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Cooper pair turbulence in atomic Fermi gases
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Abstract – We investigate under what conditions a uniform quench of a superfluid atomic Fermi
gas leads to the emergence of spatial inhomogeneities. We demonstrate that, if the system is larger
than the coherence length, the superfluid order parameter becomes spatially nonuniform. Spatial
modulations develop through a parametric excitations of pairing modes with opposite momenta.
Their growth is eventually suppressed by nonlinear effects resulting in a state characterized by a
random superposition of wave packets of the superfluid order parameter. This state can be probed
by measuring the molecular momentum distribution following a fast sweep to the BEC side of the
Feshbach resonance.
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How does a homogeneous interacting many-body system
develop spatial modulations as a result of a uniform
quench? In general, this can happen due to an interplay
between the extra energy introduced by the quench and
an intrinsic coupling of the degrees of freedom at various
length scales [1–4]. By the very nature of the problem,
the energy distribution of these degrees of freedom is
initially far from a state of thermodynamic equilibrium.
This situation is common in a nonlinear medium and can
be described by the term “wave turbulence” (see [5] and
references therein). In the case when one of the parameters
of the medium or an applied field is periodically varied
in time, wave turbulence due to a parametric instability
can develop. Examples of such a phenomenon include the
decay of high-frequency electric field into Langmuir and
ion-sound waves in plasma [6], the spin-wave instability
in an rf-magnetic field in dielectric ferromagnets [7]
and instability of coherent spin precession in superfluid
3He [8,9]. A natural question is then whether a quench
can lead to a parametric excitation of spatial modes.
In this letter we address this issue for a system of

fermionic atoms in a homogeneous superfluid state. The
system is uniformly quenched by a change of the applied
magnetic field. We demonstrate that spatial modulations
develop in the course of the nonadiabatic dynamics
triggered by the quench. These inhomogeneities corre-
spond to a nonzero center of mass momentum of Cooper
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pairs and can be experimentally probed by projecting
the Cooper pair wave function onto molecular wave
function by a fast sweep to the BEC side of the Feshbach
resonance [10,11]. The subsequent measurements of the
molecular momentum distribution should reveal two
peaks: one at zero momentum and the other at the
momentum of the spatial modulations (see below).
Previous analysis of the nonadiabatic pairing dynamics

revealed two types of asymptotic states the fermionic
condensate can reach depending on the strength of the
initial perturbation [12,13]. The first type has a constant
value ∆(t) =∆s, while the second one is characterized by
periodic ∆(t). This analysis does not take into account
the pair breaking processes and is thus valid only for
t < τε, where τε is the quasi-particle relaxation time.
Moreover, the emerging asymptotic states are spatially
uniform: order parameter evolution was obtained as
a solution of an effectively zero-dimensional problem.
Results of refs. [12,13] are thus valid when the system size
is smaller than the coherence length, L< ξ = vF /∆s. The
description of the order parameter evolution for L> ξ
requires an additional investigation.
In what follows we perform a stability analysis of

the solutions for the wave function and order para-
meter obtained in refs. [12,13] with respect to spatial
fluctuations. We find that the asymptotic states with
constant order parameter remain stable, while the state
with periodic ∆(t) does not. The physical origin of the
instability lies in the possibility of parametric excitation
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Fig. 1: Asymptotic state with the periodic order parameter
∆(t) =∆s[1+ qcos(2∆st)] (top left) is unstable with respect to
the parametric excitation of two modes with opposite momenta
(right panel). Frequency of each mode is half the oscillation
frequency of the homogeneous order parameter. Initial expo-
nential growth of the parametric instability is followed by a
transient regime after which the condensate reaches a spatially
inhomogeneous post-threshold state (bottom left). The value
of the order parameter increases from white to black.

