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the classical limit irrespective of the system size and, under
appropriate conditions, in the thermodynamic limit irrespective
of the value of Planck’s constant. Moreover, it captures quantum
corrections near the classical limit, finite size corrections near
the thermodynamic limit, and is valid in the presence of non-
local interactions. The Gaussian ensemble bridges the gap between
classical integrable systems, where a generalized microcanonical
ensemble is exact even for few degrees of freedom, and GGE,
which requires thermodynamic limit.We illustrate our resultswith
examples of increasing complexity.
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The far from equilibrium dynamics of isolated many-body systems with many nontrivial integrals
of motion attracted considerable attention as such dynamics have been recently realized in several
experiments [1–7]. In particular, it has been conjectured that the infinite time averages of various
observables for a system evolving with a time-independent Hamiltonian Ĥ are described by the
Generalized Gibbs Ensemble (GGE) [8]:

ρ̂GGE = Ce
−


i
βiĤi
, hi ≡ ⟨Ĥi⟩0 = tr(ρ̂GGEĤi), (1)

where Ĥi is a complete (in some yet unspecified sense) set of integrals of motion for Ĥ , the second
equation relates βi to expectation values hi of the integrals in the initial state, and C is a normalization
constant. A key difficulty with quantum GGE stems from the absence of an accepted well-defined
notion of quantum integrability. As a result, GGE is strictly speaking unfalsifiable. For example, it was
initially shown to fail for the 1D XXZ spin chain [9–11], but later studies [12,13] cured this by adding
new integrals of motion in Eq. (1).

In contrast, classical integrability is well-defined [14]. Moreover, the microcanonical version
of GGE—Generalized Microcanonical Ensemble (GME) is exact for a general classical integrable
Hamiltonian H(p, q) [14,15],

ρ(p, q) = C
n

k=1

δ(Hk(p, q)− hk), (2)

lim
T→∞

1
T

 T

0
O(t)dt =


dpdq O(p, q)ρ(p, q), (3)

where q = (q1, . . . , qn) and p = (p1, . . . , pn) are the generalized coordinates and momenta and
Hk(p, q) are the integrals of motion. The time evolution of any dynamical variable (observable)
O(t) ≡ O(p(t), q(t)) is obtained by evolving with H(p, q) starting at t = 0 and hk is the initial
value of Hk(p, q). Note that unlike the microcanonical distribution for a nonintegrable Hamiltonian
or GGE, Eq. (3) holds for any number of degrees of freedom n and arbitrary interactions, i.e. does not
require thermodynamic limit. In some sense, classical integrable dynamics are more ergodic, but in a
restricted part of the phase-space cut out by the integrals of motion.

What can play the role or replace the microcanonical ensemble for a quantum integrable system
with arbitrary particle number? More precisely, how to quantize Eqs. (2) and (3), i.e. what is a
suitable density matrix ρ̂ that turns into Eq. (2) in h̄ → 0 limit? To what extent does it describe
the quantum dynamics and how does it compare to GGE? These are the questions we address in this
paper. We argue that a minimal such ρ̂ is a multivariable Gaussian in Ĥi and show that it has several
remarkable features. This ensemble provides leading quantum corrections to the classical equation
(2) for any number of degrees of freedom. It further yields leading finite size correction to GGE and is
expected to work well in systems with long-range interactions, see also Fig. 1. We note that Gaussian
ensembles were analyzed in literature in the context of both integrable [16,17] and non-integrable
systems [18] as corrections to the corresponding Gibbs ensembles. In this work we show that the
Gaussian ensemble applies to a generic class of systems, where GGE can completely fail. Although
our focus is on integrable systems, we expect the Gaussian ensemble to apply equally well to chaotic
systems with a few or none nontrivial integrals of motion besides the total energy.

In the case of Gibbs or Generalized Gibbs distributions, one can simply replace H(p, q) or Hk(p, q)
with the corresponding operators. This does not work for Eq. (2), because the average of a product
of Ĥi with so constructed density matrix is equal to the product of averages, which is not the case
for a typical quantum state. Therefore, to reproduce various time averages, we need to broaden the
delta-functions in Eq. (2).

