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a b s t r a c t

We prove two statements about the long time dynamics of inte-
grable Hamiltonian systems. In classical mechanics, we prove the
microcanonical version of the Generalized Gibbs Ensemble (GGE)
bymapping it to a known theorem and then extend it to the limit of
infinite number of degrees of freedom. In quantum mechanics, we
prove GGE for maximal Hamiltonians—a class of models stemming
from a rigorous notion of quantum integrability understood as the
existence of conserved charges with prescribed dependence on a
system parameter, e.g. Hubbard U , anisotropy in the XXZ model
etc. In analogy with classical integrability, the defining property of
these models is that they have the maximum number of indepen-
dent integrals. We contrast their dynamics induced by quenching
the parameter to that of randommatrix Hamiltonians.

© 2016 Elsevier Inc. All rights reserved.

The past decade haswitnessed an unprecedented experimental access to global coherent dynamics
of many-body interacting systems [1–7]. As a result, a new area that could be called ‘‘far from
equilibrium many-body Hamiltonian dynamics’’, ‘‘coherent many-body dynamics’’ or ‘‘quantum
quenches’’ has emerged. A major part of research in this area has focused on testing the GGE [8,9]
in various integrable models. GGE refers to a density matrix or, in the case of classical mechanics, a
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phase space distribution function

ρ = Z−1e
−


k

βkHk
, (1)

where Hk are a (complete in some sense) set of integrals of motion for system Hamiltonian H and Z
is a normalization constant. Suppose the system evolves with H starting from a non-stationary state.
The statement of GGE is that the infinite time average of an observable O coincides with its ensemble
average with the density matrix ρ [10].

Most authors test GGE in quantummodelswithout clarifying their notion of quantum integrability.
The latter however is a tricky concept with no generally accepted definition, making the quantum
GGE conjecture essentially unfalsifiable. The notion of classical integrability on the other hand is
unambiguous [11]. For this and other reasons, it makes sense to first understand the status of GGE in
classical mechanics.Wewill see that themicrocanonical version of GGE – GeneralizedMicrocanonical
Ensemble – is exact for a general classical integrable Hamiltonian. In a parallel line of inquiry, we will
prove GGE for a class of models that emerge from a recently proposed complete notion of quantum
integrability.

Generalized Microcanonical Ensemble (GME) in classical mechanics is the following phase space
distribution:

ρ(p, q) = L−1
n

k=1

δ (Hk(p, q) − hk) , (2)

where q = (q1, . . . , qn) and p = (p1, . . . , pn) are the generalized coordinates and momenta and
L is a normalization constant. Suppose the system evolves with an integrable Hamiltonian H(p, q)
starting from a point (p0, q0). Let hk = Hk(p0, q0) be the values of its integrals of motion for this
initial condition. The statement of GME is that the time average of any dynamical variable O(p, q) is
equal to its phase space average with distribution (2),

lim
τ→∞

1
τ

 τ

0
O (t) dt =


O(p, q)ρ(p, q)dpdq, (3)

where O (t) = O(p(t), q(t)). Eq. (3) also holds for integrable classical spin Hamiltonians H({s⃗k}), in
which case pk = cos θk and qk = φk, where θk and φk are the polar and azimuthal angles defining
the spin direction. Eq. (3) is valid for any number of degrees of freedom n, so one can take the limit
n → ∞ on both sides. Moreover, we will argue that the limits n → ∞ and τ → ∞ commute (a
tremendous simplification) as long as the frequency spectrum of O(t) is free from a certain anomaly
near the zero frequency.

As a first step towards a similarly unambiguous statement in quantummechanics, we also analyze
GGE in the framework of a rigorous formulation of quantum integrability [12]. Simplest models
that arise in this approach are type-1 or maximal Hamiltonians—general N linearly independent
commuting N × N Hermitian matrices of the form H(x) = T + xV , where x is a real parameter.
Type-1matrices represent blocks of various exactly solvable many-bodymodels (such as 1D Hubbard
and Gaudin magnets) for certain sets of quantum numbers (total spin projection etc.) [12–15] and
also describe e.g. a short range impurity in a metallic grain [16], see below for more detail. We prove
GGE is exact for any N and explicitly determine βk in Eq. (1). The GGE density matrix for quenches
of the parameter x turns out to be non-thermal for type-1 Hamiltonians. In contrast, if we choose
T and V randomly, the post-quench asymptotic state is thermal in N → ∞ limit. This emphasizes
the importance of a well-defined notion of integrability as naively one could claim N integrals of
motion (e.g. projectors onto the eigenstates) in the random matrix example too. We also relate the
non-thermal behavior to localization.