of the spatially modulated pairing modes, fig. 1. In
a homogeneous medium, the periodic (in time) order
parameter can be considered as an energy pump allow-
ing a coupling between two spatial modes with opposite
momenta, and, at the same time, providing enough energy
to overcome the damping due to the scattering of Cooper
pairs. Subsequent scattering effects of the resonant modes
limit the initial exponential growth and result in a
state with a spatially inhomogeneous order parameter.
We demonstrate that as the process of the parametric
instability develops, the energy of the homogeneous state
is transferred into that of the pairing wave packets with
the typical size of the order of the coherence length, ξ,
signaling the onset of the Cooper pair turbulence.
Consider the state with a periodically varying order

parameter. Analytically, ∆(t) is described by the Jacobi
elliptic function dn [14]. Here we assume that the ampli-
tude of the oscillations is small. This allows us to keep
only the first two terms in the Fourier series for dn:

∆(t) =∆s[1+ q cos(2∆st)], q� 1. (1)

We note that the nondissipative dynamics within the
BCS model is described by the Bogoliubov-de Gennes
equations, which can be cast into the form of equations
of motion for classical vector variables �sp [15]: �̇sp =
�bp×�sp. Here �bp = 2(−∆(t), 0, εp) plays the role of an
external magnetic field. The periodic external field makes
it possible for the parametric instabilities to develop.
Given that the asymptotic state (1) is robust against
homogeneous perturbations [14,16], it seems natural to
look for an instability with respect to spatial fluctuations.
In particular, we will investigate the conditions of the

parametric decay of the homogeneous pairing mode (1)
with an energy 2∆s into two pairing modes with energies
and momenta (ω1,k1) and (ω2,k2), fig. 1. In a continuous
medium the energy and momentum have to be conserved:
k1+k2 = 0 and 2∆s = ω1+ω2. These type of instabilities
appear in various physical systems, see, e.g., ref. [5] for an
extensive review.
To analyze the stability of the asymptotic state (1), we

employ the Bogoliubov-de Gennes (BdG) equations1:

iu̇p(r, t) = ξ̂up(r, t)+∆(r, t)vp(r, t),

iv̇p(r, t) =−ξ̂vp(r, t)+ ∆̄(r, t)up(r, t).
(2)

Here ξ̂ =−�∇2/2m−µ, µ is the chemical potential and the
order parameter ∆(r, t) is

∆(r, t) = g
∑
p

up(r, t)v̄p(r, t), (3)

where g is the BCS coupling constant. We linearize eqs. (2)
with respect to the deviations φp(r, t) and ψp(r, t) from
the homogeneous solution Up(t) and Vp(t):[

up(r, t)

vp(r, t)

]
=

[
Up(t)+φp(r, t)

Vp(t)+ψp(r, t)

]
eip·r. (4)

The order parameter (3) also contains a small inhomoge-
neous part ∆(r, t) =∆(t)+ δ∆(r, t). Plugging (4) into (2)
and Fourier transforming with respect to the spatial
coordinates, we find

i∂t

[
φp(k, t)

ψp(k, t)

]
=

(
εp+k ∆(t)

∆(t) − εp+k

)[
φp(k, t)

ψp(k, t)

]
+

(
0 δ∆(k, t)

δ∆̄(−k, t) 0
)[

Up(t)

Vp(t)

]
. (5)

The time dependence of Up(t) and Vp(t) (see ref. [17])
suggests that for linear corrections (4) we write φp(k, t) =
ap(k, t)e

iξpt+ bp(k, t)e
−iξpt and ψp(k, t) = ãp(k, t)eiξpt+

b̃p(k, t)e
−iξpt with ξp=

√
ε2p+∆

2
s +O(q) and εp=

p2

2m −µ.
We also write

δ∆(k, t) =Ck(t)e
i∆st+ C̃k(t)e

−i∆st, (6)

