(k,λ) = ±Ekλ with the dispersion

Ekλ = [
ξ 2

k + R2
k + �2 − 2λRk

√
ξ 2

k + ̃2
k�

2
]1/2

. (2.6)
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Before we discuss the ground-state properties of the model
(2.3), we first introduce the auxiliary functions, which are
analogous to the pseudospin variables for the BCS model.

A. Equations of motion

In this section we list the equations of motion (EOMs) that
will allow us to study the dynamics of the pairing amplitude
in the collisionless regime. Equations of motion can be
obtained from the corresponding EOMs for the single-particle
propagators, which can then be cast into the form of the EOMs
analogous to the Bloch equations for the magnetic moments
in an external magnetic field. As a reader may have already
guessed, there should be ten equations of motion overall: Six
equations describe the Cooper pair dynamics on each of the
two chiral bands λ = ± and the remaining four appear as a
result of a nonzero Zeeman field. The details of the derivation
of the equations of motion are given in Appendix A, so here we
provide the final results. The first six equations are compactly
written as

∂t
�Skλ = �Bkλ(t) × �Skλ(t) + �mk(t) × �Lkλ(t), (2.7)

where �Bkλ = 2(−k�x, − k�y,εkλ) is an effective field
around which �S is precessing and the vector �mk =
2(−̃k�x, − ̃k�y,0) can be interpreted as an induced
magnetization since its xy components vanish for hZ = 0.
Naturally, Eq. (2.7) has the form of the Bloch equations for the
BCS superconductor when hZ = 0. The first two components
of �Bkλ are determined self-consistently by

�x(t) − i�y(t) = g
∑
kμ

[kS
−
kμ(t) + ̃kL

−
kμ(t)], (2.8)

where we have adopted the usual notation S± = Sx ± iSy . The
equations of motion for the components of vector �Lkλ(t) are

∂tL
x
kλ = −2εkL

y

kλ − ̃k�y(t)
[
Sz

kλ + Sz

kλ

] − 2k�x(t)Tk,

∂tL
y

kλ = 2εkL
x
kλ + ̃k�x(t)

[
Sz

kλ + Sz

kλ

] − 2k�y(t)Tk,

∂tL
z
kλ + 2λRkTk(t) + ̃k�x(t)

[
S

y

kλ − S
y

kλ

]
−̃k�y(t)

[
Sx

kλ − S
y

kλ

] = 0, (2.9)

where εk = k2/2. Note that, as it follows from these equations,
L

x,y

kλ = L
x,y

kλ
and also Lz

kλ = −Lz

kλ
. Finally, the last equation of

motion that determines the evolution of the auxiliary variable
Tk reads

∂tTk + �Bkλ(t) · �Lkλ(t) − 1

2

∑
λ

�mk(t) · �Skλ(t) = 2εkL
z
kλ.

(2.10)

As we can immediately observe from these equations of
motion, in the absence of the Zeeman field the first six
equations decouple from the rest and become equivalent to the
Anderson equations of motion for the pseudospins in the BCS
model [43,44]. Thus, based on this observation, we conclude
that the evolution of �Skλ(t) can be determined exactly [45,46].
However, for the general case of a nonzero Zeeman field, one
needs to resort to the numerical solution of the equations above
for the dynamics initiated by a sudden change in the parameters

of the model, such as pairing strength g, Zeeman field hZ , or
spin-orbit coupling αSO. In what follows we specifically study
the quenches of the coupling constant and Zeeman field.

B. Initial conditions

Let us write down the expressions for the auxiliary functions
�Skλ(t), �Lkλ(t), and Tk(t) at the time of a quench t = 0. In what
follows we focus only on the case when the system is initially
in its ground state. Then the initial momentum distribution for
these variables directly follows from the equations of motion
(2.7), (2.9), and (2.10). Without loss of generality, we assume
that initially the superfluid order parameter is real �x = � and
�y = 0. Employing the relations between the single-particle
propagators, evaluated at equal times and auxiliary functions
above, for the x components of �Skλ(t) and �Lkλ(t) we find

Sx
kλ(0) = k�

(
EkλEkλ + ε2

kλ
+ �2

)
2EkλEkλ(Ekλ + Ekλ)

,

Lx
kλ(0) = ̃k�[EkλEkλ + εkλεkλ + �2]

2EkλEkλ(Ekλ + Ekλ)
,

(2.11)

while S
y

kλ(0) = L
y

kλ(0) = Tk = 0. Reader can easily check
that in the limit hZ = 0 we recover the expression for the
Anderson pseudospin in the BCS model. Consequently, in the
limit of αSO = 0 we naturally find Sx

kλ(0) = 0, while Lx
kλ(0) =

ϕk�/2Ek with Ek =
√

(εk − μ)2 + �2 and ϕk = Ek[1 +
sgn(Ek − hZ)]/(Ek + hZ + |Ek − hZ|). Similarly, for Sz

kλ(0)
and Lz

kλ(0) we obtain

Lz
kλ(0) = k̃k�

2(εkλ − εkλ)

2EkλEkλ(Ekλ + Ekλ)
,

Sz
kλ(0) = − εkλ

k�
Sx

kλ(0) + ̃k

k

Lz
kλ(0).

(2.12)

One can easily check that in the limit hZ = 0 we recover the
usual expression for Sz

kλ(0) in the reduced BCS model. For
the case of a finite Zeeman field and no spin-orbit coupling
Lz

kλ is zero, while �[Sz
kλ(0)]αSO=0 = −(εk − μ)[Lx

kλ(0)]αSO=0.
In this case there is a similar decoupling in the equations of
motion and we only need to solve six dynamics equations
instead of ten. As it turns out, the pairing dynamics in this case
can be found exactly [47]. Next we discuss the ground-state
properties of our mean-field model.

C. Ground state

In the absence of spin-orbit coupling superconductivity
becomes energetically unfavorable when the magnitude of the
Zeeman field is hZ >

√
2�, which is known as the Clogston-

Chandrasekar criterion [48,49]. Nonzero spin-orbit coupling,
however, leads to the mixing between singlet and triplet
components in the anomalous Gor’kov-Rashba correlation
functions [1] and superconductivity extends to much higher
values of the Zeeman field.