It is natural to proceed by analogywith the usual quantummicrocanonical ensemble and to replace
the right hand side of Eq. (3)with an equalweight average over all eigenstates |n⟩ of Ĥi, Ĥi|n⟩ = E(n)i |n⟩,
that have eigenvalues E(n)i sufficiently close to quantum expectation values hi = ⟨Ĥi⟩0 of the integrals
in the initial state [19,20]. The problem is that E(n)i are generally discrete, while hi can be anywhere
in between. For example, integrals of motion for a collection of noninteracting fermions are their
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Fig. 1. (Color online) Schematic diagram indicating limits where the Gaussian ensemble (4) is exact. By design it converges to
the classical GME (2) when h̄ → 0. The latter is a rigorous theorem in classical mechanics valid for a general integrable system
at any number of degrees of freedom. The Gaussian ensemble contains GGE as a particular case and therefore holds whenever
GGE does (e.g. for short-range interactions and system size L → ∞). It is also valid for models where mean-field is exact due
to large interaction range r .

occupation numbers taking values 0 and 1, while their expectation values are arbitrary numbers
ranging from 0 to 1. As a result, it is not always possible to find even a single eigenstate sufficiently
close to the prescribed set of hi. This problem can perhaps be resolved for a certain class of models
in the thermodynamic limit through coarse-graining or suitable redefinition of the integrals [19–21].
However, in other integrable models there seems to be no simple, well-motivated remedy even at
large particle number. We consider one such example below—interaction quenches in the BCSmodel,
where there are no eigenstates reasonably close to hi. In any case, since Eq. (3) is valid for any n, we
are looking for a model-independent approach uniformly applicable at any particle number.

From these arguments it is clear that in quantum systems it is necessary to broaden δ-functions in
Eq. (2). Thus the Gaussian ensemble:

ρ̂G = C exp

−


ij

(Ĥi − µi)(Σ
−1)ij(Ĥj − µj)


, (4)

appears as the minimal generalization of GME to quantum systems. Here parameters µi and Σij are
fixed by first and second moments of the initial conditions

hi ≡ ⟨Ĥi⟩0 = tr(ρ̂GĤi), (5)

⟨ĤiĤj⟩0 = tr(ρ̂GĤiĤj), (6)

i.e. ρ̂G by design reproduces exact first and second order correlation functions of conserved quantities.
Note also that when Ĥi have unbounded and continuous spectra, µi = ⟨Hi⟩0 andΣ is the covariance
matrix,Σij = ⟨ĤiĤj⟩0 − ⟨Ĥi⟩0⟨Ĥj⟩0.

It turns out that this ensemble has a number of significant advantages over various alternatives.
First, it converges to Eq. (2) as h̄ → 0 and therefore is exact in the classical limit for any number
of degrees of freedom. Indeed, in this limit ⟨ĤiĤj⟩0 = ⟨Ĥi⟩0⟨Ĥj⟩0 and spectra of Ĥi are continuous.
Therefore, a product of δ-functions solves Eqs. (5) and (6) and, assuming the solution is unique, we
arrive at the above statement. Moreover, we find that Eq. (4) also captures the leading quantum
correction (∝ h̄), at least in all examples we studied. Higher order corrections, however, do not
necessarily agree (see below). For this reason, we also expect the Gaussian ensemble to be exact for
models with long-ranged interactions in the thermodynamic limit, such that the mean-field is exact
effectively rendering such models classical.

Second, the Gaussian ensemble improves GGE [16,17]. Furthermore, we find that averages with
ρ̂G converge to exact infinite time averages faster than for GGE with increasing system size. For
example, in a 1D free-fermion model on L sites we analyze below, the convergence is 1/L2 for the
Gaussian ensemble and 1/L for GGE. Similarly to nonintegrable systems [22] the Gaussian ensemble
is also theminimal ensemble reproducing fluctuations of global observables satisfying the generalized
ETH [19]. Fluctuations in turn enter various Kubo response coefficients, fluctuation–dissipation and
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other thermodynamic relations and their generalizations to integrable systems [23]. Lastly, Eq. (4)
is model-independent and well-defined for any spectra of Ĥi with no need to choose a measure of
closeness of eigenstates to the prescribed set of expectation values hi.

One can also consider other representations of δ-functions in Eq. (2) or include more parameters
to match higher order moments of {Ĥi} [16]. However, ρ̂G is sufficient for many purposes as outlined
above and as wewill see in the examples below. Our proposal also does not fully resolve the difficulty
with the notion of quantum integrability mentioned in the first paragraph. However, it in part
bypasses this issue in models with smooth integrable classical limit, such as e.g. BCS-Gaudin model
considered below. In such cases, we can rely on the well-defined concept of classical integrability
and Eq. (4) makes good sense due to its connection to the rigorous result (3) for classical integrable
systems. In the absence of a sound quantum definition, this route via classical integrability is useful
for making unambiguous statements about general properties of quantum systems believed to be
integrable. For example, Ref. [24] uses this approach to derive energy level statistics in such systems.
In what follows, we consider several specific examples to illustrate the above points.