where Ck(t) = cke
ν(t−t0), C̃k(t) = c̃ke

ν(t−t0), ν deter-
mines the growth rate, and t0 is a time scale when
(1) is reached (in what follows we set t0 = 0). In the
expression (6) we have neglected the higher harmonics
e±i3∆st, e±i5∆st etc. This is justified for q� 1, since
their inclusion yields higher order in q corrections to the
growth rate ν and to the order parameter amplitudes [18].
In the linear corrections to the Bogoliubov ampli-
tudes (see above) we also keep only the lowest harmonics
ω=±∆s, i.e. ap(k, t)→(a1,p(k)ei∆st+ a−1,p(k)e−i∆st)eνt,
bp(k, t)→ (b1,p(k)ei∆st+ b−1,p(k)e−i∆st)eνt etc.
1In this paper we consider only the case of a clean superfluid.
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Fig. 2: Region of the parametric instability of the homogeneous
∆(t) (1) with respect to generation of the pairing modes with
opposite momenta (k,−k). For a given momentum, the fastest
growing modes are the ones on the boundary between the
stable and unstable regions. Instability growth rate is plotted
for q= 0.05 in the units of ∆s (see eq. (1)) and momentum is
in the units of kξ =∆s/vF . The maximum rate is reached at
νm ≈ 2q∆s. For small q the shape of the instability curve is
ν(k)≈ νm− 2∆s(k− 1.6kξ)2/k2ξ .

Next, we express the Bogoliubov amplitudes in terms of
ck and c̃k by equating the coefficients in front of e

±i∆st

in eq. (5). The resulting amplitudes are substituted into
the self-consistency eq. (3). One obtains a linear system
for the variables ck, c̃

∗
−k, c

∗
−k and c̃k. Expressing c̃k, c̃

∗
−k in

terms of ck and c
∗
−k, we derive

(ωk+ iγk)ck+hkc
∗
−k = 0, (ωk− iγk)c∗−k+hkck = 0,

(7)
where ωk, γk, and hk are nonlinear functions of the growth
rate ν. Equations (7) can be interpreted as the equations of
motion for a classical field ck [5]. Then, ωk has the meaning
of the excitation spectrum of this field and hk ∼O(q)
stands for the pumping amplitude, which gives rise to a
parametric instability. Finally, γk describes the damping
of the parametric modes due to the intrinsic relaxation
processes.
Nonzero solutions of eqs. (7) for ν(k) exist provided

ω2k(ν) = h
2
k(ν)− γ2k(ν). Thus, the stability analysis is

reduced to the solution of the nonlinear equation for
ν(k). We have analyzed this equation numerically and
present the results on fig. 2. We find that the instability
region is centered around km ≈ 1.6kξ and has a width
δk≈ 1.2√qkξ, where kξ = 1/ξ is the coherence wave
vector. From (7) it follows that for a fixed q the para-
metric growth will be suppressed as soon as the energy
pumped into the system fully goes into dissipation. This
condition determines the maximum growth rate νm,
i.e. γk(νm) = hk(νm). Our estimate yields νm ≈ 2q∆s.
Lastly, we have also verified that asymptotic states with
constant order parameter remain stable with respect to
the spatial fluctuations of the above type.
The initial growth of the parametric instability (11)

will be limited by nonlinear effects which lead to the

transient behavior with subsequent transition into a post-
resonance state. The latter is defined as a state in
which Fourier components of the order parameter (6)

are time independent, Ck(t) = ck and C̃k(t) = c̃k. Below
we focus on finding the resulting post-resonance state of
the condensate. From the linear analysis we have seen
that the fastest growing modes are the ones with a
certain magnitude of the momentum. Thus, in the BdG
eqs. (2) among the nonlinear in powers of ck, c̃k terms
we keep the resonant ones with frequencies ω=±∆s and
momenta |k|= |k′|= ks, where ks is a new post-resonance
state momentum to be determined below. Next we repeat
exactly the same procedure that lead us to eq. (7). The
resulting set of nonlinear in ck equations for the order
parameter amplitudes can be written as eq. (7) with
renormalized coefficients