The value of the pairing amplitude in the ground state
is determined from the solution of the self-consistency
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FIG. 1. (Color online) Dependence of the pairing amplitude �,
chemical potential μ, and spectral gap Egap = Ek=0,λ=+ (all in
arbitrary units) as a function of the Zeeman field hZ determined by the
numerical solution of the self-consistency equations (2.13) and (2.14).
Note that the superfluid becomes gapless while the order parameter
remains finite at some critical value of the field h

(c)
Z =

√
μ2 + �2.

These results correspond to the following choice of parameters:
nc = 0.125, εF = 2πnc = 0.785, and αSO = 0.752.

equation (2.8). Taking into account Eqs. (2.11) above, we find

1

g
=

∑
kλ

EkλEkλ + �2 + 2
kε

2
kλ

+ ̃2
kεkλεkλ

2EkλEkλ(Ekλ + Ekλ)
. (2.13)

In addition, we need to compute the value of the chemical
potential μ in the ground state. The equation for the chemical
potential is obtained from the standard expression for the
particle number in terms of the functions Sz

kλ. We find

2nc =
∑
kλ

[
1

2
− εkλ

(
EkλEkλ + ε2

kλ
+ 2

k�
2
)

2EkλEkλ(Ekλ + Ekλ)

+ ̃2
k�

2εkλ

2EkλEkλ(Ekλ + Ekλ)

]
, (2.14)

where we used the relation 2
k + ̃2

k = 1, nc = εF /2π is a
particle density per spin in two dimensions, and εF is the Fermi
energy. We analyze both of these equations numerically and
present the results of our analysis in Fig. 1. Perhaps the most
remarkable feature of our results is the vanishing of the spectral
gap Egap = Ek=0,λ=+ at some critical value of the Zeeman
field hZc =

√
μ2 + �2, while the pairing amplitude remains

finite. This effect is well understood: It signals a topological
phase transition at which the winding number W changes from
W = 0 to W = 1 (for a related discussion see, e.g., Ref. [34]
and references therein). The change in the winding number
reflects the appearance of the Majorana gapless chiral edge
modes in a sample with boundaries.

III. QUENCH OF THE PAIRING STRENGTH IN THE
MODEL WITH A ZERO-POPULATION IMBALANCE

In this section we consider the pairing dynamics following
the sudden change of the pairing strength for equal atomic
populations hZ = 0. In this case k = 1 and ̃k = 0. We
mainly focus of the details of the steady-state phase dia-
gram, ignoring other aspects of the problem such as the
long-time asymptote of the pairing amplitude and steady-
state quasiparticle distribution function due to the similarity
to the corresponding problem discussed in great detail by
Yuzbashyan et al. [40].

A. Lax vector

Here we introduce quantities that we will later use to
analyze the steady-state dynamics of the condensate. The Lax
vector for our problem is defined according to

�L(u) =
∑
kλ

�Skλ

u − εkλ

− �ez

g
. (3.1)

The equation of motion for the Lax vector follows directly
from the equations of motion for the pseudospins �Skλ:

∂t
�L(u) = [−2 ��(t) + 2u�ez] × �L(u). (3.2)

The square of the Lax vector is conserved by the evolution

�L2(u) = 1

g2
+

∑
pλ

[
2Hpλ

u − εpλ

+
�S2

pλ

(u − εpλ)2

]
, (3.3)

where we have introduced

Hpλ =
∑

pλ =qμ

�Spλ · �Sqμ

εpλ − εqμ

− Sz
pλ

g
. (3.4)

Following the arguments of Ref. [40], we immediately
conclude that the dynamics governed by the mean-field
Hamiltonian (2.1) with hZ = 0 can be determined exactly.

Our main goal in this section is to determine the steady-state
phase diagram, which we will plot in the plane of initial and
final values of the superfluid order parameters �0i and �0f ,
just like it was done in earlier works [32,34,40].

As it has been extensively discussed in Ref. [40], in the
thermodynamic limit the imaginary part of the complex roots
of the spectral polynomial determines the value of the pairing
amplitude in a steady state. Let us compute the roots of (3.3)
for the initial configuration of the pseudospins. It follows that

Lx(u,gi) =
∑
kλ

Sx
kλ

u − εkλ

= �0iL0(u), (3.5)

where

L0(u) =
∑
kλ

1

2(u − εkλ)
√

(εkλ − μ)2 + �2
0i

. (3.6)

Similarly, Ly(u,gi) = 0 and

Lz(u,gi) = −(u − μ)L0(u). (3.7)

Thus, Eq. (3.3) becomes[
(u − μ)2 + �2

0i

]
L2

0(u) = 0. (3.8)
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Clearly, Eq. (3.8) has the complex-conjugate pair of roots

u0,± = μ ± i�0i (3.9)

and the imaginary part of u0,± gives the value of the pairing
amplitude We also define a spectral polynomial

Q2N+2(u) = g2
∏
pλ

(u − εpλ)2 · L2(u), (3.10)

where N is the total number of distinct single-particle energy
levels εpλ. Since we are considering the case when the pairing
strength changes abruptly from gi → gf , we set g = gf in
Eqs. (3.1) and (3.10).

B. Roots of the spectral polynomial and steady-state diagram

For the case when the coupling is changed instantaneously,
the complex roots of Eq. (3.3) or, equivalently, the roots of the
spectral polynomial (3.10) with g = gf can be obtained from

β̃

u − μ ∓ i�0i

+
∑
kλ

1

2(u − εkλ)
√

(εkλ − μ)2 + �2
0i

= 0,

(3.11)
where β̃ = g−1

f − g−1
i . To analyze Eq. (3.11) it is convenient

to go from summations over momentum to the integration
over energy by introducing the density of states ν(ε) = νF ,
where νF = nc/εF with εF the Fermi energy and nc the particle
density per spin. We need to consider the contribution from
each chiral band separately.