Convergence to classical GME. Perhaps, the simplest quantum system with a transparent classical
limit is the 1D harmonic oscillator in a coherent state. In this case, we find that the discrepancy
between exact infinite time averages and the Gaussian ensemble expectation values of observables is
of order h̄2, see Appendix A for more details. For example,

⟨Λ̂k⟩∞

Ek
0

=
⟨Λ̂k

⟩G

Ek
0

= 1 +
k(k − 1)

2
h̄ω
E0

+ O

h̄2 ω2

E2
0


, (7)

where Λ̂ = h̄ωn̂, n̂ is the number operator and E0 is the classical energy.
Next, we look at two-spin Gaudinmagnets (see below for larger number of spins)—two interacting

spins of arbitrary magnitudes (S1, S2) in a magnetic field,

Ĥ1 = BŜz1 + γ Ŝ1 · Ŝ2, (8)

Ĥ2 = BŜz2 − γ Ŝ1 · Ŝ2, [Ĥ1, Ĥ2] = 0. (9)

Let us designate Ĥ1 as the Hamiltonian to generate quantum dynamics, though both Gaussian
ensemble and infinite time averages are the same for a generic linear combination of Ĥ1 and Ĥ2.
Classically (when spins become angular momenta variables), this is an integrable system with two
degrees of freedom. There are five independent parameters in ρ̂G to be fixed by two first and three
second moments of Ĥ1 and Ĥ2.

We start the dynamics from |ψ(0)⟩ = |σ1⟩ ⊗ |σ2⟩, where |σ i=1,2⟩ is a spin coherent state
characterized by a direction (θi, φi) inwhich the projection of Ŝi ismaximal.We choose coherent initial
states for the ease of visualizing dynamics in the classical limit, since they correspond to individual
points in the phase-space. However, other initial states are equally good. For an observable, we pick
Ŝz1 , arbitrarily set (θ1, φ1) = (0.5π, 0.5π), (θ2, φ2) = (0.3π, 0), γ = 1, and choose B = γ S2, so that
the effects of the magnetic field and interaction on the first spin are comparable.

We consider two cases: S1 = S2 and S1 = 1/2 at increasing S2. The classical limit (for the second
spin) is h̄ → 0, S2 → ∞, while keeping h̄S2 = const. Therefore, terms of order 1/Sk2 are of order h̄k.

Fig. 2 shows the difference ⟨Ŝz1⟩G − ⟨Ŝz1⟩∞ between the Gaussian ensemble and infinite time averages
as a function of S2. In the first case, the system becomes truly classical as S1 = S2 → ∞ and the
discrepancy (in h̄⟨Ŝz1⟩ = finite) is of order h̄2. We see that the Gaussian ensemble indeed captures
the main quantum correction of order h̄. Somewhat surprisingly, the agreement is even better in the
second case, when the first spin stays quantum. Here at large S2 the difference goes as 1/S32 , i.e. the
discrepancy is of order h̄3.
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Fig. 2. (Color online) Normalized difference between Gaussian ensemble and infinite time averages of Sz1 for the two-spin
Hamiltonian (8) as a function of the magnitude S2 of the second spin. Upper panel: S1 = S2 , lower panel: S1 = 1/2. The two
averages converge in the limit h̄ → 0, S2 → ∞, h̄S2 = fixed. Corrections to the Gaussian ensemble are of order h̄2 in the first
case and h̄3 in the second.

Comparison with GGE. To compare with GGE at increasing system size, we analyze quenches in a
free-fermion system, where GGE is exact in the thermodynamic limit,

Ĥ = −

L
j=1

(eiφ ĉĎj+1ĉj + e−iφ ĉĎj ĉj+1)+

L
j=1

[V1 cos(Qj)+ V2 cos(2Qj)] n̂j, (10)

where ĉj annihilates a fermion at site j, n̂j = ĉĎj ĉj, and Q = 2π/M is a commensurate modulation.
We impose a periodic boundary condition and choose M = 6 (L is a multiple of M). We prepare the
system in the ground state of Ĥ with φ = V1 = V2 = 0 at half filling and quench to nonzero φ,
V1, and V2. This mixes M single-particle eigenstates in the pre-quench Hamiltonian. The parameter
φ breaks the time-reversal symmetry and V1, V2 break the particle–hole symmetry thus removing
all symmetry protected degeneracies in the single-particle spectrum. Natural integrals of motion are
mode occupation numbers of the post-quench Hamiltonian.

Previous work [17] has already considered the Gaussian ensemble for a very similar free-fermion
model and found considerable improvement over GGE. Since GGE by construction captures averages
of all single-particle occupation numbers and Gaussian ensemble—those of all their linear and bilinear
combinations, they exactly reproduce the time average of single-body and two-body observables,
respectively, for any L, see Appendix B. Therefore,we study a three-body correlation function ⟨n̂1n̂2n̂3⟩.
In Fig. 3, we plot the difference between the infinite time and ensemble averages normalized by
the first cumulant ⟨n̂1⟩⟨n̂2⟩⟨n̂3⟩. We see that the GGE approaches the thermodynamic limit L → ∞

as 1/L as expected [20,25,26] while the Gaussian ensemble—as 1/L2 as anticipated above (see also
Appendix B). In addition to faster approach, theGaussian ensemble result agreeswith the time average
better at any given L by orders of magnitude.