A characteristic feature of type-1 and classical integrable systems is that in both cases the number
of independent integrals is the maximum allowed by the definition. Their dynamics are constrained
by the integrals apart from linear in time phases (angles) that cancel out upon time-averaging or
dephase in the thermodynamic limit. As the result, the integrals of motion fully determine infinite
time averages. The situation when the number of conservation laws is appreciably less than the
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maximum is unclear and we will not consider it here. A common belief is that in quantum exactly
solvable systems this number scales as the logarithmof the size of the total Hilbert space,which agrees
with most existing constructions of conserved charges (integrals). Further analysis however reveals
additional integrals [13,17], which can be crucial in identifying the proper ensemble [18]. It therefore
seems likely that some version of GGE or GME does generally hold in quantum mechanics [19] if
integrability is properly defined and all independent integrals are taken into account.

GGE apparently holds for relatively simple quantum models, such as 1D hard-core bosons [8] and
Luttinger liquids [20], but fails e.g. in the XXZ and attractive Lieb–Liniger models for a seemingly rea-
sonable choice of integrals Hk [21–23]. More generally, [21,23] argue that GGE fails for models with
bound states and [24], that it reproduces global observables only in models mappable to noninteract-
ing uncorrelated fermions. Given that Eq. (3) is a rigorous theorem in classical mechanics, a natural
question is: what are the reasons for such failure? First, the equivalence between GME and GGE can
break down already on the classical level. The standard argument to go from themicrocanonical to the
canonical ensemble requires that energy be an extensive property and interactions, roughly speaking,
short ranged [25]. It is straightforward to extend this argument to the generalized ensembles, but then
each Hk must have these properties, which is not necessarily the case. For example, classical Gaudin
magnets are well-defined integrable models with long ranged Hk.

Another set of problems arise from relying on an incomplete definition of quantum integrability.
Main issues here are how we understand the independence (nontriviality) and completeness of a set
of integrals. Classical integrability, for example, requires n functionally independent integrals. If we
allow all integrals in quantum GGE, one can simply choose the projectors onto the eigenstates of the
Hamiltonian.With this choice ofHk Eq. (1) is equivalent to the diagonal ensemble for any Hamiltonian
and the statement of GGE becomes tautological. One might object that projectors are nonlocal (not
short ranged). First, this is not the case in models with localized eigenstates. More importantly, while
locality might be necessary for going from themicrocanonical to the canonical ensemble, it hardly is a
legitimate requirement in the definition of quantum integrability. Indeed, there is no such condition in
the classical case and,moreover, there are quantumHamiltonians, e.g. quantumGaudin and (reduced)
BCS models [26,27] that are nonlocal, but otherwise bear all hallmarks of integrability. On the other
hand, we do not expect GGE to hold for an incomplete set of integrals, at least the theorem (3) does
not.

Both Eq. (1) and quantum infinite time average are invariant with respect to the choice of any
nondegenerate Hermitian operator within a given integrable family as the system Hamiltonian. At
this point we loosely define an integrable family as the set of operators that share the same integrals
of motion Hk. For example, in the usual construction of the conserved charges for Lieb–Liniger, 1D
Hubbard, and XXZmodels one of theHk is the Hamiltonian, while the rest serve as its integrals.We can
alternatively designate any otherHk or their linear combination as theHamiltonianwithoutmodifying
Eq. (1) and the time average. Interestingly, there is a combination,

Hβ = β−1

k

βkHk, (4)

for which GGE coincides with the Gibbs ensemble. Eq. (2) is similarly independent of the choice of a
nondegenerate Hamiltonian (see below) within the classical integrable family.

To see the above invariance, note that the time average is given by the diagonal ensemble [9],

⟨O(t)⟩t ≡ lim
τ→∞

1
τ

 τ

0
⟨O (t)⟩dt =


m

|cm|
2Omm, (5)

where cm are the coefficients in the decomposition of the initial state |in⟩ into the eigenstates, which
are shared by all Hk. Similarly, conditions ⟨in|Hk|in⟩ = Tr ρHk that determine βk are the same. Let us
also note that Eq. (5) is useful for a macroscopic systemwhen the thermodynamic and τ → ∞ limits
commute. Arguments we make below about the order of n → ∞ and τ → ∞ limits in Eq. (3) apply
here as well.