Consider λ = + first with εk+ = k2/2 − αSOk:∑
k

F (εk+) =
∫ α

0

kdk

2π
F (εk+) +

∫ ∞

α

kdk

2π
F (εk+). (3.12)

Next we introduce an integration variable ε = k2/2 − αSOk,
giving

k±(ε) = αSO

(
1 ±

√
1 + 2ε

α2
SO

)
. (3.13)

For the first integral in (3.12) we need to pick k−(ε) while in
the second integral we pick k+(ε). It follows that

∑
k

F (εk+) =
∫ 0

−α2
SO/2

dε

2π

2αSO√
α2

SO + 2ε

F (ε)

+
∫ ∞

0

dε

2π

⎛⎝1 + αSO√
α2

SO + 2ε

⎞⎠F (ε). (3.14)

The contribution from the chiral band λ = − is trivial and
yields

∑
k

F (εk−) =
∫ ∞

0

dε

2π

⎛⎝1 − αSO√
α2

SO + 2ε

⎞⎠F (ε). (3.15)

Thus, Eq. (3.11) becomes

β

u − μ ∓ i�0i

+
∫ ωD

0

dε

2(u − ε)
√

(ε − μ)2 + �2
0i

+
∫ 0

−α2
SO/2

αSOdε

2
√

α2
SO + 2ε(u − ε)

√
(ε − μ)2 + �2

0i

= 0,

(3.16)

where β = β̃/2νF and ωD is the bandwidth. Naturally, when
αSO = 0 we recover the equation for the Lax roots in the BCS
model. Although in the subsequent analysis we can safely
take ωD → ∞, in numerical calculations we have to keep the
bandwidth finite.

We are interested in finding the values of β for which
Eq. (3.16) will have two pairs of complex-conjugate roots.
Let us introduce the following variable:

u = μ + v�0i . (3.17)

The imaginary roots that determine the value of the pairing
amplitude in the steady state are determined by setting

u → u ± iδ. (3.18)

Using (3.17) we rewrite (3.16) as follows:

2β(v ± i)

v2 + 1
+

∫ ∞

−μ/�0i

dε

(v − ε)
√

ε2+1
+

√
α2

SO

2�0i

∫ −μ/�i

−(α2
SO+2μ)/2�0i

× dε√
ε + [(

α2
SO + 2μ

)
/2�0i

]
(v − ε)

√
ε2 + 1

= 0. (3.19)

Let us find the critical value of β when the imaginary part of
v becomes nonzero for the first time. We have

± 2β

v2 + 1
∓ πϑ(v�0i + μ)√

v2 + 1

∓
√

α2
SO

2�0i

πϑ(−v�0i − μ)ϑ
(
2v�i + 2μ + α2

SO

)√
v + [(

α2
SO + 2μ

)
/2�0i

]√
v2 + 1

= 0,

2βv

v2 + 1
+ −

∫ ∞

−μ/�0i

dε

(v − ε)
√

ε2 + 1

+
√

α2
SO

2�0i

−
∫ −μ/�0i

−(α2
SO+2μ)/2�0i

dε

R(ε)
= 0, (3.20)

where we introduced for brevity the function

R(ε) =
√

ε + α2
SO + 2μ

2�0i

(v − ε)
√

ε2 + 1.

Let us analyze the first of Eqs. (3.20). Depending on the
value of v, there are two possible solutions. The first solution
corresponds to the usual BCS case

|βc| = π

2

√
v2 + 1, v > −μ/�0i , (3.21)
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FIG. 2. (Color online) Steady-state diagram for the case hZ = 0.
In region I �(t → ∞) = 0. In region II �(t → ∞) = �∞. In region
III �(t) varies periodically with time. The parameters are nc = 0.125
and αSO = 0.75. In the limit of zero spin-orbit coupling the red line
inside region III is absent.

while v is found by solving

π sgn(βc)√
v2 + 1

+ −
∫ ∞

−μ/�0i

dε

(v − ε)
√

ε2 + 1

+
√

α2
SO

2�0i

∫ −μ/�0i

−(α2
SO+2μ)/2�0i

dε

R(ε)
= 0 (3.22)

still for v � −μ/�0i . There is, however, another solution for
βc given by

|βc| = παSO

2

√
v2 + 1√

2�0iv + α2
SO + 2μ

, v � −μ/�0i . (3.23)

The value of v in this case will be given by

παSOsgn(βc)
√

v2 + 1
√

2�0iv + α2
SO + 2μ

+
∫ ∞

−μ/�0i

dε

(v − ε)
√

ε2 + 1

+
√

α2
SO

2�0i

−
∫ −μ/�0i

−(α2
SO+2μ)/2�0i

dε

R(ε)
= 0 (3.24)

for v � −μ/�0i .
The results of our analysis of equations for the critical β

above are shown in Fig. 2. The presence of the spin-orbit
coupling leads to the appearance of the region where the
pairing amplitude goes to a constant (region II) realized inside
the region where the pairing amplitude periodically varies with
time (region III).

IV. QUENCH OF THE POPULATION IMBALANCE

As we have seen already, the nonzero Zeeman field breaks
integrability. Thus, for the quenches of the Zeeman field
hZi → hZf one needs to resort to the numerical analysis
of the equations of motion. The main interest in studying
this particular type of quench is mainly motivated by the
existence of the topological transition. The task of analyzing

a steady-state diagram for an arbitrary value of hZf has
been recently accomplished by Dong et al. [34] However,
as it became clear from our discussion above, for the spatial
quenches such that hZf = 0 the problem can be analyzed
analytically using the same method of Lax vector construction.
The only difference from the previous analysis is that an initial
pseudospin distribution explicitly depends on hZi .

A. Integrable dynamics: hZ f = 0

We start with the analysis of the expression for the Lax
vector (3.1). The expression for Lz(u) can be considerably
simplified if we take into account the self-consistency
equation (2.13). However, one needs to be careful, since at
large fields the self-consistency equation does not have a
solution and we have to set � = �0i = 0 in (3.1). Therefore,
we have to consider two cases: In the first case �0i in the
initial state is nonzero, while in the second case hZ is large
enough so that �0i = 0.

