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Abstract 

The matrix Darboux-Toda mapping is represented as a product of a number of commutative mappings. The matrix 
Davey-Stewartson hierarchy is invariant with respect to each of these mappings. We thus introduce an entirely new type of 
discrete transformation for this hierarchy. The discrete transformation for the vector nonlinear Schrtiinger system coincides 
with one of the mappings under necessary reduction conditions. @ 1998 Published by Elsevier Science B.V. 
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1. Introduction 

Integrable mappings are an important tool for the investigation of integrable systems. It has been suggested 
that the theory of integrable systems is closely connected with the representation theory of the group of 
integrable mappings [ 1 I. This viewpoint continues to get many independent confirmations. In an approach 
like this the classification of integrable mappings plays the key role. A mapping (V-mapping) for the vector 

nonlinear Schriidinger system (VNLSS) [2 3 has recently been introduced by Aratyn’s group [ 31. To find it, 
they considered the transformations that preserve the form of the corresponding Lax operator and equation (this 
technique can be applied to the ( 1 + 1 )-dimensional case only). 

In the present paper, we show a new discrete symmetry of the (1 + 2)-dimensional matrix nonlinear 
Schrijdinger system (MNLSS) [4,5]. We also show that the V-mapping (generalized to two space dimensions) 
is a particular case of this symmetry. Additional reduction from two to one dimension gives the transformations 

considered in Ref. [ 31. 
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2. Multi-soliton solutions of the MNLSS 

In the next two sections we discuss one of the possible ways to derive discrete transformations for the MNLSS 
in the ( 1 + 1 )-dimensional case. The V-mapping [ 31 is obtained as a particular case of these mappings. In 
Section 4 the results are generalized to the two-dimensional case. In this section we represent explicit expressions 
for multi-soliton type solutions of the MNLSS (we did not encounter this sort of expressions in the available 
literature on the subject.) Proofs and details can be found in Ref. [ 51. The MNLSS reads 

-ut + Uxr + 2vuv = 0, ur + u,, + 2uvu = 0, (1) 

where u and u are k x k matrices of arbitrary rank. Particularly, when the ranks of the matrices equal 1, the 
non-zero part of v is a single column and the non-zero part of u is a single line, and the system ( 1) coincides 
with the VNLSS. The system (I) can be obtained with the help of the Maurer-Cartan identity as applied to 
the following equations, 

where E denotes the k x k unity matrix and A is a spectral parameter. A soliton-like solution of ( 1) is described 
by a pair of vectors (ni, mj), where ~ti and mj are natural numbers, ni 2 - 1 and mj 3 - 1, 

Ui,j = - 

[nt ,..., ni+l,..., nk;mi ,..., mj- I,..., mk] 

[nl,...,nk;ml,...,mk] 
, 

Vi,j = 
[nl,..., nj-l,..., nk;ml, . . . . ?&+I ,..., mk] 

[nl,...,nk;ml,...,mk] 
(3) 

Here [nl,.. . ,nk;m],. . . , mk ] stands for the determinant of the matrix whose lines consist of sublines of lengths 
nl + l,... ,nk f 1;ml + 1 , . . . , mk + 1, respectively. The sublines from the sth line, corresponding to ni + 1 
and rni + 1, are 

n; : e2’r, e2’JAs, . . . , e2’sA:, 

Wlj : l,A, ,...) AT, 

where r8 = &x/2 - Azt/4 + cs, A, and c, are sets of arbitrary parameters. For example, 

e271 1 At 
[O;l] = e272 1 AZ, 

e271 e2rl /tl 

e2’j 1 A3 
ll;-l] = e272 e2’2A2 

I t 

One can directly check that (3) are indeed solutions of ( 1) using the identity (9) from the Appendix. The 
solutions of VNLSS can be derived from (3) by inserting mj = - 1 for i 3 2. 

3. Discrete transformations for the MNLSS 

We now consider solutions with nrr - 1 and mp + 1. Let us denote them by iiij and Fiji and call them 
transformed solutions. First of all, from Eq. (3) we notice that ii,8 = l/vpa. Using only the identity (9) from 
the Appendix, one can prove the following relations between the initial and transformed functions, 

(%/3u@)x = -(uV)icx, (&rjupa)x = -(VU)pjy 
1 

i&f.? = -, 
Vpi 

c-1 
= (ti)eiv 

VPa “Pa x 
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Vjff ( > - 

Vb x 

= (V?)jp, 
V/3iVjo 

i7ji = Vji - - 

V/3a ’ 

iiij = Uij + iii@ii,jV&, 

&(uvU),p - (vuu)p,, = vpa(lnq3a)xxT (4) 

where i # a and j # /?. Note that there are k2 basic commutative mappings since a and p are arbitrary. 