In what follows we first derive GGE for the maximal (type-1) Hamiltonians and then prove Eq. (3).
The approach of [12–15] to quantum integrability addresses parameter-dependent Hamiltonians at
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the level of blocks (sectors) stripped of all parameter-independent (space–time and internal space)
symmetries. Basic objects are N × N Hermitian matrices of the form H(x) = T + xV , where x is
a real parameter (Hubbard U , anisotropy in the XXZ model, magnetic field in Gaudin magnets etc.)
We say that H(x) is integrable if it has at least one commuting partner H(x) = T + xV other than
a linear combination of H(x) and the identity. An integrable family is a set of commuting, linearly
independent Hermitian matrices Hi(x) = Ti + xVi, the most general Hamiltonian in the family being
H(x) =


i diHi(x). Thus, we define integrability simply as the existence of integrals linear in the

parameter [28].
There is a natural classification of integrable families by the number of independent commuting

matrices they contain. We say that H(x) is type-M when this number is nint = N − M + 1 > 2,
which includes the Hamiltonian itself and the identity matrix. The maximum number of linearly
independent, linear in x integrals H(x) can have is N . Then it is a type-1 or, equivalently, a maximal
Hamiltonian. For instance, the one spin-flip sectors of Gaudinmagnets, where the z-component of the
total spin is one less (onemore) then its maximum (minimum) value, or, equivalently, the one Cooper
pair sector of the BCS model are type-1 [12]. The 1D Hubbard models on six cites also contains type-1
sectors [13].

It is important to note that by design we treat sectors (blocks) corresponding to different
parameter-independent symmetry quantum numbers (such as the z-component of the total spin in
Gaudin models) as separate matrix Hamiltonians. The original model is then a direct sum of such
matrices of various types.We construct GGE at the level of an individualmatrix Hamiltonian of a given
type. From the point of view of the original model, this restricts the GGE density matrix to a particular
sector, so that it has zero matrix elements outside of it.

It turns out that any type-1 Hamiltonian can be parametrized by 3N numbers di, εi, γi as H(x) =

N−1 
i diHi(x), where

Hi(x) = Npi + xN

j≠i

γiγ
∗

j pij − |γj|
2pi − |γi|

2pj
εi − εj

, (6)

pij = |i⟩⟨j| + |j⟩⟨i|, pj = |j⟩⟨j|, and |j⟩ are the shared eigenstates of Ti. Conversely, given arbitrary 2N
real di, εi and N complex γi, Eq. (6) yields a type-1 Hamiltonian H(x).

Normalized eigenstates |λm⟩ of Hi(x) read

⟨i|λm⟩ =
γi

Nm(λm − εi)
, N 2

m =


k

|γk|
2

(λm − εk)2
, (7)

where λm is any of the N real roots of the equation
k

|γk|
2

λm − εk
=

1
x
. (8)

Eigenvalues of general type-1 H(x) = N−1
k dkHk(x) are

Em = x

k

dk|γk|
2

λm − εk
. (9)

For example, dk = εk yields an interesting Hamiltonian that describes a short range impurity in a
metallic grain [16]

Him(x) = x|γ ⟩⟨γ | +


i

εi|i⟩⟨i|, (10)

with eigenvalues Em = λm. Here |γ ⟩ =


i γi|i⟩.
The number of integrals for type-1 is maximal and equals the dimension of the Hilbert space N .

We can show that GGE is exact for any N by matching the diagonal ensemble, i.e.

⟨λm|e
−


k

βkHk(x)
|λm⟩ = Z |cm|

2. (11)
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With the help of Eq. (9) this becomes

x

k

βk|γk|
2

λm − εk
= ln |cm|

2
+ ln Z, (12)

with an explicit solution

βk = ln Z +
1
x


m

ln |cm|
2

N 2
m(λm − εk)

. (13)

An overall shift βk → βk + c adds a constant c to the RHS of Eq. (12) in view of Eq. (8). The solution
for βk is unique apart from the shift, i.e. an arbitrary choice of Z .