We first analyze the roots for the case of finite �0i . The
roots are the computed numerically from

∑
kλ

(u − μ + ik�)
(
EkλEkλ + �2 + ε2

kλ

)
2(u − μ − εkλ)EkλEkλ(Ekλ + Ekλ)

+
∑
kλ

̃2
k�

2(εkλ − εkλ)

2(u − μ − εkλ)EkλEkλ(Ekλ + Ekλ)

=
∑
kλ

h2
Z

EkλEkλ(Ekλ + Ekλ)
, (4.1)

which follows from (3.1) and the self-consistency equation
(2.13). We analyze this equation numerically and plot the
results in Fig. 3. As expected, for relatively small values of
hZi = hZ there is only one complex root, which means that
the steady-state order parameter asymptotically approaches
a constant. As the value of the field is increased further, it
reaches hc2 where the second complex-conjugate root appears.
For quenches of the Zeeman field with hZ > hc2 the pairing
amplitude periodically oscillates in time. Our results confirm
those found from the numerical simulations [34]. Indeed,
in Fig. 4 we show �(t) found by numerically solving the
equations of motions for various values of hZ; it is clearly in
agreement with our analysis of the Lax roots, Fig. 3.

In Fig. 5 we also plot the dependence of hc2 on αSO, which
we determine by setting u = u0 + iδ in (IV A) and solving
them together with Eqs. (2.13) and (2.14). As one may have
expected, hc2 ∝ αSOpF . Furthermore, the fact that we do not
find a solution for small αSO is in qualitative agreement with
the observation that the steady state with an oscillating pairing
amplitude generally appears for moderate to strong quenches.

Next we would like to show that no more complex roots
appear at large fields when �0i is infinitesimally small.
First, let us consider the case when the self-consistency
equation (2.13) does not have a solution and, as before, we
set u = u0 + iδ. Then, in the equation for the Lax roots
Lz(u) = ±iLx(u) we can consider the real and imaginary parts
separately. The equation for the imaginary part is satisfied
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FIG. 3. (Color online) Imaginary parts of the roots of L2(u) = 0
and superfluid order parameter �0i in the initial state plotted as a
function of the initial value of the Zeeman field hZi = hZ for the
quenches hZi → hZf = 0. Note that the imaginary parts of both roots
essentially coincide with each other for the initial conditions with
�0i → 0. At hZ = hc2 the second complex root appears. Thus, hc2

separates the steady states with constant and periodically oscillating
superfluid order parameters. These results correspond to the following
choice of parameters: nc = 0.125, εF = 0.785, and αSO = 0.752.

only if u0 < −hZ , while the equation of the real part reads

2

g
+

∑
kλ

P

(
sgn(εkλ)

u0 − μ − εkλ

)
= 0, (4.2)

where P stands for the principal value. We have analyzed
this equation and did not find a value of coupling g consistent
with the zero value of the superfluid gap. We reach the same
conclusion from the analysis of Eq. (4.1) for the case when
�0i is small enough, so it can be neglected. To summarize, we
find that for the quenches of the Zeeman field from some finite
value hZi to zero, there are only two steady states possible at
long times: In the first one �(t) asymptotically approaches a
constant, while in the second one �(t) continues to oscillate
periodically.

B. Analytical solution for the pairing amplitude

In this section we derive the analytic expressions for the
pairing amplitude �(t) in a steady state. Our discussion here
follows closely the related discussion in Refs. [32,40].

Steady states with constant and periodically oscillating
pairing amplitudes can be described analytically by construct-
ing the Lax vector for an effective m-pseudospin system. The
Lax reduction procedure states that at long times the dynamics
of a superfluid is governed by the dynamics of only a few
generalized pseudospin variables, which we will denote by
�σj [32,40]. The Lax vector describing the reduced solution is

�Lred(u) =
⎛⎝1 +

∑
pλ

dpλ

u − εpλ

⎞⎠ �Lm(u),

(4.3)
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F
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FIG. 4. (Color online) Results of the numerical solution of the
equations of motion for �(t) in the exactly integrable case when
hZf = 0. These results correspond to the following choice of
parameters: nc = 0.125, εF = 0.785, and hc2 = 1.02εF .

�Lm(u) =
⎛⎝ m∑

j=1

�σj

u − εj

− �ez

g

⎞⎠.
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∞) = �∞. The inset shows the dependence of the real part of the
second root on αSO. These results correspond to the following choice
of parameters: nc = 0.125 and εF = 0.785.

Here �Lm(u) is a Lax vector for a reduced system; the
time-dependent vectors �σj and parameters dpλ and εj need
to be determined. As it can be easily seen, vectors �σj satisfy
the same equations of motion as the original pseudospins �Spλ.
The parameters of the reduced Lax vector are chosen such that

�L(u) = �Lred(u). (4.4)

Therefore, the equation of motion for vector �Lred(u) is the
same as the one for �L(u):

∂t
�Lred(u) = [−2 ��(t) + 2u�ez] × �Lred(u), (4.5)

where we use �� = (�x,�y) for brevity. By matching the
residues at u = εpλ and at u = εj we find the following set of
relations: ∑

pλ

dpλ

εj − εpλ

= −1, j = 1, . . . ,m,

dpλ
�Lm(εpλ) = �Spλ. (4.6)

In the thermodynamic limit it is possible to find the reduced
solutions that have the same integrals of motion as the
solutions for the quenched dynamics, i.e., they have the same
L2(u). Thus, Eq. (4.3) becomes

1 +
∑

λ

∫
νλ(ελ)dλ(ελ)dελ

u − ελ

= −ζ (u)

√
�L2(u)
�L2
m(u)

, (4.7)

where ζ (u) = ±1, νλ(ε) is the density of states for the chiral
band λ, and �L2(u) is determined by the initial conditions. By
setting u = ε ± iδ we can immediately determine dλ(ε),

dλ(ε) = iζ (ε)

2πνλ(ε)

( √
L2(ε−)√
L2

m(ε−)
−

√
L2(ε+)√
L2

m(ε+)

)
, (4.8)

with ε± = ε ± iδ. In what follows we will derive the explicit
expressions to determine the parameters �σj and ηj (j � 1),
which define �Lm(u), in terms of the complex roots of L2(u).

1. The m = 1 solution

This is the case of the one-spin solution. The expression
for �Lm=1 reads

�Lm=1(u) = �σ1

u − ε1
− �ez

g
. (4.9)

The relation between �σ1 and � follows directly from the
self-consistency equation (2.8) and Eq. (4.6):

��(t) = g�σ1(t), (4.10)

which also implies that σ z
1 remains constant. Using the

equation of motion for the Lax vector (4.5) together with
(4.10) we can now solve for �(t):

�(t) = �∞e2iμ∞t−iϕ0 , (4.11)

where μ∞ = ε1 + gσ z
1 and ϕ0 is an integration constant.