Long-range interactions. Our last example is the BCS model [27] on N single-particle levels ϵi. In
terms of Anderson pseudospin-1/2 operators [28],

ĤBCS =

N
i=1

2ϵiŜzi − g
N

i,j=1

Ŝ+

i Ŝ−

j . (11)

As usual, we write the BCS coupling constant as g = λδ [29,30], where δ is the mean spacing between
ϵi’s and λ is the dimensionless BCS coupling strength.

The integrals of motion of the BCS Hamiltonian are Gaudin magnets [31,32] (central spin models),

Ĥi = −
1
g
Ŝzi +

N
j≠i

Ŝi · Ŝj
ϵi − ϵj

, [Ĥi, Ĥj] = 0, (12)
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Fig. 3. (Color online) Mismatch between ensemble (Gaussian and GGE) and infinite time averages in a three-point correlation
function of the lattice site occupation number n̂i for the free-fermion model B with Q = π/3 as a function of the chain length
L. We normalize by the first cumulant, which is the same for both ensembles. The time evolution is due to a quench from
φ, V1, V2 = 0 to φ = 0.3, V1 = 1.5, V2 = 1.0. The mismatch vanishes as L−1 for GGE and as L−2 for the Gaussian ensemble. The
latter thus captures the leading finite size correction (∝ L−1) to the thermodynamic limit.

Fig. 4. (Color online) Mismatch between ensemble (Gaussian and GGE) and infinite time (∆∞) averages for two alternative
definitions, ∆(1) and ∆(2) , of the BCS order parameter (13) for an interaction quench from λin = 0.5 to λfn = 2.0 in the BCS
model (C.1) with N single-particle levels (spins).

It is straightforward to verify that the total z-projection Ŝz = −g


i Ĥi and ĤBCS =
N

i=1 2ϵiHi+const.
Therefore, [ĤBCS, Ĥi] = 0 and Ŝz is conserved.

This model has several interesting features. First, Ĥi are conserved for any spin magnitudes Si, not
just Si = 1/2, i.e. the model is integrable (whatever this means in the quantum case) for arbitrary
Si. It is one of the few models where one can gradually go from extreme quantum to purely classical
while maintaining integrability. In the classical limit, when spins become angular momenta variables
and commutators turn into Poisson brackets, HBCS is integrable in the strict classical sense [33,34] and
Eq. (3) holds. Thus, the Gaussian ensemble (4) has a good foundation. On the other hand, the range of
interactions in Eq. (11) is infinite and Ĥi are not additive. So, there is no obvious justification [35] for
a factorizable exponential form of the density matrix in Eq. (1).

It is well-known that mean-field, which is equivalent to the classical limit [28,33,34], becomes
exact for the BCS model for N → ∞ due to infinite interaction range [28,36,37]. Thus, we expect
the Gaussian ensemble (4) to be exact in the thermodynamic limit (here and below Si = 1/2). The
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parameter controlling finite size corrections to mean-field is δ/∆0, where∆0 is the ground state gap.
This parameter therefore plays the role of h̄. If the Gaussian ensemble captures the leading quantum
correction of order h̄ to the classical limit as in previous examples, the discrepancy between ensemble
and infinite time averages should go as (δ/∆0)

2
∝ N−2.

We perform a sudden interaction quench λin → λfn, i.e. we evolve with ĤBCS(λfn) starting from
the ground state at λin. In numerics, we take even N and Sz = 0. Precise choice of the parameters is
unimportant as long as the initial state is not dominated by just a few eigenstates of ĤBCS(λfn), see
Appendix C. Our attempts to construct an equal weight ensemble failed as we were unable to find
even a single eigenstate with eigenvalues of Ĥi sufficiently close to their expectation values in the
initial state, see Appendix C for details. Now let us compare the Gaussian ensemble and GGE to the
quench dynamics.We look at two versions of the BCS order parameter suitable for a systemwith fixed
particle number (fixed Sz) [30],

∆(1) = g


i,j

⟨S+

i S−

j ⟩ − N↑

∆(2) = g


i


1
4

− ⟨Szi ⟩2,

(13)

where N↑ is the number of up spins, N↑ = N/2 for Sz = 0. Fig. 4 shows the normalized difference
between ensemble averaged ∆(i=1,2) for both ensembles and the infinite time average [performed
before taking square roots in Eq. (13)] as a function of N . The difference is of order 10−2

− 10−3 with
an overall decreasing trend with increasing N for either ensemble for both definitions of the order
parameter. The mismatch is significantly smaller for the Gaussian ensemble for all N .