To see how type-1 differs from a general H(x) of the same form T + xV (which has no nontrivial
commuting partners in our definition), let us compare parameter quenches from xi = 0 to xf in type-1
Hamiltonians to those for random T and V . Let the initial state be an eigenstate |i⟩ of T . The diagonal
ensemble for type-1 according to Eq. (7) is

|cm|
2

=
|γi|

2

N 2
m(λm − εi)2

. (14)

A natural choice for εk are eigenvalues of a random matrix from the Gaussian orthogonal ensemble
(GOE) withmean level spacing δ ∝ N−1 andwe also set |γi|

2
= N−1. Eq. (8) implies εk−1 < λk < εk. It

follows that in N → ∞ limit |cm|
2

∝ N0 for λm in an infinitesimal vicinity of εi and ∝N−2 otherwise.
Note that this indicates localization of the eigenstate |λm⟩ of H(x) in the space of eigenstates of T
[29,30]. For simplicity, we assume that the matrix element ⟨λm|O|λm⟩ ≡ fO(λm) is a smooth function
of λm (λm becomes a continuous real variable when N → ∞). Eq. (5) then yields ⟨O(t)⟩t = fO(εi).
Consider next the GGE with Hβ = Hi(x), i.e. βk = βδik. Its eigenvalues are E i

m = (λm − εi)
−1.

The ground state corresponds to m = i and is separated by a gap ∝N from the excited states. The
normalized density matrix is simply ρmm = δmi and Tr (ρO) = fO(εi) = ⟨O(t)⟩t . This GGE is non-
thermal for any type-1 Hamiltonian other than Hi, e.g. for Him(x).

Now suppose V is also random and uncorrelated with T . Eigenstates of H(x) = T + xV and T
decorrelate at x = O(1) [31], so that cm are components of a random vector. Averaged over narrow
energy windows ⟨|cm|

2
⟩E = N−1 at large N , which corresponds to the infinite temperature Gibbs

distribution. Note that already in type-1 T (or V ) is arbitrary. A natural choice of T is a GOE random
matrix. However, any choice of T severely constrainsV to ensure the existence of commuting partners.
It is precisely this correlation between V and T that also makes the density matrix non-thermal and
eigenstates localized. Therefore, even though for a random H(x) one can take Hk in Eq. (1) to be the
projectors onto its eigenstates, it is of no consequence because it does not introduce correlations
between V and T and so constructed GGE is just the Gibbs distribution, i.e. Hβ = H(x). From this
point of view, the statement of GGE is not that Eq. (1) reproduces ⟨O(t)⟩t , but that Hβ is distinct from
H . Note that the exponential form of ρ in Eq. (1) is unimportant at finite N . It could as well be a
different function of Hβ and we still would be able to match the diagonal ensemble. It however plays
an important role in showing that Hβ ≠ H in N → ∞ limit, even though type-1 Hamiltonians are
nonadditive.

Now we switch gears to classical mechanics to prove Eq. (3). There are two necessary conditions:
(i) the level set of Hk(p, q) = hk = const is compact and connected and (ii) the frequencies
ω = (ω1, . . . , ωn) of quasiperiodic motion with H(p, q) are incommensurate (see below). The first
one is a standard assumption in the Liouville–Arnold theorem to show that the dynamics is confined
to invariant tori. It means that the motion is bounded and, roughly speaking, integrals are properly
chosen. Consider e.g. a 1D harmonic oscillator 2H = p2 +ω2q2. The level set H(p, q) = const (ellipse)
is connected, so H is a proper choice and Eq. (3) holds. If we instead take H = (H − h1)(H − h2)
with h1,2 > 0 as our integral, the manifold H(p, q) = const is not always connected. For example,H = 0 corresponds to two oscillation amplitudes A1,2. The time average of e.g. q2 is either A2

1/2 or
A2
2/2 depending on the initial conditions, while the phase space average with ρ = V−1δ(H) is always

(A2
1 + A2

2)/4.
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Let us go from (p, q) to action–angle variables (I, ϕ). The only information the reader needs
to be able to follow the proof of Eq. (3) is that this is a canonical transformation, action variables
depend only on Hk and vice versa, and the manifold Hk(p, q) = hk corresponds to a unique set
of values αm of action variables Im. Hamiltonian equations of motion in action–angle variables are
ϕ̇k = {H(I), ϕk} = ∂H(I)/∂ Ik ≡ ωk and İk = {H(I), Ik} = 0. It follows that ϕ(t) = ϕ0 + tω. The
motion is characterized by n frequencies ωk (or n periods). Incommensurability means there is no
vectorm ≠ 0 with integer components such thatm ·ω = 0. The frequencies are incommensurate for
most initial conditions in a nondegenerate system, det[∂2H/∂ I2] ≠ 0 [11].