ωk→Ωk = ωk(0)+
∑
|k′|=ks

Tkk′ |ck′ |2,

hk→ Pk = hk(0)+
∑
|k′|=ks

Skk′ck′c−k′ ,
(8)

where Tkk′ and Skk′ are the scattering matrix elements.
They vary slowly on a scale of kξ and are almost
independent of the angle between k and k′. In what
follows we neglect the k-dependence in the scattering
matrix elements, Tkk′ = T and Skk′ = S. Note that each
contribution in (8) is either phase independent or depends
on a sum of the two phases of ck and c

∗
−k. This can be

interpreted as follows. There are two physical processes
which limit the parametric excitations: one has to do with
the reduction of the absolute value of the amplitudes,
while the other is related to the phase decoherence of the
two pairing modes with opposite momenta. In its spirit
approximation (8) known as the “S-theory” is similar
to the mean-field BCS model where only diagonal in
momentum terms are kept in the interaction and was
first considered by Zakharov, L’vov and Starobinets [19]
to study the parametric excitation of spin waves in
uniaxial ferromagnets. The inclusion of off-diagonal terms
in eq. (8) is expected to cause a broadening of the
post-resonance state momentum δk∼√qkξ, see fig. 2.
To determine the parameters of our post-resonance

state, we insert ck = |ck|eiαk , and eqs. (8) for Ωk and
Pk into (7). The post-resonance state momentum ks is
determined by the condition that the magnitude of the
pumping field |Pk| does not exceed the damping γk for
any k. As a result we have Ωks = 0. Phase Ψs = αk+α−k
and amplitude |cks | are given by sinΨs = γks/hks and
|cks |2 = hkscosΨs/|S| (the corresponding expressions for
|c̃ks | and Ψ̃s = α̃k+ α̃−k can be derived similarly). We
obtain

∆(�r, t) = ∆s+
√
q∆scs

∑
|k|=ks

eik·r

×
[
ei(αk+∆st)+wse

i(α̃k−∆st)
]
, (9)
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where ks ≈ 1.73kξ, cs ≈ 0.77 and ws ≈ 0.95 for ∆s = 0.1µ.
Note that the post-resonance momentum ks >km ≈ 1.6kξ,
i.e. the energy cascades to smaller length scales, as
expected of turbulent behavior.
The individual phases αk and α̃k cannot be determined

within the diagonal approximation (8). In a continuous
medium, one can treat them as random variables. For
the correlators we take 〈eiαk〉= 0, 〈eiαk1 eiα̃k2 〉= 0 and
〈eiαk1 eiαk2 〉= δ(3)k1,−k2eiΨs , where 〈. . .〉 stands for averag-
ing over the phase distribution.
To get further insight into the nature of the post-

resonance state, consider the following choice for the
phases αk =Ψs/2−k · r0 and α̃k = Ψ̃s/2−k · r0. It leads
to a spherically symmetric wave packet, a “bubble”, with
a periodic amplitude A(t)

∆(�r, t) = ∆s+

√
q∆scs sin(ks|�r−�r0|)

ks|�r−�r0| A(t),

A(t) = ei(
Ψs
2 +∆st)+wse

i( Ψ̃s2 −∆st).

(10)

In general we obtain a linear combination of these
bubbles (10) by writing eiαk =

∫
f(r0)e

−ik·r0d3r0 and
similarly for eiα̃k . Then, eq. (9) can be viewed as a
superposition of wave packets of the form (10) centered
at different �r0 with random amplitudes A(�r0, t). This
suggests that the parametric instability results in a
random distribution of the wave packets.
It is instructive to compare (10) with δ∆(�r, t) at the

linear stage of the parametric instability, which can
be derived using our result for ν(k) (see fig. 2) and
eqs. (6), (7). Taking ck =Ce

−i(k·r0+∆sτk) and c̃k = c∗−k,
we obtain

δ∆(�r, t)≈ Ceνmt cos[∆s(t− τ)]√
∆st

sin(kmR)e
−R2/l2(t)

kmR
,

(11)
where l(t)≈ ξ√∆st, R= |�r−�r0|, C is a constant, and
ei∆sτk = (iγk −ωk)/hk. In deriving eq. (11), we also
assumed kmR	∆st and replaced a slowly varying
function τk→ τ . Expression (11) describes the initial
formation of a wave packet (10). Note that on a time
scale (q∆s)

−1 at which the order parameter deviation is
of the order

√
q∆s, the width of the packet is lp ≈ ξ/√q.