In conclusion, we proposed the multivariable Gaussian ensemble (4) as a quantum extension of
exact classical GME (2). Our proposal stems from the classical definition of integrability thus largely
bypassing difficulties associated with the absence of a sound widely accepted quantum notion. It is
well and uniformly defined for any quantum system. It is exact in the classical limit and provides
corrections of order h̄ to this limit at any particle number as well as finite size corrections to GGE
whenever GGE holds. Further, we expect the Gaussian ensemble to become exact for models with
long-range interactions in thermodynamic limit (as long as mean-field becomes exact). In this paper,
we also analyzed two simple one- and two-bodymodels and twomany-bodymodels to support these
statements.
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Appendix A. Convergence to the classical limit for 1D harmonic oscillator

Here we show that the Gaussian ensemble converges to the classical microcanonical ensemble in
h̄ → 0 limit and reproduces the leading quantum correction to it for 1D harmonic oscillator in a
coherent state. In this example, there is only one integral of motion (the Hamiltonian itself). Suppose
the initial state is a coherent state with eigenvalue z: â|z⟩ = z|z⟩, where â is the annihilation operator.
This corresponds to taking a particle in the ground state of Ĥ0 = (p̂ − p0)2/(2m) + mω2(q̂ − q0)2/2
and time-evolving with Ĥ = p̂2/(2m)+ mω2q̂2/2, where
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z =


mω
2h̄

q0 + i
p0

√
2mh̄ω

,

i.e. to a quantum quench from p0, q0 ≠ 0 to p0, q0 = 0.
To construct ρG, we need to fix two parameters,µ andΣ−1

≡ 2σ 2, with the help of Eqs. (5) and (6)
in the main text for ⟨Ĥ⟩0 and ⟨Ĥ2

⟩0. Decomposing |z⟩ into number operator eigenstates |n⟩, we obtain

C
∞
n=0

h̄ωne−
(h̄ωn−µ)2

2σ2 = h̄ω|z|2, (ρ̂G)nn = Ce−
(h̄ωn−µ)2

2σ2 , (A.1)

C
∞
n=0

(h̄ωn)2e−
(h̄ωn−µ)2

2σ2 = (h̄ω|z|2)2(|z|2 + 1), (A.2)

where C−1
=


∞

n=0 exp(−(h̄ωn−µ)2/(2σ 2)) andwe include the zero point energy h̄ω/2 intoµ. The
classical limit is

h̄ → 0, |z|2 → ∞, h̄ω|z|2 =
p20
2m

+
mω2q20

2
≡ E0 = fixed. (A.3)

In this limit, sums in Eqs. (A.1) and (A.2) turn into integrals resulting inµ = E0 and σ = h̄ω|z|. We see
that σ → 0, h̄ωn → E and ρ̂G → Cδ(E − E0), i.e. we recover the classical microcanonical ensemble.

Now let us demonstrate that the Gaussian ensemble captures the leading quantum correction to
infinite time averages. We restrict ourselves to powers of the number operator, n̂k

= (âĎâ)k, where
k is a nonnegative integer. Note that expansion in h̄ is equivalent to the expansion in 1/|z|2, see
Eq. (A.3). The infinite time average is

⟨n̂k⟩∞ =

∞
n=0

nk
|⟨z|n⟩|2 = |z|2k


1 +

k(k − 1)
2|z|2

+ O


1
|z|4


= |z|2k


1 +

k(k − 1)
2

h̄ω
E0

+ O

h̄2 ω2

E2
0


, (A.4)

where we used the fact that |⟨z|n⟩|2 = |z|2ne−|z|2/n! is a Poisson distribution with parameter |z|2
whose kth factorial moment, i.e. the expectation value of n̂(n̂ − 1) · · · (n̂ − k + 1), is |z|2k, which is
straightforward to verify directly.