Eq. (2) in new variables reads

ρ(I) = (2π)−n
n

k=1

δ (Ik − αk) , (15)

where we took into account that ϕk varies from 0 to 2π in determining the normalization constant.
Since the Jacobian of a canonical transformation is 1, Eq. (3) becomes

⟨O(t)⟩t =


O(I, ϕ)ρ(I)dIdϕ =


O(ϕ)

dϕ
(2π)n

, (16)

where on the RHS we suppressed the dependence of O on constants α = (α1, . . . , αn). Eq. (16) is a
known theorem in classical mechanics called ‘‘the theorem on averages’’ [11]. We prove it somewhat
differently. O(ϕ) is periodic in each ϕk with period 2π . Expand it in multiple Fourier series

O(ϕ) =


m

ame2π im·ϕ, (17)

where the summation is over all n-dimensional integer vectors m. The time-dependence of O along
any trajectory is

O(t) = O(ϕ(t)) =


m

ame2π im·ϕ0e2π itm·ω. (18)

The finite time average of O(t) is

1
τ

 τ

0
O(t)dt = a0 +


m≠0

am
e2π iτm·ω−1

2π iτm · ω
e2π im·ϕ0 . (19)

Sincem · ω ≠ 0 form ≠ 0, the last equation implies

⟨O(t)⟩t = lim
τ→∞

1
τ

 τ

0
O(t)dt = a0. (20)

Next we evaluate the RHS of Eq. (16)
O(ϕ)

dϕ
(2π)n

=


m

am
n

k=1

 2π

0

dϕk

2π
e2π imkϕk

=


m

amδm10 . . . δmn0 = a0. (21)

This completes theproof of the theorem (3). Note that thephase space average is unconditionally equal
to a0, while the time average, only when the frequencies are incommensurate. Take, for example, a
2D anisotropic oscillator 2H = p21 + p22 + ω1q21 + ω2q22 and O = (q1 + q2)2. The phase space and
infinite time averages are (A2

1 + A2
2)/2 and (A2

1 + A2
2 + A1A2 cosαδω1ω2)/2, respectively, where α is

the phase shift between the oscillators. The averages do not agree when ω1 = ω2 and, moreover, the
time average depends on an initial condition other than the integrals, i.e. on a particular trajectory on
the torus.
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As an application of the theorem, consider the semiclassical Dicke model that describes coherent
spontaneous emission from a large number of atoms (superradiance) interacting with a cavity
electromagnetic mode [32,33]

H = 2εSz + ωb̄b + g(b̄S− + bS+), (22)

where
√
2ωb = (p− iωq) is the classical counterpart of the harmonic oscillator annihilation operator

and S⃗ is a classical spin of length S. We are interested in the time averaged amplitude of the bosonic
mode ⟨|b(t)|⟩t . There are two degrees of freedom and two integrals, H1 = H and H2 = b̄b+ Sz , so H is
integrable. In general |b(t)| is an elliptic function. A brute force evaluation of the RHS of Eq. (3) yields
a ratio of two complete elliptic integrals. The system has a stable equilibrium at Sz = −S, b = 0 and
an unstable one at Sz = S, b = 0. Especially interesting are initial conditions in the vicinity of the
unstable point. In this case |b(t)| first grows exponentially and then turns into a sequence of secant
pulses (solitons). Let Sz = S and |b(0)| = ri. Eq. (3) now gives

⟨|b(t)|⟩t =
πrm

2 ln(πrm/2ri)
, r2m = 2S −

(ω − 2ε)2

4g2
, (23)

where rm is the maximum of |b(t)| [34].
Finally, we turn to the analysis of n → ∞ limit in Eq. (3). Since the set of integer vectors m is

countable, we can rewrite Eq. (18) as a single sum

O(n)(t) = a(n)
0 +


k

c(n)
k eiΩkt , (24)

where we separated the zero frequency term and a(n)
0 = a0 in Eq. (17) assuming the frequencies ωk

are incommensurate. The superscript n indicates the number of degrees of freedom. Time averaging
first and then sending n to infinity yields

lim
n→∞

lim
τ→∞

1
τ

 τ

0
O(n)(t)dt = lim

n→∞
a(n)
0 ≡ a∞

0 . (25)

