
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 7831–7849 doi:10.1088/0305-4470/38/36/003

Solution for the dynamics of the BCS and central spin
problems

Emil A Yuzbashyan1, Boris L Altshuler1,2, Vadim B Kuznetsov3

and Victor Z Enolskii4

1 Physics Department, Princeton University, Princeton, NJ 08544, USA
2 NEC Research Institute, Princeton, NJ 08540, USA
3 Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK
4 Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Received 30 June 2005, in final form 4 July 2005
Published 23 August 2005
Online at stacks.iop.org/JPhysA/38/7831

Abstract
We develop an explicit description of a time-dependent response of fermionic
condensates to perturbations. The dynamics of Cooper pairs at times shorter
than the energy relaxation time can be described by the BCS model. We
obtain a general explicit solution for the dynamics of the BCS model. We
also solve a closely related dynamical problem—the central spin model, which
describes a localized spin coupled to a ‘spin bath’. Here, we focus on presenting
the solution and describing its general properties, but also mention some
applications, e.g. to nonstationary pairing in cold Fermi gases and to the issue
of electron spin decoherence in quantum dots. A typical dynamics of the BCS
and central spin models is quasi-periodic with a large number of frequencies
and stable under small perturbations. We show that for certain special initial
conditions the number of frequencies decreases and the solution simplifies. In
particular, periodic solutions correspond to the ground state and excitations of
the BCS model.

PACS numbers: 05.70.Ln, 74.20.De

1. Introduction

Recent experiments [1] on cold fermion pairing in the vicinity of a Feshbach resonance offer
a unique opportunity to control the strength of pairing interactions between fermions by a
magnetic field. This opens up an exciting possibility of exploring fundamentally new aspects
of the nonequilibrium pairing following an abrupt change of the coupling strength.

Interestingly, the dynamical pairing in this regime can be linked to a seemingly unrelated
spin model. The latter describes the interaction of a localized (central) spin with a ‘spin bath’
of environmental spins. The central spin model has re-emerged recently in the context of
experiments [2, 3] on electron spin dynamics due to the hyperfine interaction with nuclei in
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GaAs quantum dots. Since single electron quantum dots are now experimentally accessible
[3], and are considered one of the most promising candidates for solid state qubits, it is also
important to understand the effect of this interaction on the coherence of the electron spin.

In this paper, we present a theory that provides an accurate description for a range of
phenomena in the dynamical pairing and central spin problems. As we will see below, there
is an intimate connection between these two problems that will enable us to treat them on an
equal footing.

The study of the dynamics of the superconducting state in metals founded on microscopic
principles has begun during the decade following the advent [4] of the BCS theory (see [5] for
a review). The simplest theory for nonstationary processes in superconductors is based on the
time-dependent Ginzburg–Landau (TDGL) equation [6–8] for the order parameter �(t). The
TDGL approach is valid when quasiparticles are able to reach a local equilibrium quickly on
the characteristic time scale of the order parameter variation τ� (� �−1 at zero temperature).
This requirement usually limits the applicability of the TDGL theory to situations where
mechanisms destroying Cooper pairs are effective, such as a narrow vicinity of Tc or a large
concentration of magnetic impurities.

An alternative theory [9, 10] is the Boltzmann kinetic approach, which describes the
dynamics in terms of a kinetic equation for the quasiparticle distribution function coupled
to a self-consistent equation for �(t). However, this scheme is justified only when external
parameters change slowly on the τ� time scale.

As pointed out in [11], cold fermionic gases can be in a regime where the notion of the
excitation spectrum is irrelevant and neither TDGL nor the Boltzmann kinetic equations are
valid. Indeed, in these systems external parameters such as the detuning from a Feshbach
resonance can change on a time scale τ0 � τ�, τε , where τε is the quasiparticle energy
relaxation time. On the other hand, the energy relaxation is slow, while the lifetime of the
samples is limited. It is therefore desirable to develop a theory that describes nonstationary
pairing effects in this regime.

The nonequilibrium Cooper pairing at times t � τε is non-dissipative and in a
translationally invariant system can be described by the reduced BCS model

Ĥ BCS =
∑
p,σ

εpĉ
†
pσ ĉpσ − g

∑
p,k

ĉ
†
p↑ĉ

†
−p↓ĉ−k↓ĉk↑. (1.1)

It is interesting to note that the use of this model for describing the dynamics of a homogeneous
superconducting state in metals in the non-dissipative regime, t � τε , has been justified [12]
quite generally starting from nonstationary Eliashberg equations.

Here, we are interested in a situation when a system at zero temperature is out of an
equilibrium at t = 0. The goal is to determine the subsequent evolution of the initial state.
In particular, this includes the case when at t = 0 the coupling constant has been abruptly
changed from g′ to g.

In the absence of translational invariance, e.g. in a dirty superconductor or in a finite
system, Hamiltonian (1.1) has to be appropriately generalized [13]. First, let us discuss the
familiar case of electron–electron interactions. If there are no spatial symmetries, but the time-
reversal invariance is preserved, single-particle orbitals εj are degenerate only with respect to
spin. For each orbital εj there is a pair of states, |j ↑〉 and |j ↓〉, related by time reversal
symmetry. The pairing occurs between time reversed states, i.e.

Ĥ BCS =
∑
j,σ

εj ĉ
†
jσ ĉjσ − g

∑
j,q

ĉ
†
j↑ĉ

†
j↓ĉq↓ĉq↑. (1.2)

Deviations of the coupling strength g from a constant in q and j are small and sample-dependent
[13, 14].
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For a two-species Fermi system, such as a two-component mixture of fermionic atoms in
a trap, spin up and down states in (1.2) have to be identified with the two species of fermions.
With this replacement, arguments [13, 14]5 leading to Hamiltonian (1.2) are valid in the weak
coupling regime.

Hamiltonian (1.1) is obtained from (1.2) by specializing to a translationally invariant
situation. In this case, time reversed states are |p ↑〉 and |−p ↓〉. One can also take a
thermodynamic limit by taking the number of orbital levels to infinity. However, in view of
applications where the effective number of levels is finite and even small (see below), we deal
with the general Hamiltonian (1.2) here.