The parameters {�∞,μ∞} can be expressed in terms of the
roots for the square of the reduced Lax vector. Recall that
in the thermodynamic limit these roots are the same as the
roots of �L2(u) = 0 by construction. As we have seen in the
previous section, when hZi � hc2 there is only one pair of
complex-conjugate roots, which we define u± = u1r ± iu1i.
Taking the square of both parts in Eq. (4.9) and regrouping
the terms on the right-hand side yields

u1r = μ∞, u1i = �∞. (4.12)

Thus, in agreement with earlier results we find that the
imaginary root of L2(u) = 0 determines the value of the
pairing amplitude at long times.

2. The m = 2 solution

This is the case of the two-spin solution with the reduced
Lax vector of the form

�Lm=2(u) = �σ1

u − ε1
+ �σ2

u − ε2
− �ez

g
(4.13)

and

�� = g · (�σ1 + �σ2), �x(t) − i�y(t) = �e−i�, (4.14)

where in the second expression � = | ��| and � is the phase
of the pairing amplitude. The dynamics of the variables �σ1,2 is
governed by the following two-spin Hamiltonian:

Hm=2 = 2
(
ε1σ

z
1 + ε2σ

z
2

) − 2 �� · �σ . (4.15)

The z component of �σ = �σ1 + �σ2 is conserved by evolution
governed by the reduced Hamiltonian (4.15), which reflects
the total particle conservation. In addition, the total energy E
must be conserved by the evolution. Given the self-consistency
condition (4.14) for the reduced Hamiltonian, it follows that E
is conserved provided the terms containing �(t) drop out from
(4.15). In turn, this is only possible for σ z

1,2 ∝ �σ 2. Therefore,
we write [32,40]

σ z
1 = a1

g
�2 + b1, σ z

2 = a2

g
�2 + b2, (4.16)
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where coefficients a1,2 and b1,2 satisfy

ε1a1 + ε2a2 = 1
2 , 2(ε1b1 + ε2b2) = E,

(4.17)
a1 = −a2, b1 + b2 = σ z.

Importantly, by a virtue of the second of Eqs. (4.6) we obtain
the following ansatz for the original variables:

Sz
pλ = apλ�

2 + bpλ. (4.18)

Furthermore, the equations of motion for the two remaining
components of �Spλ [Eq. (2.7) with �m = 0 and k = 1] yield

S−
pλe

i� − S+
pλe

−i� = 2iapλ�̇, (4.19)

where we use the notation S±
pλ = Sx

pλ ± iS
y

pλ. After a series of
algebraic manipulations identical to the ones in Refs. [32,40],
we find the following equation for �:

�̇2 + �4 +
(

2bpλ

apλ

+ 4ε2
pλ

)
�2 − 4Aεpλ�

+ A2 + b2
pλ − S2

pλ

a2
pλ

= 0, (4.20)

where A is a function of � given by

A = 2μA� + κA

�
(4.21)

and μA and κA are arbitrary real constants. Since the same
equation for � is found by considering the equations of motion
for the variables �σ1,2, we conclude that the coefficients in
Eq. (4.20) must be independent of p and λ:

bpλ

apλ

+ 2(εpλ − μA)2 = 2ρ,

b2
pλ − S2

pλ

a2
pλ

− 4κA(εpλ − μA) = 4χ. (4.22)

Thus the differential equation for �(t) becomes

�̇2 + �4 + 4ρ�2 + κ2
A

�2
+ 4χ = 0. (4.23)

The solution of this equation is [40]

� =
√

�2 + e1, � = �+dn[�+(t − t0),k′], (4.24)

where dn is the Jacobi elliptic function, k′ = �−/�+, �2
− =

e2 − e1, �2
+ = e3 − e1, and the parameters e1,2,3 are the real

roots of the qubic polynomial

P3(w) = w3 + 4ρw2 + 4χw + κ2
A. (4.25)

The last step is to match the coefficients in the polynomial
(4.25) with the values of the complex-conjugate roots appear-
ing for hZi > hc2 (Fig. 3). To do that we employ the relation
(4.6). First we solve Eqs. (4.22) for apλ and bpλ. We find

apλ = − Spλ

2
√

[(εpλ − μA)2 − ρ]2 − κA(εpλ − μA) − χ
,

bpλ = [(εpλ − μA)2 − ρ]Spλ√
[(εpλ − μA)2 − ρ]2 − κA(εpλ − μA) − χ

.

(4.26)

Similarly, the coefficients a1,2 and b1,2 of the reduced solution
(4.16) are found using the conservation laws (4.17):

a1,2 = ± 1

2(ε1 − ε2)
, b1,2 = ±E − ε2,1σ

z

ε1 − ε2
. (4.27)

Using these expressions, let us match the prefactors in front
of �2 after we use Eqs. (4.16) and (4.18) together with (4.26)
and (4.27) in the second of Eqs. (4.6) for the z components of
Lm and �Spλ. We find

dpλ

g
= (εpλ − ε1)(εpλ − ε2)Spλ√

[(εpλ − μA)2 − ρ]2 − κA(εpλ − μA) − χ
. (4.28)

On the other hand,

dpλ = Spλ√
L2

m=2(εpλ)
. (4.29)

Introducing the spectral polynomial Q4(u) similar to (3.10):

Q4(u) = g2(u − ε1)2(u − ε2)2 · �L2
m=2(u). (4.30)

If we now compare (4) with (4.28) we immediately identify
Q4(u) with

Q4(u) = [(u − μA)2 − ρ]2 − κA(u − μA) − χ. (4.31)

Furthermore, since in the thermodynamic limit the complex
roots of Q4(u) must match the complex roots of L2(u), we
can express all the parameters (4.31) in terms of two pairs of
complex-conjugate roots u1,2 = u1,2r + iu1,2i:

μA = u1r + u2r

2
,

ρ = 3μ2
A − 2u1ru2r − u2

1r + u2
1i

+ u2
2r + u2

2i

2
,

κA = 2u1r

(
u2

2r + u2
2i

) + 2u2r

(
u2

1r + u2
1i

) + 4μA

(
ρ − μ2

A

)
,

χ = κAμA + (
μ2

A − ρ
)2 − (

u2
1r + u2

1i

)(
u2

2r + u2
2i

)
.