Next, we evaluate the Gaussian ensemble averages. Let n0 = µ/(h̄ω) and s = σ/(h̄ω). We begin
by showing that corrections to the classical answer n0 = s2 = |z|2 as |z|2 → ∞ are exponentially
small (∝ e−|z|2

= e−E0/h̄ω) and therefore can be neglected when calculating corrections of order h̄.
Eq. (A.1) becomes

∞
n=0

n exp

−
(n−n0)2

2s2


∞
n=0

exp

−
(n−n0)2

2s2

 = |z|2. (A.5)

Observe the following relation for any nonnegative integer k as n0, s, and n0/s tend to infinity, ∞
n=0

nk exp


−
(n − n0)

2

2s2


−

∞
n=−∞

nk exp


−
(n − n0)

2

2s2

 < ∞
n=2n0+1

nk exp


−
(n − n0)

2

2s2



<


∞

2n0
xk exp


−
(x − n0)

2

2s2


dx = O


s2nk−1

0 e−n20/s
2

, (A.6)
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where we obtained the last relation by integrating by parts. Therefore, we can extend summations in
Eq. (A.5) from [0,∞) to (−∞,∞)with an exponentially small error, i.e.

|z|2 =

∞
n=0

n exp

−
(n−n0)2

2s2


∞
n=0

exp

−
(n−n0)2

2s2

 =

∞
n=−∞

(n + n0) exp

−

n2

2s2


∞

n=−∞

exp

−

n2
2s2

 + O

|z|2e−|z|2



= n0 + O

|z|2e−|z|2


. (A.7)

Similarly, we derive s2 = |z|2 up to an exponentially small error.
Therefore, the Gaussian ensemble expectation value is

⟨n̂k
⟩G =

∞
n=0

nk exp

−(n − |z|2)2/(2|z|2)


∞
n=0

exp

−(n − |z|2)2/(2|z|2)

 . (A.8)

We evaluate the sums involved using the Poisson summation formula,

Ak ≡

∞
n=0

nk exp


−(n − |z|2)2

2|z|2


= |z|2k+2

∞
p=−∞


∞

0
e−|z|2


(x−1)2/2−2iπpx


xkdx. (A.9)

The saddle-point analysis of the integrals on the r.h.s. shows that the contribution of p ≠ 0 terms is
suppressed by a factor e−2π2

|z|2 , i.e. it is sufficient to keep only the p = 0 term,

Ak = |z|2k+2


∞

−1
(1 + y)ke−|z|2y2/2dy + O


e−2π2

|z|2


= |z|2k
√
2π |z|


1 +

k(k − 1)
2

1
|z|2

+ O


1
|z|4


, (A.10)

where we changed the variable x = y+ 1 in the integral and evaluated it with a simple version of the
saddle-point method. Thus,

⟨n̂k
⟩G =

Ak
A0

= |z|2k

1 +

k(k−1)
2|z|2

+ O


1
|z|4


= |z|2k


1 +

k(k−1)
2

h̄ω
E0

+ O


h̄2 ω2

E20


. (A.11)

Comparing Eqs. (A.4) and (A.11), we see that they agree up to terms proportional to h̄. In other words,
Gaussian ensemble reproduces the leading term and the first quantum correction.

This agreement, however, does not extend to terms of order h̄2 and higher. Consider, for example,
n̂3. The exact infinite time average follows from the first three factorial moments mentioned above

⟨n̂3⟩∞ = |z|6 + 3|z|4 + |z|2 = |z|6

1 + 3

h̄ω
E0

+
h̄2 ω2

E2
0


. (A.12)

To obtain the Gaussian ensemble, we evaluate the integral in the first equation in (A.10) for k = 3 and
k = 0,

⟨n̂3
⟩G = |z|6 + 3|z|4 + O


e−|z|2/2

= |z|6

1 + 3

h̄ω
E0

+ O

e−E0/h̄ω


, (A.13)

where the error arises from |z|2k


−1
−∞
(1 + y)ke−|z|2y2/2

= O

e−|z|2/2


, which we estimated via

repeated integration by parts. Therefore, there is a discrepancy of order h̄2. For instance, since
⟨q̂6⟩ = (5/2)(h̄/mω)3⟨n̂3

⟩+ expectation values of lower powers of n̂ that are captured exactly by
construction, the discrepancy in the third order cumulant of q̂2 between the Gaussian ensemble and
exact infinite time averages is 2.5(h̄/mω)3|z|2 = 2.5 h̄2 E0/m3ω4.
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Appendix B. Calculation of three-body observables in the free-fermion model

In the main text, we compared GGE and the Gaussian ensemble for quenches in a free-fermion
model

Ĥ = −

L
j=1

(eiφ ĉĎj+1ĉj + e−iφ ĉĎj ĉj+1)+

L
j=1

[V1 cos(Qj)+ V2 cos(2Qj)]n̂j, (B.1)

with periodic boundary conditions and Q = 2π/M with integerM , such that L is a multiple ofM . The
pre-quench Hamiltonian Ĥin has φ = V1 = V2 = 0 and is therefore diagonal in the momentum basis,

Ĥin = −


k

2 cos(k) ˆ̃cĎk ˆ̃ck, (B.2)

where ˆ̃ck = L−1/2 L
j=1 ĉje

−ikj and k = 2πν/Lwith ν = 1, 2, . . . , L.