Remarkably, the BCS model turns out to be closely related to a model describing the
Heisenberg exchange interaction of a single localized spin (the central spin) with a number of
environmental spins. The Hamiltonian reads

Ĥ 0 =
n−1∑
j=1

γj K̂0 · K̂j − BK̂z
0 (1.3)

where K̂0 is the central spin, K̂j are environmental spins, γj are (nonuniform) coupling
constants, and B represents the magnetic field6.

The central spin model has an interesting history of its own. For example, it emerged
in the studies of electron spin dynamics in disordered insulators [15] and of coherent spin
tunnelling in ferromagnetic grains [16]. More recently, it attracted considerable attention as a
model for decoherence of qubits [17–20]. In particular, it can be used to model [17, 18] the
hyperfine interaction of a localized electron spin with nuclear spins and the spin-dependent
transport [21] in GaAs quantum dots. In these cases, it provides an adequate description of
spin dynamics at times shorter than the nuclear spin relaxation time in the regime where the
orbital level spacing in the dot is much larger than the temperature and typical interaction
energies.

The main result of this paper is an explicit general solution for the dynamics of the BCS
and central spin models. In particular, we determine as functions of time the order parameter
�(t) and the expectation value of the central spin (equations (3.22) and (3.24)) as well as
the dynamics of the remaining degrees of freedom for arbitrary initial conditions. Here, we
concentrate on presenting the solution and describing its general properties. We also mention
several applications to specific issues such as nonequilibrium pairing and that of decoherence
due to the hyperfine interaction, but leave a detailed discussion for the future.

The solution is based on the integrability [22–24] of the BCS and central spin models.
This important property has been largely underestimated in part because it was discovered
outside the main physical context of these models. Besides, due to the infinite range of
interactions in Hamiltonians (1.2) and (1.3), the mean field approximation is exact [25, 26]
for these models in the limit of large number of particles. In this approximation, the BCS and
central spin models can be mapped onto a classical nonlinear system (see below). However,
while the mean field simplifies the description of equilibrium properties to an extent where
no advanced techniques are required, it is the integrability of the resulting classical system
that enables us to solve dynamical problems. The BCS solution [4] for the ground state and
excitations of the BCS model is recovered as a periodic case of the general solution (see the
discussion following (2.6) and section 4). It is also interesting to note that, as we will see,

5 If the trap has certain spatial symmetries, the coupling g in (1.2) can depend on j and q. Hamiltonians (1.2) and
(1.1) neglect any such effects, which are usually not important (see also the discussion of stability against perturbations
later in the paper).
6 Since the component of the total spin along the magnetic field is conserved, including a uniform magnetic field
acting on environmental spins is equivalent to adding a constant to the Hamiltonian.
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models (1.2) and (1.3), being in many respects classical, have distinct robust features that are
preserved when the integrability is destroyed.

The general nonstationary solution of the BCS and central spin models is in terms of
hyperelliptic functions—multiple variable generalizations of ordinary elliptic functions. These
functions frequently arise as solutions of integrable equations and have well-known analytical
properties [27].

We show that for most initial conditions the dynamics is quasi-periodic with a number
of independent frequencies equal to the number of degrees of freedom, n, and evaluate the
frequencies in terms of the integrals of motion. The typical motion uniformly explores an
invariant torus—an n-dimensional subspace of the 2n-dimensional phase space allowed by the
conservation laws. These features of the typical motion are stable against small perturbations
that destroy integrability.

Further, we identify certain special values of integrals of motion for which the number of
independent frequencies, m, becomes less than the number of degrees of freedom. For these
degenerate cases, we were able to explicitly reduce the motion of the BCS and central spin
models with n degrees of freedom to that of same systems with only m degrees of freedom.
The solution progressively simplifies as the number of independent frequencies decreases.
For example, solutions characterized by a single frequency (m = 1), i.e. periodic trajectories,
are given by trigonometric functions; degenerate solutions with two independent frequencies
(m = 2) are given by a combination of trigonometric and elliptic functions (see also [11] and
the end of section 4), etc.

Periodic solutions (m = 1) occupy a special place among degenerate solutions. As we
show in section 4, they reproduce the BCS solution for the ground state and excitations of the
BCS model.

The paper is organized as follows. In section 2, we use a mean field approximation to
map the BCS and central spin models onto equivalent classical models. Section 3 contains
an explicit general solution for the dynamics of both problems. In section 4, we consider
degenerate solutions. Section 5 discusses some open problems and possible applications of
our results.

2. Mean field approximation

Our starting point is the mean field approximation, which enables the mapping of the BCS and
central spin models onto equivalent classical nonlinear systems. We also derive the equations
of motion and describe the relationship between the BCS and central spin models.

The discussion of the mean field is facilitated by representing BCS Hamiltonian (1.2) in
terms of Anderson pseudospin-1/2 operators [25].

Ĥ BCS =
n−1∑
j=0

2εj K̂
z
j − gL̂+L̂− L̂ =

n−1∑
q=0

K̂q (2.1)

where n is the number of single-particle orbitals. Pseudospin operators are related to fermion
creation and annihilation operators via

K̂z
j = c

†
j↑ĉj↑ + ĉ

†
j↓ĉj↓ − 1

2
K̂−

j = ĉj↓ĉj↑ K̂+
j = ĉ

†
j↑ĉ

†
j↓. (2.2)

Pseudospins are defined on unoccupied and doubly occupied pairs of states |j ↑〉 and |j ↓〉,
where they have all properties of spin-1/2. Singly occupied pairs of states, on the other hand,
do not participate in pair scattering and are decoupled from the dynamics.
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Our goal is to determine the time evolution according to Hamiltonian (2.1) of an arbitrary
initial distribution of pseudospins. The mean field approximation consists of the replacement
of the effective field seen by each pseudospin in BCS Hamiltonian (2.1) with its quantum-
mechanical average, bj (t) = (−2�x(t),−2�y(t), 2εj ), where �(t) is the BCS gap function

�(t) ≡ �x(t) − i�y(t) ≡ g
∑

p

〈K̂−
j (t)〉. (2.3)

In this approximation, each spin evolves in the self-consistent field created by other spins

˙̂Kj = i[Ĥ BCS, K̂j ] = bj × K̂j . (2.4)

Since equations (2.4) are linear in K̂j , we can take their quantum mechanical average with
respect to the time-dependent state of the system to obtain

ṡj = bj × sj bj = (−gJx,−gJy, 2εj ) J =
n−1∑
q=0

sq (2.5)

where sj (t) = 2〈K̂j (t)〉. Evolution equations (2.5) conserve the square of the average for
each spin, i.e. s2

j = const. If spins initially were in a product state7, s2
j = 1.