(4.32)

We plot the dependence of the roots of P3(w) (4.25) in Fig. 6.
Note that e1, e2, and e3 are small for hZ ∼ hc2. As noted in
Ref. [40] for the quenches of the detuning frequency across
the Feshbach resonance, the value of e1 serves as a measure of
the deviation from the weak-coupling limit when |e1| � 1.

To summarize, Eqs. (4.32) together with (4.23) provide an
exact description of the order parameter dynamics in a steady
state determined by the two pairs of complex-conjugate roots
of the spectral polynomial. In particular, the pairing amplitude
is given by

|�(t)| =
√

e1 + �2+dn2[�+(t − t0),k′], (4.33)

where the parameters entering this expression are given above
[Eq. (4.24)]. Note that parameter e1 is close to zero only
when hZ ∼ hc2. It is somewhat surprising to find that |�(t)| is
described by the weak-coupling solution [40]

|�(t)| ∝ dn[�+(t − t0),k′] (4.34)

only at lower fields.
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FIG. 6. (Color online) Dependence of the roots e1, e2, and e3 of
the qubic polynomial P3(w) [Eq. (4.25)] on the value of the imbalance
hZ . The parameters are nc = 0.125 and εF = 0.785.

C. Pairing amplitude dynamics with finite
population imbalance

Here we discuss the dynamics initiated by the quenches of
the Zeeman field so that hZf = 0. Since the dynamics governed
by the Hamiltonian (2.1) is nonintegrable, we have to resort
to the numerical analysis of the equations of motion (2.7),
(2.9), and (2.10). Our main motivation for this part was to
check whether the steady state with the periodically oscillating
pairing amplitude also extends into a nonintegrable region of
the parameter space.

The time evolution of the pairing amplitude following the
quench is shown in Figs. 7 and 8. We see that for certain
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FIG. 7. (Color online) Results of the numerical solution of the
equations of motion for �(t) in the general, i.e., nonintegrable, case
hZf = 0 with (a) hZf = 0.9εF , (b) hZf = 0.5εF , (c) hZf = 0.25εF ,
and (d) hZf = 0.1εF . The values of the remaining parameters are
hZi = 1.85εF , nc = 0.125, and εF = 0.785.
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FIG. 8. (Color online) Same as Fig. 7 with (a) hZf = 1.25εF , (b)
hZf = 1.15εF , (c) hZf = 1.1εF , and (d) hZf = 0.95εF .

values of hZ/εF the order parameter magnitude |�(t)| shows
oscillations with several frequencies and its amplitude is not
constant at long times (at least up to the longest time scales
we were able to achieve with our numerics). However, note
the striking difference between the dynamics in Figs. 7 and 8:
When hZf exceeds the value of hc3 ≈ 1.02εF provided hZi =
1.85εF , the pairing amplitude shows regular oscillations with
constant amplitude. This behavior is characteristic of �(t),
which is found in the exactly solvable limit.

To get further insight into the origin of this behavior, in
Figs. 9 and 10 we plot the single-particle energy dependence
of the auxiliary functions �L(ε,t) and T (ε,t) at long times when
hZi < hc3 and hZi > hc3. For these plots the regular oscillatory
behavior of �(t) becomes clear since for hZi > hc3 the
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FIG. 9. (Color online) Energy dependence of �L(ε) and T (ε) at
time tδ = 2.05 (δ is a level spacing). The values of the remaining
parameters are hZi = 1.85εF , hZf = 0.5εF , nc = 0.125, � = 10εF ,
and εF = 0.785.
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FIG. 10. (Color online) Same as Fig. 9 with hZf = 1.25εF . In
contrast to Fig. 9, we see that all components of �L(ε,t → ∞) and
T (ε,t → ∞) are vanishingly small for all single-particle energies.

equations of motion for the functions �Skλ(t) decouple from the
remaining four equations of motion (2.9) and (2.10). Finally,
we make one more observation: This dynamical decoupling
happens exactly when the system goes through the Floquet
topological transition [33,34] corresponding to the transition
from the topologically trivial Floquet spectrum to a steady state
with the topologically nontrivial Floquet spectrum. However,
the detailed analysis of this transition goes beyond the scope
of this paper and we leave it for the future.

V. CONCLUSION

In this paper we have analyzed the far-from-equilibrium
pairing dynamics of the spin-orbit coupled fermions in two
dimensions with a population imbalance. Specifically, we have
considered two separate cases. In the first case the dynamics
is initiated by a sudden change of the pairing strength. We
found that the steady state with a periodically varying pairing
amplitude is realized in much narrower regions of the steady-
state phase diagram compared to what happens when the spin-
orbit coupling is zero.

Exact integrability of the problem with zero imbalance
implies that we can also provide an analytical description for
the dynamics initiated by a sudden change of imbalance to
zero. We found that when the initial value of the imbalance
field hZ exceeds some critical value hc2, the steady state with
a periodically oscillating pairing amplitude is realized and we
can determine an analytical expression for �(t).

Perhaps our most interesting result is our finding of the
dynamical decoupling for the quenches to finite values of the
population imbalance. Specifically, our numerical analysis of
the equations of motion showed that when the final value of
the population imbalance exceeds some value ht , the pairing
amplitude is determined by a reduced number of pseudospin
variables. Interestingly, the value of ht is a critical value
separating the regions of topologically trivial and topologically
nontrivial Floquet spectra [34]. Whether topology plays a
defining role in the above-mentioned reduction or is just a

mere coincidence is an exciting issue, which we leave for the
future studies.
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APPENDIX A: EQUATIONS OF MOTION FOR THE
SINGLE-PARTICLE CORRELATORS

In this Appendix we analyze the ground-state properties
of the Hamiltonian (2.3) using the equations of motion of the
single-particle correlators. The main idea is to derive the set of
self-consistent equations describing the collisionless evolution
of the pairing amplitude.