Now consider the opposite order of limits. In n → ∞ limit the frequency spectrum generally consists
of continuum and discrete parts. Nonzero discrete frequencies do not contribute to the time average,
so we drop them for brevity,

O∞(t) ≡ lim
n→∞

O(n)(t) = a∞

0 +

 b

a
eiΩtc(Ω)ν(Ω)dΩ. (26)

Whether the limits τ → ∞ and n → ∞ commute depends on the behavior of the function
F(Ω) = c(Ω)ν(Ω) near Ω = 0. If F(Ω) is integrable, the integral in Eq. (26) vanishes (dephases)
as t → ∞ by the Riemann–Lebesgue lemma. Then

lim
n→∞


O(n)(t)


t =


O∞(t)


t = a∞

0 , (27)

i.e. the two limits commute. This is themost likely scenario in classical integrable many-bodymodels.
In fact, it is not obvious if there are any reasonable counterexamples.

The relevant quantity at large n is O∞(t) and if the limits do not commute, the theorem (3) looses
its predictive power. This happens if F(Ω) ∝ δ(Ω) at small Ω . Ωk that vanish in n → ∞ limit must
have an anomalously largeweight or density ν(Ω), so that a dramatic redistribution from finite to zero
Ω occurs as n → ∞ and a delta-function emerges from the continuum. Then the integral in Eq. (27)
does not vanish at t → ∞ and O∞(t) ↛ a∞

0 , while the n → ∞ limit of the time average ⟨O(n)(t)⟩t
is still a∞

0 . In linear analysis around the ground state, Ωk are the excitation energies (normal modes).
F(Ω) ∝ δ(Ω) means we cannot write their contribution to O(t) in the usual way as an ordinary
integral with the density of states. This signals a macroscopic degeneracy of the ground state in the
thermodynamic limit. Similar analysis applies to the order of N → ∞ and τ → ∞ limits in Eq.
(5). Note also that in the absence of isolated nonzero frequencies (assuming F(Ω) is well-behaved)
O∞(t) → const at large time. Then the strong version [10] of GME holds.
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For example, consider quenches of the detuning ω in the many-body generalization of the
semiclassical Dicke model

H =

n
k=1

2ϵkszk + ωb̄b + g
n

k=1


b̄s−k + bs+k


. (28)

This is also a classical integrable Hamiltonian [35]. It describes an s-wave BCS–BEC condensate of
atoms and molecules in the mean-field approximation. A relevant observable is the superfluid order
parameter ∆(t) = gb(t). For infinitesimal quenches we know ∆(t) as well as individual spins s⃗i(t)
at all times and finite n. It is straightforward to show that n → ∞ and τ → ∞ limits commute. In
particular,

|∆(t)| = ∆0 +

n
k=1

ck cos 2Ωkt, (29)

where Ωk =


(εk − µ)2 + ∆2

0 up to corrections of order n−1 and we suppressed the superscript

n. Coefficients ck ∝ n−1. In n → ∞ limit the second term in Eq. (29) becomes an integral with a
smooth F(ε) = c(ε)ν(ε) and |∆(t)| → ∆∞

0 = limn→∞ ∆0 as t → ∞, see [35] for details. Moreover,
the strong version of GME applies. However, for stronger quenches there is a regime where |∆(t)|
asymptotes to a periodic function, i.e. discrete nonzero frequencies are present in the continuum limit.
Then the strong version no longer holds. The theorem (3) still works and we expect the limits n → ∞

and τ → ∞ to commute as before, though the analysis of this case is more difficult.
We pursued two independent threads in this paper. For classical systems, we have seen that the

GME given by Eq. (3) holds for integrable Hamiltonian systems as long as the motion is bounded and
the frequencies of the quasiperiodicmotion are incommensurate.We argued that the limits of infinite
averaging time and number of degrees of freedom typically commute. For quantum systems, we have
seen that the GGE holds at any N for maximal N ×N Hamiltonians that emerge from a rigorous notion
of quantum integrability. It therefore holds in particular for the type-1 sectors of the Gaudin and 1D
Hubbardmodels. Unlike the randommatrix examplewe studied, the GGE densitymatrix for quantum
quenches in maximal Hamiltonians is non-thermal. We discussed the potential reasons of failure of
GGE and argued that one the main reasons is an incomplete set of integrals as a consequence of an
ambiguous notion of quantum integrability.
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