Note from equation (2.2) the following correspondence between components of sj (t) and
the normal and anomalous (Keldysh) Green functions at coinciding times:

Gj(t) = −i
〈[
cj↑(t), ĉ

†
j↑(t)

]〉 = isz
j (t)

Fj (t) = −i〈[cj↑(t), ĉj↓(t)]〉 = is−
j (t).

Equations (2.5) were derived [12] for phonon superconductors within the general framework
of nonstationary Eliashberg theory in the collisionless regime t � τε . A linearized version of
these equations was considered in [12, 25, 28, 29].

Due to the infinite range of interactions between spins in (2.1), the mean field
approximation is exact in the thermodynamic limit. For a system with a finite number,
N, of particles (spins) we expect, based on an analysis of leading finite size corrections [30]
to the mean field, equations (2.5) to be accurate for large N at times t < t∗Nη, where t∗ and
η > 0 do not depend on N.

We see that sj = 2〈K̂j 〉 have all properties of classical spins governed by a Hamiltonian

HBCS =
n−1∑
j=0

2εj s
z
j − g

2
J+J− (2.6)

and usual angular momentum Poisson brackets. Thus, the problem reduces to determining the
time evolution of n classical spins according to Hamiltonian (2.6).

The BCS solution for the ground state corresponds to the minimum of (2.6) and is obtained
by aligning each spin in (2.6) antiparallel to the field acting upon it. A pair excitation8

(excitation of the condensate) of energy 2
√

(εj − µ)2 + �2
0, where µ and �0 are the chemical

potential and the equilibrium gap respectively, is obtained by flipping the spin sj . The U(1)

symmetry of the BCS order parameter � is equivalent to the symmetry of (2.6) with respect to
uniform rotations of all spins around the z-axis. Due to this symmetry, spin configurations that
determine the ground state and excitations can rotate around the z-axis with a frequency 2µ at
no energy cost. In the presence of a particle–hole symmetry µ = 0 and these configurations

7 Within the mean field approximation, this is always true in equilibrium with any value of the coupling constant.
8 These are excitations that conserve the number of Cooper pairs, see [4, 25].
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are stationary with respect to Hamiltonian (2.6) (see section 4 where we recover the BCS
solution as a periodic case of the general time-dependent solution).

Next, we turn to the central spin model and its relationship to the BCS model. The central
spin Hamiltonian (1.3) turns out to be a member of an integrable family of Gaudin magnets
[23]—n Hamiltonians of the form:

Ĥ q = 2
n−1∑
j=0

′ K̂q · K̂j

εq − εj

− αK̂z
q q = 0, . . . , n − 1 (2.7)

where εj and α are arbitrary parameters. All Hamiltonians Ĥ q commute with each other and
with the z-component of the total spin, L̂z ∝ ∑

q Ĥ q , for arbitrary εj and α. The central spin

model (1.3) coincides with Ĥ 0 in equation (2.7) if we choose ε0 − εj = 2/γj and α = B.
Note that if a number of orbitals εj in (2.1) are degenerate, the magnitude of their

total spin
∑

εj =const K̂j is conserved by Hamiltonian (2.1). In this case one can replace

K̂j → ∑
εj =const K̂j in Hamiltonians (2.1) and (2.7) and sum over nondegenerate orbitals

only.
Now consider the following linear combination of Ĥ q :

n−1∑
q=0

εqĤq = −α

2

n−1∑
q=0

2εqK̂
z
q − 2

α
L̂+L̂−

 + const.

We see that for α = 2/g the expression in the square brackets coincides with BCS Hamiltonian
(2.1). Therefore, for α = 2/g, the BCS Hamiltonian commutes with all Ĥ q and thus belongs
to the same class of integrable models [23, 24].

In the same way as we did for the BCS model, we employ the mean field approximation to
derive classical Hamiltonians that govern the evolution of sj (t) = 2〈K̂j (t)〉 for Hamiltonians
(2.7): 

Hq =
n−1∑
j=0

′ sq · sj

εq − εj

− αsz
q

HBCS =
n−1∑
j=0

2εj s
z
j − J+J−

α
.

(2.8)

In particular, the classical counterpart of central spin Hamiltonian (1.3) is

H0 =
n−1∑
j=0

γj

2
s0 · sj − Bsz

0. (2.9)

The validity of the mean field approximation for central spin model (1.3) is subject to similar
considerations as for the BCS model (see the second paragraph following equation (2.5) and
also [18]).

Thus, the problem of determining the dynamics of the BCS and central spin models
reduces to solving equations of motion for Hamiltonians H0 and HBCS in system (2.8). To
obtain solutions for BCS (1.2) and central spin (1.3) models, one has to choose

α = 2

g
BCS

2

ε0 − εj

= γj α = B central spin.

(2.10)
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Hamiltonians (2.8) Poisson commute with each other and with the z-component of the
total spin Jz ∝ ∑

q Hq . Each Hamiltonian in system (2.8) describes an evolution of n spins in
an 2n-dimensional phase space (two angles for each spin) and has n integrals of motion (the
energy and the remaining Hamiltonians from system (2.8)). Therefore, all Hamiltonians (2.8)
are classical integrable models.

3. The solution

In the previous section we mapped the BCS and central spin models onto a classical integrable
system (2.8). Nevertheless, even though Liouville’s theorem [31] guarantees a formal
integrability in quadratures of classical integrable models, an explicit solution for the evolution
of the original dynamical variables is not always possible. Fortunately, this turns out to be not
the case for the BCS and central spin problems. For these models, as detailed below, we were
able to obtain an explicit general solution of equations of motion.