Due to our choice of the modulation wavenumber Q = 2π/M , the quenched Hamiltonian Ĥfn
mixes momenta k, k + Q , k + 2Q , . . . , k + (M − 1)Q only among themselves. It is convenient
to introduce a two-index momentum notation that reflects this property: ˆ̃ck → ˆ̃cq,α , where q =

2π/L, 4π/L, . . . , 2π/M , α = 0, 1, . . . ,M −1, and k = q+αQ . The quenched Hamiltonian splits into
L/M independent sub-Hamiltonians (sectors)

Ĥfn =


q

M−1
α,β=0

hq
α,β

ˆ̃cĎq,α ˆ̃cq,β =


q

M−1
γ=0

ϵ(q, γ )N̂q,γ , N̂q,γ = b̂Ďq,γ b̂q,γ , (B.3)

where hq
α,β is an M × M matrix,

hq
=



−2 cos(q + φ) V1/2 V2/2 · · · V1/2
V1/2 −2 cos(q + φ + Q ) V1/2 · · · V2/2

V2/2 V1/2 −2 cos(q + +φ + 2Q ) · · ·

.

.

.

.

.

.
.
.
.

.

.

.
. . . V1/2

V1/2 · · · V2/2 V1/2 −2 cos(q + φ + (M − 1)Q )


.

(B.4)

Diagonalizing hq, we obtain single-particle energies ϵ(q) = (Uq)−1hqUq and new fermion operators
b̂q,γ =


β(U

q)−1
γ ,β

ˆ̃cq,β .

The conservation laws aremodeoccupationnumbers N̂q,γ . TheGGEandGaussian ensemble density
matrices are

ρ̂GGE = exp

−


k,α

λk,αN̂k,α


, ⟨N̂k,α⟩GGE ≡

tr

ρ̂GGEN̂k,α


tr ρ̂GGE

= ⟨N̂k,α⟩0, (B.5)

ρ̂G = exp

−


p,q,α,β

σpα,qβ N̂p,αN̂q,β


, ⟨N̂p,α⟩G ≡

tr

ρ̂GN̂p,α


tr ρ̂G

= ⟨N̂p,α⟩0,

⟨N̂p,αN̂q,β⟩G = ⟨N̂p,αN̂q,β⟩0,

(B.6)

where we used N̂q,β = N̂2
q,β to absorb the linear in N̂q,β terms in the definition of ρ̂G into the quadratic

part.
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We are interested in the three-point correlation function of the lattice site occupation number

⟨n̂jn̂ℓn̂m⟩ = ⟨ĉĎj ĉjĉ
Ď
ℓ ĉℓĉ

Ď
mĉm⟩ (B.7)

=
1
L3


k,q,u,v,p,s


α,β,γ ,δ,ζ ,η

ei[k−q+(β−α)Q ]j+i[u−v+(δ−γ )Q ]ℓ+i[s−p+(η−ζ )Q ]m

× ⟨ˆ̃cĎq,α ˆ̃ck,β ˆ̃cĎv,γ ˆ̃cu,δ ˆ̃c
Ď
p,ζ

ˆ̃cs,η⟩ (B.8)

=
1
L3


k,q,u,v,p,s


α,β,γ ,δ,ζ ,η

ei[k−q+(β−α)Q ]j+i[u−v+(δ−γ )Q ]ℓ+i[s−p+(η−ζ )Q ]m

×


α′,β ′,γ ′,δ′,ζ ′,η′

(Uq)∗α,α′(Uk)β,β ′(Uv)∗γ ,γ ′(Uu)δ,δ′(Up)∗ζ ,ζ ′(U s)η,η′

× ⟨b̂Ďq,α′ b̂k,β ′ b̂Ď
v,γ ′ b̂u,δ′ b̂

Ď
p,ζ ′ b̂s,η′⟩. (B.9)

Therefore, we need to evaluate the following average:

⟨b̂Ďq,α′ b̂k,β ′ b̂Ďu,γ ′ b̂v,δ′ b̂
Ď
p,ζ ′ b̂s,η′⟩, (B.10)

with respect to the time-evolved state of the system as well as Gaussian ensemble and GGE.
The time-evolution is