Consider the equations of motion for the fermionic opera-
tors. We have

i
∂

∂t
âkλ(t) = εkλâkλ − η∗

k�[λkâ
†
−pλ + ̃kâ

†
−pλ

],

i
∂

∂t
â
†
kλ(t) = −εpλâ

†
kλ + ηk�[λkâ−kλ + ̃kâ−kλ].

(A1)

Next we introduce the following correlation functions, which
are diagonal in the new basis:

Gpλ(t1,t2) = −i〈T̂ (âpλ(t1)â†
pλ(t2))〉,

Fpλ(t1,t2) = −iληp〈T̂ (âpλ(t1)â−pλ(t2))〉,
(A2)

G̃pλ(t1,t2) = −i〈T̂ (â†
−pλ(t1)â−pλ(t2))〉,

F pλ(t1,t2) = −iλη∗
p〈T̂ (â†

−pλ(t1)â†
pλ(t2))〉.

Similarly, we introduce the off-diagonal correlators that
account for the scattering of fermions between the two chiral
bands:


pλ(t1,t2) = −iλ〈T̂ [âpλ(t1)â†
pλ(t2)]〉,

�pλ(t1,t2) = −iηp〈T̂ [âpλ(t1)â−pλ(t2)]〉,
(A3)


̃pλ(t1,t2) = −iλ〈T̂ [â†
−pλ

(t1)â−pλ(t2)]〉,
�pλ(t1,t2) = −iη∗

p〈T̂ [â†
−pλ

(t1)â†
pλ(t2)]〉.

As a next step one can derive the equations of motion for these
correlation functions using (A1).

1. Equations of motion for the diagonal chiral correlators

For the diagonal in the λ correlation functions above we
have(

i
∂

∂t1
− εkλ

)
Gkλ(t1,t2) + �[kF kλ(t1,t2) + ̃k�kλ(t1,t2)]

= δ(t1 − t2),
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(
i

∂

∂t1
− εkλ

)

kλ(t1,t2) − �[k�kλ(t1,t2) − ̃kF kλ(t1,t2)]

= 0. (A4)

Similarly, the equations of motion for the anomalous correla-
tion functions (A3) are(

i
∂

∂t1
+ εkλ

)
F kλ(t1,t2)

+�[kGkλ(t1,t2) + ̃k
kλ(t1,t2)] = 0,(
i

∂

∂t1
+ εkλ

)
�kλ(t1,t2)

−�[k
kλ(t1,t2) − ̃kGkλ(t1,t2)] = 0,(
i

∂

∂t1
+ εkλ

)

̃kλ(t1,t2)

−�[k�kλ(t1,t2) − ̃kFkλ(t1,t2)] = 0. (A5)

In equilibrium, all these correlation functions depend on t1 − t2
only, so we can perform the Fourier transform and compute
them explicitly. It follows that


kλ(ω) = (ω + εkλ)�̃kF kλ(ω) − �2k̃kGkλ(ω)

ω2 − ε2
kλ

− �22
k

,

�kλ(ω) = − (ω − εkλ)�̃kGkλ(ω) + �2k̃kF kλ(ω)

ω2 − ε2
kλ

− �22
k

,

(A6)

where we assume that � = �, i.e., in the ground state the
pairing amplitude is real. We have

Gkλ(ω) = − (ω + εkλ)
[
2

k�
2 + ε2

kλ
− ω2

](
ω2 − E2

kλ

)(
ω2 − E2

kλ

)
+ ̃2

k�
2(ω + εkλ)(

ω2 − E2
kλ

)(
ω2 − E2

kλ

) ,

F kλ(ω) = k�
[
�2 + ε2

kλ
− ω2

](
ω2 − E2

kλ

)(
ω2 − E2

kλ

) ,


kλ(ω) = 2λk̃k�
2Rk(

ω2 − E2
kλ

)(
ω2 − E2

kλ

) ,

�kλ(ω) = ̃k�[�2 + (εkλ − ω)(ω + εkλ)](
ω2 − E2

kλ

)(
ω2 − E2

kλ

) ,


̃kλ(ω) = − 2λk̃k�
2Rk(

ω2 − E2
kλ

)(
ω2 − E2

kλ

) . (A7)

This last expression follows from the symmetry properties of
the corresponding equations of motion. Note that from these
expressions it follows that

�kλ(ω) = �kλ(−ω),


kλ(ω) = −
kλ(ω),


̃kλ(ω) = 
kλ(ω).

(A8)

To compute the averages that enter into the self-consistency
equation that determines �, we employ the Matsubara

frequency representation ω → iωn. Then we perform the
summations over the Matsubara frequencies and take the
limit T → 0. The resulting functions of momentum are Eqs.
(2.11) and (2.12). Note that Lz ∝ 〈a†

kλ
akλ〉 is generated already

within the mean-field theory despite the fact that the terms
proportional to a

†
kλ

akλ do not enter into the Hamiltonian. In
what follows we also consider the function

T z
k = 1

2
T

∑
iωn

[
kλ(iωn) + 
kλ(iωn)], (A9)

which is zero in the ground state; however, it is generated
during the evolution.

Our goal now is to derive the equations of motion for all
the correlation functions above as a function of

t = t1 + t2

2
. (A10)

Since both normal and anomalous correlators (A2) and (A3)
depend on τ = t1 − t2, the order parameter �(t) is a function
of total time t only. Thus, in what follows we consider τ = 0.