Before we proceed, let us discuss generic features [31] expected of the dynamics of a
classical integrable model with n degrees of freedom. The motion is confined by conservation
laws to an n-dimensional subspace of the 2n-dimensional phase space. This subspace (invariant
torus) is determined by initial values of integrals of motion and is topologically equivalent to
an n-dimensional torus. The motion on the invariant torus is characterized by n angle variables,
φk and the corresponding angular frequencies, φk(t) = 	kt + φk(0). The frequencies depend
only on integrals of motion, while constants φk(0) are determined by initial values of remaining
degrees of freedom. Since for most initial conditions all frequencies 	k are independent9,
typical trajectories uniformly explore the entire torus. All these properties are not affected by
small perturbations destroying integrability (Kolmogorov–Arnold–Moser theorem).

Now we turn to the solution for the dynamics of the BCS and central spin models. The
solution consists of two main steps. The first one is a change of variables that casts equations
of motion into the form of a known mathematical problem. In the second step, we use the
solution of this problem to obtain dynamical variables sj (t) = 2〈K̂j (t)〉 as explicit functions
of time.

The change of variables is facilitated by defining a 2 × 2 matrix10 that depends on
dynamical variables sj and also on an auxiliary parameter u

L =
(

A(u) B(u)

B∗(u) −A(u)

)
(3.1)

where matrix elements of L are

A(u) = α −
n−1∑
j=0

sz
j

u − εj

B(u) =
n−1∑
j=0

s−
j

u − εj

. (3.2)

The eigenvalues of this matrix, ±v(u), depend on dynamical variables only through integrals
of motion – Hj and s2

j

v2(u) = α2 +
n−1∑
j=0

(
2Hj

u − εj

+
s2
j

(u − εj )2

)
≡ α2Q2n(u)

P 2
n (u)

(3.3)

where we defined two polynomials, Q2n(u) and Pn(u) that will be frequently used in
subsequent calculations

9 Frequencies 	k are independent if m = 0 is the only vector with integer components such that Ω · m = 0.
10 Matrix L is called the Lax matrix of integrable system (2.8).
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Q2n(u) ≡
2n−1∏
j=0

(u − Ej) ≡
2n∑

k=0

αku
k α2n = 1 (3.4)

Pn(u) ≡
n−1∏
q=0

(u − εq). (3.5)

Note that becauseL is Hermitian for real u, its eigenvalues are real and therefore the polynomial
Q2n(u) is positive definite on the real axis. We will often refer to the polynomial Q2n(u) as
the spectral polynomial.

Following an algebraic version of the variable separation method [32, 33], we introduce
n− 1 variables, uj , as zeros of B(u)—one of the off-diagonal matrix elements of L. Variables
vj , canonically conjugate to uj , are given by one of the eigenvalues of matrix L at u = uj .

B(uj ) = 0 vj = −A(uj ) j = 1, . . . , n − 1. (3.6)

Although we will not use the Hamilton–Jacobi method, we remark that variables (uj , vj )

separate [33] Hamilton–Jacobi equations for Hamiltonians (2.8). Since uj are zeros of B(u),
we can rewrite the matrix element B(u) as

B(u) = J−

∏n−1
j=1(u − uj )∏n−1
j=0(u − εj )

≡ J−
Rn−1(u)

Pn(u)
. (3.7)

This equation is useful for expressing original dynamical variables—components of spins
sj —through separation variables uj and J−. For example, using equations (3.2) and (3.7), we
have

s−
j = res

u=εj

B(u) = J−
Rn−1(εj )

P ′
n(εj )

(3.8)

where the prime denotes a derivative with respect to u.
Equations of motion for central spin Hamiltonian (2.9) in terms of new variables uj and

J− can be derived by using equation (3.3). We have

u̇j = iB
√

Q2n(uj )

uj

∏
m
=j (uj − um)

s−
0

J−

J̇− = iBs−
0 = iλJ−Rn−1(0) λ = B

2n

n∏
j=1

γj .

(3.9)

Similarly, one obtains equations of motion for BCS Hamiltonian (2.6)

u̇j = 2i
√

Q2n(uj )∏
m
=j (uj − um)

J̇− = −2iJ−

n−1∑
j=0

εj +
gJz

2
−

n−1∑
j=1

uj

 .

(3.10)

In equations (3.9) and (3.10) as well as in the rest of the paper, with no loss of generality, we
shifted parameters εj in the BCS and central spin Hamiltonians by a constant so that ε0 = 0.

In the reminder of this section we obtain an explicit general solution for the expectation
value of each (pseudo)spin, sj (t) = 2〈K̂j (t)〉, as a function of time. In particular, this includes
the expectation value of the central spin, s0(t), and the BCS gap function, �(t) = gJ−(t).
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The solution is based on the observation that, with the help of elementary algebra,
equations of motion (3.9) and (3.10) can be cast into a form of a known mathematical
problem. Specifically, one can rewrite equations (3.9) and (3.10) for variables uj as

n−1∑
j=1

ul−1
j duj√
Q2n(uj )

= dxl l = 1, . . . , n − 1 (3.11)

where the polynomial Q2n(u) is defined in equation (3.3). To obtain equations of motion
(3.10) for the BCS Hamiltonian one has to choose

xT = i(c1, . . . , cn−2, 2t + cn−1) (3.12)

while for the central spin model one has

xT = −iλ(t + c1, . . . , cn−2, cn−1) (3.13)

where c1, . . . , cn−1 are arbitrary constants.
Differential equations (3.11) constitute a well-known mathematical problem called

Jacobi’s inversion problem (see, for example, [27] and references therein). The solution
of equations (3.11) can be expressed [34] through hyperelliptic Abelian functions—multiple
variable generalizations of ordinary elliptic functions. These functions are often encountered
as solutions of integrable equations and have well-known analytical properties. They are also
implemented in standard mathematical software packages [35].