Relations (4) establish the connection between the various definite types of (soliron-like) solutions of the 

system (1). It turns out that the transformation (4) works not only for this definite type of solutions, but for 
arbitrary solutions. That is, if u and v obey the system ( 1), ii and 5 obey it as well, no matter whether u and u 

are soliton-like or not. At the moment, we can check this only by direct substitution of (4) into ( 1) . About the 
connection between (4) and the Darboux-Toda substitution see Section 5. The product of an arbitrary number 

of mappings (4) is, obviously, a discrete symmetry of ( 1) again. 

4. Two-dimensional case 

In this case, the MNLSS (the two-dimensional matrix Davey-Stewartson system) reads 

k+au,,+bu,,+2au 
s 

dy(vu)s+2b dx(~v)~~.=O, 
s 

-vt + auxx + bv, + 2a 
s 

dy (vu)xv + 2bv 
s 

dx (MU), = 0, (5) 

where a and b are arbitrary numerical parameters. The system (5) is the third term of the matrix nonlinear 
Schrodinger hierarchy (MNLSH) [ 61. Now we generalize (4) to two space dimensions, 

(&?up,)x = -(uu);o, (&ju/3a)y =-(VU)pj, ii,fi= +, = (G),i, 
a ( > 

$ 

a x 

ujm 

( > 

UpiUja - 

VPa y 

= (C%)jfi, fiji = Vji - - 

Vpa ’ 

iiij = Uij + iiib&ajV&, 

u&(uvU>+3 - (vuv)po = q3a(lnupa)xy. (6) 

Within the scope of the present paper the above form of the two-dimensional mapping is a suggestion that 

should be checked independently. Substituting the transformed functions ii and i7 into (5)) we directly prove that 
the system (5) is invariant with respect to the mapping (6). In this paper, we do not consider the problem of 

constructing the hierarchy corresponding to the isolated mapping from (6). But finding the hierarchy invariant 

with respect to all mappings (6) is not a problem. Indeed, the matrix Darboux-Toda substitution can be 
represented as a product of mappings (6) (see the next section). Hence, it commutes with any transformation 
from (6). Therefore, all systems of MNLSH are invariant with respect to any transformation from (6). 

5. Different mappings and the connection between them 

First of all, we easily derive the V-mapping from the transformation (4). Let us take 

CY = p= I,. Uir Z Z4i9 Upi Ei Ui, 

Uij = Vji = 0, j + r. 
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Now we consider the connection between the various discrete transformations corresponding to MNLSH. In 
Ref. [61, the ( 1 + 2)-dimensional MNLSH has been constructed as a consequence of its invariance with regard 
to the matrix Darboux-Toda transformation 

&=U-‘, 8 = [uu - (r&),]u 5 u[uu - (ZF’U,),], (7) 

where u and u are invertibie k x k matrices. Denote this transformation by Mk and the mapping (6) by Taa. 
The equality T11T22 x . . . x Tkk = Mk. holds. The operators F&j are related by CjTji = cicj, GjTjkTki = I;:iTjjTkk, 
and SO on. The algebra of the xj generators may appear to be an important instrument to investigate MNLSS 
solutions. 

In the one-dimensional case, there is another substitution corresponding to the MNLSS (i.e., the MNLSS is 
invariant with respect to that mapping), 

ii, = u - nvii, v, = viiu - B. (8) 

We have checked that in the scalar case (when u and u are scalar functions) the solutions produced by 
this mapping are the same as those produced by the Darboux-Toda transformation. The only difference is in 
choosing initial (starting) functions. However, it is not clear whether the substitution (8) has a two-dimensional 
analogue. 

6. Outlook 

The main result of the present paper consists in new discrete transformations for the ( 1 + 2)-dimensional 
MNLSS. Whereas the Darboux-Toda mapping (7) requires Det u # 0, the mappings (4) are free from that 
restriction. This expands the possibility of investigating the MNLSS. Especially, when the ranks of the matrices 
are equal to 1, we get ( 1 + 2) -dimensional generalizations of the VNLSS and the corresponding mapping [ 31. 
But these are by far not the only possible partial cases. At the moment, we do not know how to solve the 
symmetry equation for an isolated Tap mapping from (6). Obviously, the conventional Lax technique does not 
work in the two-dimensional case. Solution of the symmetry equation is the most intriguing unsolved problem 
of the present paper. We hope to return to it in future publications. 

Appendix 

Consider a square matrix 

A ~1 h 
F = a2 CI dl , 

( 1 bz ~2 d2 

where A is a square matrix; al, bl and az, b2 are columns and rows of the corresponding dimension, respectively, 
and cl,2 and d1,2 are scalars. We have 

E A-la, A-lb1 
Det F = Det A Det 

ci - a2A-‘at 
a2 Cl dl 

b2 
c2 - bzA_‘al 

c2 d2 

where E is the corresponding unit matrix. Using this, we readily prove the following 

IZ7121In34I + In23llZ7141 = lZ724l]n13]. 

d, - a2A-‘bl 

> d2 - b+‘al ’ 

identity: 

(9) 
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Here 1 1 stands for the determinant, n denotes a k x (k - 2) matrix and 1,2,3 and 4 are columns of dimension 
k. 
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