Above observations help to identify features of the post-
resonance state (9) relevant for the experimental verifica-
tion of our theory. To be specific, let us compute |∆(p, t)|2.
This quantity determines the momentum distribution Np
of the condensed molecules after a fast sweep to the
BEC side of the Feshbach resonance [20,21]. Equation (9)
implies

Np ∝∆2s
(
δp,0+ qc

2
s[1+w

2
s +2wsKp(t)]δp,ks

)
, (12)

where Kp(t) = cos(2∆st+ α̃p−αp) is essentially random.
We note from eq. (12) that the molecular momentum
distribution acquires an additional peak at p= ks thus
signaling the presence of spatial modulations in the post-
resonance state eq. (9).

Formation of an isolated wave packet (10) induces an

oscillating supercurrent �js ∝ �∇Φ(�r, t), where Φ(�r, t) is the
phase of the order parameter. Setting r0 = 0 we find that
only the radial component of the current is nonzero. To the
lowest order in q, �js(�r, t)∝ êr√q cos(∆st)[ksr cos(ksr)−
sin(ksr)]/(ksr)

2. This implies a spatial re-distribution of
Cooper pairs similar to the Friedel oscillations in the
density of a degenerate Fermi gas induced by a weak
scattering potential.
In our discussion so far we treated the pairing mode (1)

giving rise to the parametric instability as an independent
external field. Inclusion of the feedback on this mode as
weak turbulence (q� 1) develops may modify the post-
resonance state (9). We leave a detailed analysis of possible
feedback effects for future studies.
In the post-resonance state (9) the Fourier components

of the order parameter are ck,ω ∼ δ(k− ks)δ(ω−∆s).
Inelastic scattering or thermal effects generally leads to a
broadening in the momentum and frequency distributions
of ck,ω [7]. The latter might cause a damping of the
temporal oscillations in eq. (9). On a time scale t > τε
dissipation due to quasi-particle scattering processes ulti-
mately forces the system to reach an equilibrium state.
Finally, we comment that in the transient regime leading
to an asymptotic state with constant ∆(t) =∆s the order
parameter is (∆(t)−∆s)∝ cos(2∆st)/

√
t (cf. (1)) [16].

Oscillatory behavior suggests that this asymptotic state
might never be attained owing to the development of the
parametric instability of the type considered above.
In conclusion, we have investigated the stability of

the nonequilibrium asymptotic states of a fermionic
superfluid, which can be generated, e.g., by a uniform
quench of the pairing strength. We have demonstrated
that in a system of size L larger than the coherence length
ξ the asymptotic state (1) with periodic in time order
parameter is unstable with respect to spatial fluctuations.
The instability is due to the parametric excitation of
two pairing modes with opposite momenta. The initial
exponential growth of deviations from the homogeneous
state (11) is suppressed by nonlinear effects eventually
leading to a spatially nonuniform post-resonance state
described by eq. (9). This state can be interpreted as a
superposition of bubbles of the superfluid order parameter
(10) with random amplitudes. The parametric instability
of the uniform oscillations can be experimentally probed
by either measuring the local order parameter [22] or by
performing the measurements of the condensate fraction
using the technique of the fast sweep across the Feshbach
resonance [10,11]. One of the experimental signatures of
our post-resonance state is the additional peak in the
condensate fraction at a nonzero momentum p= ks, see
eq. (12).
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