The Riemann theta function of genus g (in our case g = n−1) is defined as the following
sum over all g-dimensional integer vectors

θ(x|τ) =
∑

m∈Zg

exp[iπ(mT τm + 2xT m)] (3.14)

where τ = ω′ω−1, and ω and ω′ are g × g matrices to be specified below. Klenian σ - and
ζ -functions of genus g are defined through the Riemann theta function as11

σ(x) = C exp[xT η(2ω)−1x]θ((2ω)−1x|τ)

ζl(x) = ∂ ln σ(x)

∂xl

.
(3.15)

In our case, the g × g matrices ω and η (matrices of periods) that appear in the definition
of hyperelliptic functions (3.14) and (3.15) are

2ωkl =
∮

bk

ul−1 du√
Q2n(u)

2ηkl = −
∮

bk

du

4
√

Q2n(u)

2n−l∑
k=l+1

(k − l)αk+lu
k−1

(3.16)

where contours of integration bk go around branch cuts of a hyperelliptic curve z(u) =√
Q2n(u) as shown in figure 1. Matrices ω′ and η′ are also defined by equations (3.16) with

the replacement of the contours of integration bk → hk (see figure 1).
The solution [34] of differential equations (3.11) for arbitrary initial conditions states that

functions up(x) are zeros of the following polynomial of a degree g = n − 1:

Rn−1(u, t) = un−1 −
n−1∑
k=1

fk(x)uk−1 (3.17)

11 A more conventional definition of the σ -function is σ(x) = C exp[xT η(2ω)−1x]θ((2ω)−1x − rτ), where r is a
vector of (Riemann) constants. In our case, this makes no difference since the vector r affects only constants ck in
equations (3.12) and (3.13).
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E2g+1

E1

E2g
E2g-2

E2g-1

E2

E3

E0

b2

bg

hg

h2

h1

b1

Figure 1. Riemann surface of a hyperelliptic curve z(u) = √
Q2n(u) of genus12 g = n−1 showing

contours of integration bk and hk with k = 1, . . . , g. These contours appear in the definition of
matrices of periods (3.16) of hyperelliptic functions. Contours bk go around g = n − 1 branch
cuts connecting first 2g = 2n − 2 roots Ek of the spectral polynomial Q2n(u). Integration along
the contours is clockwise. Note that since the spectral polynomial is positively defined the branch
cuts are parallel to the imaginary axis.

where coefficients of Rn−1(u, t) are

fk(x) = ζk(x + d) − ζk(x − d) + ak. (3.18)

Here vector x is defined by equations (3.12) and (3.13) for the BCS and central spin problems,
respectively. The argument of ζ -functions in equations (3.18) is shifted by a vector of constants
d that has the following components:

dl =
∫ ∞

E0

ul−1 du√
Q2n(u)

l = 1, . . . , n − 1 (3.19)

where E0 is one of the roots of the spectral polynomial Q2n(u) (see figure 1 and equation (3.4)).
Note that, according to its definition (3.3), the spectral polynomial Q2n(u) depends only on
integrals of motion and on parameters εj and α.

Finally, constants ak in equations (3.18) are obtained from the expansion√√√√ 2n∑
k=0

αk

zk
= 1

zn
+

a1

zn−1
+ · · · +

an−1

z
+ O(1) (3.20)

where αk are the coefficients of the spectral polynomial Q2n(u) defined by equation (3.4). For
example, an−1 = α2n−1/2, an−2 = α2n−2/2 − α2

2n−1

/
8, etc.

To obtain quantum mechanical expectation values of original spins sj (t) = 2〈K̂j (t)〉
for central spin model (1.3) and pseudospins (2.2) for BCS model (1.2), we observe that,
according to equation (3.8), they can be expressed through the polynomial Rn−1(u, t) given
by expression (3.17). We have

s−
j (t) = J−(t)

Rn−1(εj , t)

P ′
n(εj )

. (3.21)

12 The genus is the number of handles on the Riemann surface of z(u) = √
Q2n(u). The latter consists of two

branches glued along n cuts (see figure 1). Each branch is a complex plane that is equivalent to a sphere. Because the
two spheres are glued along n cuts, there are g = n − 1 handles.
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Recall that coefficients of the polynomial Pn(u), defined by equation (3.5), depend only on
parameters εj .

Similarly, one can use an expression for the matrix element A(u) defined in equation (3.2)
in terms of variables uj to obtain z-components of (pseudo)spins as functions of time.
However, these components are not independent and can also be obtained from the equation(
sz
j

)2
+ |s−

j |2 = s2
j = 1, where the sign of sz

j is determined by initial conditions.
Integrating equations (3.9) and (3.10) for the evolution of x and y components of the total

(pseudo)spin with the help of equation (3.18), we obtain

J−(t) = cn e−iβt σ (x + d)

σ (x − d)
�(t) = gJ−(t) (3.22)

where the vector x is defined by equations ((3.12)) and ((3.13)). The frequency β is different
for the BCS (βBCS) and central spin (β0) models

βBCS = gJz

2
+

n−1∑
j=0

εj β0 = a1λ, (3.23)

where λ and a1 are defined in equations (3.9) and (3.20) respectively.
Average components of the electron (central) spin, s0(t) = 2〈K̂0(t)〉 are obtained from

equation (3.21) (recall that ε0 = 0)

s−
0 (t) = c′

n[ζ1(x − d) − ζ1(x + d) − a1]
σ(x + d)

σ (x − d)
(3.24)

where c′
n = (λcn)/B.

To summarize, quantum-mechanical averages of (pseudo)spins for the BCS and central
spin models, including the electron (central) spin and the BCS gap function �(t) are
hyperelliptic functions (equations (3.14) and (3.15)) of the time variable and n − 1 constants
ck (equations (3.21), (3.22) and (3.24)). These functions are specified by their matrices of
periods ω,ω′ and η. The latter depend only on integrals of motion according to equations (3.3)
and (3.16). The remaining n out of 2n initial conditions fix constants ck in equations (3.12)
and (3.13).