From the equations of motion for the fermionic operators
(A1) and Eqs. (A2) and (A3) it follows that

i
d

dt
Gkλ(t) + �(t)[kF kλ(t) + ̃k�kλ(t)]

−�(t)[kFkλ(t) + ̃k�kλ(t)] = 0,(
i

d

dt
− 2εkλ

)
Fkλ(t) + �(t){k[G̃kλ(t) − Gkλ(t)]

+̃k[
̃kλ(t) − 
kλ(t)]} = 0. (A11)

Similarly, for the remaining two correlation functions that are
diagonal in new basis we find

i
d

dt
G̃kλ(t) + �(t)[kFkλ(t) + ̃k�kλ(t)]

−�(t)[kF kλ(t) + ̃k�kλ(t)] = 0,(
i

d

dt
+ 2εkλ

)
F kλ(t) + �(t){k[Gkλ(t) − G̃kλ(t)]

+̃k[
kλ(t) − 
̃kλ(t)]} = 0. (A12)

From the equations for the normal propagators it follows that

G̃kλ(t) = −Gkλ(t). (A13)

Let us introduce the functions

Sz
kλ(t) = i

2
[G̃kλ(t) − Gkλ(t)],

S−
kλ(t) = Sx

kλ(t) − iS
y

kλ(t) = −iFkλ(t), (A14)

S+
kλ(t) = Sx

kλ(t) + iS
y

kλ(t) = −iF kλ(t)

and

Lz
kλ(t) = i

2
[
̃kλ(t) − 
kλ(t)],

L−
kλ(t) = Lx

kλ(t) − iL
y

kλ(t) = −i�kλ(t),

L+
kλ(t) = Lx

kλ(t) + iL
y

kλ(t) = −i�kλ(t). (A15)
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In terms of these new functions, the self-consistency equation
for the pairing amplitude reads

�(t) = g
∑
kμ

[kS
−
kμ(t) + ̃kL

−
kμ(t)]. (A16)

2. Equations of motion for the off-diagonal chiral correlators

The remaining equations of motion for the components of
�L can be derived in the same way. Let us obtain the equations
of motion for 
kλ(t). In what follows the only relations we use
are


kλ(t) = 
̃kλ(t),

�kλ(t) = �kλ(t), (A17)

G̃kλ = −Gkλ.

The validity of these relations will be proven when we analyze
the equilibrium. We need to keep in mind, however, that given
the second relation, we expect that the equations of motion
for L±

kλ(t) should not depend on the chiral band index λ. The
equations of motion for the correlator �kλ(t1,t2) are(

i
∂

∂t1
+ εkλ

)
�kλ(t1,t2)

−�[k
kλ(t1,t2) − ̃kGkλ(t1,t2)] = 0,(
i

∂

∂t2
+ εkλ

)
�kλ(t1,t2)

−�[k
̃kλ(t1,t2) + ̃kG̃kλ(t1,t2)] = 0, (A18)

where we used η−p = −ηp. Adding these two equations yields(
i

∂

∂t
+ 2εk

)
�kλ(t) − ̃k�(t)[G̃kλ(t) − Gkλ(t)] = 0.

(A19)
From this equation we can immediately obtain the equations
of motion for L

x,y

kλ using Eqs. (A14) and (A15).
Finally, we derive the equation of motion for

Tk(t) = 
kλ(t) + 
kλ(t)

2
. (A20)

Before writing down this equation, let us first obtain the
equations of motion for 
kλ and 
̃kλ. We have(

i
∂

∂t1
− εkλ

)

kλ(t1,t2)

−�[k�kλ(t1,t2) − ̃kF kλ(t1,t2)] = 0,(
i

∂

∂t2
+ εkλ

)

kλ(t1,t2)

−�[k�kλ(t1,t2) − ̃kFkλ(t1,t2)] = 0,(
i

∂

∂t1
+ εkλ

)

̃kλ(t1,t2)

−�[k�kλ(t1,t2) − ̃kFkλ(t1,t2)] = 0,(
i

∂

∂t2
− εkλ

)

̃kλ(t1,t2)

−�[k�kλ(t1,t2) − ̃kF kλ(t1,t2)] = 0, (A21)

where we have employed (A17), η−p = −ηp, and λλ = −1.
Adding the first and second equations and then the third and
fourth ones and setting τ = t1 − t2 = 0 yields(

i
∂

∂t
− 2λRk

)

kλ(t) − k[��kλ(t) + ��kλ(t)]

+ ̃k[�F kλ(t) + �Fkλ(t)] = 0,(
i

∂

∂t
+ 2λRk

)

̃kλ(t) − k[��kλ(t) + ��kλ(t)]

+ ̃k[�Fkλ(t) + �F kλ(t)] = 0, (A22)

where Rk =
√

V 2
z + α2

SOk2. From these equations we see that,
given the property (A17), we have


kλ = Zk + iLz
kλ. (A23)

It is now straightforward to verify that the equations of motion
for these objects are the same as Eqs. (2.7), (2.9), and (2.10).
Thus we have ten equations of motion. These equations are
decoupled into six plus four when either αSO = 0 or hZ = 0.
Note that neither Lz nor Tk enters into the Hamiltonian and
both are generated in the course of the dynamics.

APPENDIX B: GENERAL RELATIONS BETWEEN THE
COMPONENTS’ AUXILIARY FUNCTIONS

IN EQUILIBRIUM

We assume that in equilibrium �x = � and �y = 0. This
implies that at t = 0 both S

y

kλ = 0 and L
y

kλ = 0, in accordance
with the self-consistency conditions. This guarantees that
seven out of ten equations (2.7), (2.9), and (2.10) for the
components of vectors �S, �L, and Tk are identically zero. The
remaining three equations are

εkλS
x
kλ + � · (

kS
z
kλ + ̃kL

z
kλ

) = 0,

2εkL
x
kλ + ̃k�

[
Sz

kλ + Sz

kλ

] = 0, (B1)

2λRkL
z
kλ + �

{
2kL

x
kλ − ̃k

[
Sx

kλ + Sx

kλ

]} = 0.

Let us verify if the expressions for the spin components satisfy
(B1). For the first two equations we find

�
[
kS

z
kλ + ̃kL

z
kλ

] = −εkλS
x
kλ,

(B2)
̃k�

[
Sz

kλ + Sz

kλ

] = −2εkL
x
kλ.

Finally, let us check the third of Eqs. (B1):

2k�Lx
kλ − ̃k�

[
Sx

kλ + Sx

kλ

] = − 4k̃k�
2R2

k

2EkλEkλ(Ekλ + Ekλ)
.

(B3)

In contrast,

2λRkL
z
kλ = 2λRk

k̃k�
2(εkλ − εkλ)

2EkλEkλ(Ekλ + Ekλ)

= 4k̃k�
2R2

k

2EkλEkλ(Ekλ + Ekλ)
. (B4)

Thus the third of Eqs. (B1) holds.
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