An important characteristic of a quasi-periodic motion is its (Fourier) frequencies.
To determine the frequencies for the BCS and central spin models, we observe from
equation (3.15) that the time variable enters the solution through combinations of ei	kt , where

	k = iπω−1
kg BCS

	k = −iπω−1
k1 central spin

(3.25)

k = 1, . . . , g, and g = n−1. Note that, since the spectral polynomial Q2n(u) in equation (3.16)
is positively defined, the matrix ω is pure imaginary and, therefore, frequencies 	k are real13

(see figure 1).

4. Degenerate solutions

Here we identify a class of ‘resonant’ nonstationary solutions for the BCS and central spin
models with n degrees of freedom (n spins or pseudospins) but only m < n independent
frequencies.

While a typical dynamics of the BCS and central spin models with n (pseudo)spins is
quasi-periodic with n independent frequencies, it is clear already on physical grounds that there

13 In addition to n − 1 frequencies 	k there is one more frequency that comes from the exponential prefactor in the
σ -function (3.15). We were not able to find a simple expression for this frequency.
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must be solutions with fewer frequencies. For example, the only ‘spatial’ symmetry of the
BCS ground state is the U(1) symmetry of the order parameter that translates into rotations
of all pseudospins in Hamiltonians (2.1) and (2.6) around the z-axis. The corresponding
trajectory in the phase space is a circle and, therefore, the motion is periodic with a single
frequency (see also the discussion following equation (2.6) and below in this section).

Generally, one can show [31] that there are (resonant) tori with an arbitrary number m < n

of independent frequencies in a vicinity of any point in the phase space. It should be noted
though that the set of points for which m < n has a zero measure in the phase space just
like the set of rational numbers on the real axis. Moreover, such points are typically unstable
[31] and provide seeds of chaotic behaviour in integrable systems. This occurs because small
perturbations can destroy resonant tori and let the corresponding trajectories escape to other
regions of the energy shell. In contrast, the majority of invariant tori with n independent
frequencies are only slightly deformed by perturbations.

Interestingly, for the resonant (degenerate) cases considered here we were able to reduce
the BCS and central spin models with n spins to same models with only m spins. For example,
solutions with m = 2 frequencies can be obtained from the BCS and central spin models for
only two spins, etc. Further, we will see that one spin solutions (periodic trajectories) are
special among degenerate solutions in that they correspond to the BCS energy spectrum.

We start by determining conditions under which the number of independent frequencies is
reduced. Since the frequencies are fixed by initial values of integrals of motion, degeneracies
occur only for special values of the integrals. On the other hand, a complete information about
integrals of motion is encoded in the spectral polynomial Q2n(u) defined in equations (3.3)
and (3.4). Specifically, we have seen in the previous section that the number of frequencies
	k is equal to the number of branch cuts of the hyperelliptic curve z(u) = √

Q2n(u).
Evidently, the latter decreases by one when two roots of the polynomial Q2n(u) coincide.
Thus, as detailed below, merging 2(n − m) roots of Q2n(u) we obtain solutions with m < n

frequencies.
Indeed, consider a situation when 2(n − m) roots coincide, i.e. the spectral polynomial

Q2n(u) in equation (3.3) has the following special form:

Q2n(u) = Q̃2m(u)

n−1∏
k=m

(u − Ek)
2 = Q̃2m(u)W 2

n−m(u). (4.1)

We assume that double roots in equation (4.1) are complex conjugate to each other so that
coefficients of polynomials Q̃2m(u) and Wn−m(u) are real. Note that, since the polynomial
Q2n(u) is positively defined (see the remark following equation (3.5)), so is the polynomial
Q̃2m(u). We will see below that degenerate solutions are completely determined by the
‘residual’ spectral polynomial Q̃2m(u).

Now let us choose m − n separation variables uj to coincide with double roots of the
polynomial Q2n(u), i.e.

uj = Ej j = m, . . . , n − 1

Wn−m(u) =
n−1∏
k=m

(u − Ek) =
n−1∏
j=m

(u − uj ).
(4.2)

We observe that equations of motion for these variables are automatically satisfied because
both sides of equations (3.9) and (3.10) vanish.
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Next, we use equations (4.1) and (3.3) to express eigenvalues of matrix L in terms of the
residual spectral polynomial Q̃2m(u) as follows,

v2(u) = α2

n−1∑
q=0

Cq

u − εq

2

Q̃2m(u) (4.3)

where we expanded the ratio of polynomials Wn−m(u) and Pn(u) into elementary fractions

Wn−m(u)

Pn(u)
=

n−1∑
q=0

Cq

u − εq

. (4.4)

Since the degrees of polynomials Wn−m(u) and Pn(u) differ by m, there are m constraints on
the values of Cq , which can be derived by expanding equation (4.4) in 1/u. We have

n−1∑
q=0

Cqε
k−1
q = δkm k = 1, . . . , m. (4.5)

Values of Cq can be expressed through coefficients of Q̃2m(u) by comparing residues at double
poles at u = εq in equations (3.3) and (4.3),

Cq = eq

α

√
Q̃2m(εq)

where eq = ±1. (4.6)

Note that equations (4.5) provide the following m constraints,

n−1∑
q=0

eqε
k−1
q√

Q̃2m(εq)

= αδkm k = 1, . . . , m (4.7)

on 2m coefficients of a positively defined polynomial Q̃2m(u).
Values of integrals of motion Hq for which degeneracies occur can be determined in terms

of coefficients of the residual spectral polynomial Q̃2m(u) by comparing residues at simple
poles at u = εq in equations (3.3) and (4.3).

Hq = α2
n−1∑
j=0

′ CqCjQ̃2m(εq)

εq − εj

+
α2

2
C2

qQ̃
′
2m(εq). (4.8)

In particular, the value of H0—twice the energy14 of the central spin model on degenerate
solutions is

E0 = h
√

α̃0e0

n−1∑
q=1

Cjγj

4
+

α̃1

2α̃0
(4.9)

where α̃k are coefficients of Q̃2m(u) defined as

Q̃2m(u) ≡
2m∑
k=0

α̃ku
k α̃2m = 1. (4.10)

The BCS energy EBCS ∝ ∑
q εqHq + const and the value of Jz ∝ ∑

q Hq can be obtained from
the knowledge of Hq . However, a more convenient derivation is to compare expansions of
equations (3.3) and (4.3) in powers of 1/u. We have

14 The factor of two arises because with the choice sp = 2〈K̂p〉 the value of classical Hamiltonians (2.6) and (2.9) is
twice the value of their quantum counterparts (2.1) and (1.3).
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Jz + α

n−1∑
q=0

Cqε
m
q = −αα̃2m−1

2
(4.11)

gEBCS = −
m−1∑
q=0

Cq

(
2εm+1

q + α̃2m−1ε
m
q

)− α̃2
2m−1

4
+ α̃2m−2. (4.12)

So far, we determined initial conditions for which the number of independent frequencies
for a system with n (pseudo)spins drops from n to m. We saw that these conditions are fixed
by the residual spectral polynomial Q̃2m(u). Note that separation variables uj with j � m are
also fixed by this polynomial because they are zeros of equation (4.4).

Thus, we are left with m dynamical variables—uj with j = 1, . . . , m − 1 and J−.
Equations of motion (3.9) and (3.10) for these uj can be cast into a standard form (3.11)
where n is now replaced with m and the original spectral polynomial Q2n(u) is replaced with
the residual polynomial Q̃2m(u). On the other hand, it is clear that we would obtain similar
equations of motion for m spins s̃j governed by the BCS or central spin Hamiltonians. This
analogy can be made precise if we identify the residual polynomial Q̃2m(u) with the spectral
polynomial of a system of m spins (cf equation (3.3)), i.e.

ṽ 2 = α2 +
m−1∑
j=0

(
2H̃ j

u − ε̃j

+
s̃ 2
j

(u − ε̃j )2

)
= α2Q̃2m(u)

P̃ 2
m(u)

(4.13)

where we replaced parameters εj with new ones

P̃ m(u) =
m−1∏
q=0

(u − ε̃q ) (4.14)

and chose ε̃0 = 0, consistent with the choice ε0 = 0 (see below equation (3.10)). The rest of
ε̃j are arbitrary real numbers.

BCS (2.6) and central spin (2.9) Hamiltonians for new classical spins s̃j are

H̃ BCS =
m−1∑
j=0

2̃εj s̃
z
j − g

2
J̃ +J̃− J̃ =

m−1∑
q=0

s̃q

H̃ 0 =
m−1∑
j=0

γ̃j

2
s̃0 · s̃j − Bs̃ z

0 γ̃j = 2

ε̃0 − ε̃j

.

(4.15)

Now, comparing equations of motion (3.9) and (3.10) for m separation variables ũj for
new spins with those for the remaining variables uj for j = 1, . . . , m − 1 in the original
problem with n spins, we see that they coincide if we re-scale the time variable for the central
spin problem as follows:

t̃ = (−1)ne0
∏m−1

k=1 ε̃m

B
√

α̃0
t central spin

t̃ = t BCS.

(4.16)

No re-scaling is necessary for the BCS model. Further, analysing equations of motion for x
and y components of the total spin (3.9) and (3.10), we conclude that they coincide for original
and new spins, i.e.

J̃− = J−.
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To express original n (pseudo)spins sj (t) = 2〈K̂j (t)〉 in terms of m new spins s̃j (̃t), we use
equations (4.4) and (4.2) to rewrite the matrix element B(u) given by equation (3.7) as

B(u) = J−
m−1∏
j=1

(u − uj )

n−1∑
q=0

Cq

u − εq

= B̃(u)P̃ m(u)

n−1∑
q=0

Cq

u − εq

. (4.17)

Evaluating residues at u = εj in equation (4.17), we obtain according to equation (3.8)

s−
j (t) = Cj P̃ m(εj )

m−1∑
q=0

s̃−
j (̃t)

εj − ε̃q

(4.18)

where constants Cj are given by equation (4.6). Similarly, one can relate z-components of
original spins to new ones

sz
j (t) = Cj P̃ m(εj )

−α +
m−1∑
q=0

s̃ z
q (̃t)

εj − ε̃q

 . (4.19)

The solution for new spins s̃j (̃t) as functions of time can be read off directly from the general
solution—equations (3.21), (3.22) and (3.24) of the previous section. We only need to replace
n with m, re-scale the time variable for the central spin model according to equation (4.16), and
replace the spectral polynomial Q2n(u) with its reduced counterpart Q̃2m(u) in the definition
of matrices of periods (3.16) of hyperelliptic functions.

For future reference, let us also write equations for components of original spins
sj (t) = 2〈K̂j (t)〉 and evolution of J−(t) for degenerate solutions in terms of m variables
ũj = uj . Evaluating residues at u = εj in equation (4.17) and using equation (3.8), we find

s−
j = CjJ−

m−1∏
j=1

(εj − uj ). (4.20)

With the help of equations (4.1) and (4.20), evolution equations (3.9) and (3.10) for J− become

d ln J−
dt

= (−1)mie0√
α̃0

m−1∏
j=1

uj central spin

d ln J−
dt

= i

α̃2m−1 + 2
m−1∑
j=1

uj

 BCS.

(4.21)

We see that degenerate solutions with m < n frequencies can be parametrized by m auxiliary
spins both for the BCS and central spin model. Therefore, corresponding trajectories live
on an m-dimensional torus. By symmetry, for the same initial conditions, trajectories of all
Hamiltonians Hq in system (2.8) live on the same torus. This implies, for example, that a
slight change of initial values of integrals of motion (4.8) will induce small oscillations along
the remaining n − m directions.

Let us consider several examples of degenerate solutions.

One-spin solutions, m = 1. These solutions reproduce the BCS solution for the ground state
and excitations of the BCS model (see also the discussion following equation (2.6)).
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Since the residual spectral polynomial is positively defined, we can parametrize it as
Q̃2(u) = (u − µ)2 + �2

0. For m = 1, there is only one condition in equation (4.7)

n−1∑
q=0

eq√
(εq − µ)2 + �2

0

= α eq = ±1. (4.22)

For the BCS model α = 2/g and we recognize equation (4.22) as the BCS gap equation.
Similarly, equation (4.11) becomes the BCS equation for the chemical potential.

The energy of BCS model (4.12) for m = 1 is

EBCS = �2
0

g
− µJz −

n−1∑
j=0

ej

√
(εj − µ)2 + �2

0. (4.23)

We see that a choice of signs ej = 1 for all j yields the BCS ground state energy, while if we
choose one of ej to be negative, eq = −1 and ej = 1 for j 
= q, the solution corresponds to
a pair excitation of energy 2

√
(εq−µ)2+�2

0. Similarly, one obtains solutions with two and more
excitations by choosing several signs ej to be negative.

According to equations (4.15), the BCS and central spin models for m = 1 reduce to the
following single spin models:

H̃ 0 = −Bs̃ z
0 H̃ BCS = −g

2
s̃ +

0 s̃−
0 . (4.24)

Then, equation (4.13) provides an alternative parametrization of the residual spectral
polynomial Q̃2(u)

Q̃2(u) = u2 − 2̃s z
0

α
u +

s̃ 2
0

α2
. (4.25)

The solution of equations of motion is

J−(t) = s̃−
0 (t̃) = α�0 e−iβt+iφ (4.26)

where the frequency β is different for BCS (βBCS) and central spin (β0) models

βBCS = 2µ β0 = −e0√
µ2 + �2

0

e0 = ±1.

Components of original spins sj (t) = 2〈K̂j (t)〉 are given by equations (4.18) and (4.19). We
have

s−
j (t) = ejJ−(t)

α

√
(εj − µ)2 + �2

0

sz
j = − ej (εj − µ)√

(εj − µ)2 + �2
0

. (4.27)

Note that one-spin solutions constructed above do not minimize central spin Hamiltonian
(2.9). Instead, we observe that in this case the configuration of spins with minimum energy
is sz

j = −sgn γj . Similarly, we see from equations (2.8) that configurations that minimize
Hamiltonians Hq are sz

j = −sgn(εq − εj ). Interestingly, according to the definition of
pseudospins (2.2), one of these configurations is the unperturbed Fermi ground state. Since



Solution for the dynamics of the BCS and central spin problems 7847

all spins in these configurations are oriented along the z-axis, they are also stationary with
respect to BCS Hamiltonian (2.6).

Two-spin solutions, m = 2. In this case there are two constraints (4.7) on four coefficients of
a positively defined polynomial Q̃4(u).

n−1∑
q=0

eq√
Q̃4(εq)

= 0
n−1∑
q=0

eqεq√
Q̃4(εq)

= α eq = ±1

Q̃4(u) =
4∑

k=0

α̃ku
k α̃4 = 1.

Equations (4.9) and (4.12) show that the energy of these solutions can take arbitrary values in
the range of energies allowed for the BCS and central spin models.

The equivalent two-spin problems (4.15) are

H̃ BCS = 2̃ε1̃s
z

1 − g

2
J̃ +J̃− H̃ 0 = γ̃0

2
s̃0 · s̃1 − Bs̃ z

0 . (4.28)

We are left with only one separation variable u1 = ũ1 and equations (3.11) now read

u̇2
1 + 4Q̃4(u1) = 0 BCS

α̃0u̇
2
1 + Q̃4(u1) = 0 central spin

(4.29)

while for the total (pseudo)spin, using equation (4.21), we obtain

d ln J−
dt

= ± i√
α̃0

u1 central spin

d ln J−
dt

= ĩα3 + 2iu1 BCS.

(4.30)

Components of individual spins can be expressed either through u1 and J− or in terms of new
spins using equations (4.20) and (4.18)

s−
j = CjJ−(εj − u1) = Cj(εj − ε̃1)̃s

−
0 ( t̃ ) + Cjεj s̃

−
1 ( t̃ ). (4.31)

A special case of two-spin solutions when the four coefficients of a positively defined
polynomial Q̃4(u) can be parametrized by three numbers, Q̃4(u) = (

(u − ω)2 + �2
− + �2

+

)2 −
4�2

−�2
+, has been previously discovered in [11]. The general two-spin solution is obtained

from equations (4.29)–(4.31), which are solved by setting n = 2 (g = 1) in equations (3.17),
(3.21) and (3.22) where hyperelliptic functions now become ordinary elliptic functions.

Similarly, one can obtain three, four etc spin solutions (degenerate solutions with m = 3, 4
etc frequencies) in terms of hyperelliptic functions of genus g = 2, 3, etc.

Degenerate solutions derived here are not all solutions with m < n independent
frequencies. Indeed, it is clear that for a generic point in the phase space all roots of the
spectral polynomial Q2n(u) are distinct and, by continuity, the distance to the closest point
where two roots coincide is finite. On the other hand, there are points with any number of
frequencies arbitrarily close to any point in the phase space. Other solutions with m < n

frequencies can be constructed using the reduction theory for hyperelliptic functions [36].
Note also that degenerate solutions with m frequencies contain ones with fewer frequencies

and can be further reduced to m−1,m−2, etc. Geometrically, they live on a 2m-dimensional
surface in the 2n-dimensional phase space (see the remark below equation (4.21)). Surfaces
with smaller m are embedded into ones with larger m. Interestingly, periodic trajectories that
correspond to the BCS energy spectrum (m = 1) belong to all these surfaces.
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5. Applications and open problems

Our results can be applied to the problem of decoherence within the central spin model. In
this case, we believe, a complete exact answer can be obtained.

Another possible application is to experiments [2] on electron transport in spin blockaded
semiconductor double dots. In this connection, it might be useful to analyse first a simpler
setup of a single dot connected to two polarized leads. This setup leads [37] to an integrable
model very similar to the central spin model.

Further, it might be possible to use the BCS model (2.6) with few classical spins to
describe a number of grains connected to each other by Josephson junctions.

Other interesting applications include pairing phenomena in cold fermion gases [1] and in
superconducting metals (see, e.g., the discussion in [29]). In these cases, a careful identification
of observable robust features of the solution is needed.

An interesting open problem is the evaluation of leading finite size (quantum) corrections
to the general solution obtained in this paper.
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