⟨b̂Ďq,α′ b̂k,β ′ b̂Ď
v,γ ′ b̂u,δ′ b̂

Ď
p,ζ ′ b̂s,η′⟩t = ei[ϵ(q,α

′)−ϵ(k,β ′)+ϵ(v,γ ′)−ϵ(u,δ′)+ϵ(p,ζ ′)−ϵ(s,η′)]t

× ⟨b̂Ďq,α′ b̂k,β ′ b̂Ď
v,γ ′ b̂u,δ′ b̂

Ď
p,ζ ′ b̂s,η′⟩0, (B.11)

where ⟨· · · ⟩t is the expectation value at time t . The infinite time average is nonzero only for termswith
zero phase factor, i.e. when ϵ(q, α′)− ϵ(k, β ′)+ ϵ(v, γ ′)− ϵ(u, δ′)+ ϵ(p, ζ ′)− ϵ(s, η′) = 0. Since we
removed time-reversal and particle–hole symmetries, there are no degeneracies in the single-particle
spectrum as well as no two-particle and three-particle resonances. Consequently, the time average is
zero unless the double indices on creation and annihilation operators are pairwise equal, i.e. the set
{(q, α′), (v, γ ′), (p, ζ ′)} is a permutation of {(k, β ′), (u, δ′), (s, η′)}. Therefore, only terms that can be
cast into the form ⟨N̂q,αN̂r,β N̂s,γ ⟩t = ⟨N̂q,αN̂r,β N̂s,γ ⟩0 survive. The same holds for expectation value
(B.10) evaluated in any eigenstate of Ĥfn and hence for both ensemble averages. Thus,

⟨n̂jn̂ℓn̂m⟩
∞

− ⟨n̂jn̂ℓn̂m⟩ens =
1
L3


q,r,s;α,β,γ

Rqrs
αβγ

×


⟨N̂q,αN̂r,β N̂s,γ ⟩0 − ⟨N̂q,αN̂r,β N̂s,γ ⟩ens


, (B.12)

where Rqrs
αβγ are coefficients of order one and ⟨· · · ⟩ens stands for the average with respect to either

ensemble.
Because ρ̂GGE in Eq. (B.5) is a (tensor) product of functions of individual occupation numbers [38],

⟨N̂q,αN̂r,β N̂s,γ ⟩GGE = ⟨N̂q,α⟩GGE⟨N̂r,β⟩GGE⟨N̂s,γ ⟩GGE = ⟨N̂q,α⟩0⟨N̂r,β⟩0⟨N̂s,γ ⟩0, (B.13)

as long as no two occupation number operators, i.e. pairs of indices coincide, {q, α} ≠ {r, β} ≠ {s, γ }

and {q, α} ≠ {s, γ }. Since occupation numbers in different sectors are uncorrelated in the initial state,
the same factorization holds for ⟨N̂q,αN̂r,β N̂s,γ ⟩0 if q, r, s are distinct. For most remaining terms, when
q = r (but α ≠ β) or q = s (but α ≠ γ ) or r = s (but β ≠ γ ), the GGE and initial state averages do not
necessarily agree. In other words, GGE fails to capture the correlations between different occupation
numbers within the same sector. Since the number of such terms (∝ number of pairs of sectors) is of
order (L/M)2 ∝ L2, ⟨n̂jn̂ℓn̂m⟩

∞
− ⟨n̂jn̂ℓn̂m⟩GGE ∝ 1/L at large L (M is fixed). Similarly, the Gaussian

ensemble automatically matches ⟨N̂q,αN̂r,β N̂s,γ ⟩0 for distinct q, r, s and for q = r ≠ s, q ≠ r = s,
q = s ≠ r , but not for q = r = s (except when two of the indices α, β, γ are equal). In other words,
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it reproduces two-body, but not three-body correlations between occupation numbers in the initial
state. The number of q = r = s terms is proportional to L, so ⟨n̂jn̂ℓn̂m⟩

∞
− ⟨n̂jn̂ℓn̂m⟩G ∝ 1/L2. This

behavior with the system size L is in agreement with Fig. 3 in the main text for both ensembles. The
fact that the Gaussian ensemble is exact for one- and two-point correlation functions of lattice site
occupation numbers forced us to consider three-point functions.

B.1. Computing initial state and ensemble averages

Another implication of Eq. (B.13) is that we need not determine the Lagrange multiplies λq,α for
GGE in Eq. (B.5), since GGE averages reduce to expectation values of single mode occupation numbers
⟨N̂k,α⟩0 in the initial state.

We do however need ⟨N̂k,α⟩0 and we also need ⟨N̂p,αN̂q,β⟩0 in Eq. (B.6) to construct the Gaussian
ensemble,

⟨N̂k,α⟩0 = ⟨0|

q

ˆ̃cq(b̂
Ď
k,α b̂k,α)


p

ˆ̃cĎp |0⟩

=


β

|(Uk)−1
α,β |

2
⟨0|


q

ˆ̃cq( ˆ̃c
Ď
k,β

ˆ̃ck,β)

p

ˆ̃cĎp |0⟩ =


β:k+βQ∈{gr}

|(Uk)−1
α,β |

2, (B.14)

⟨N̂p,αN̂q,β⟩0 = ⟨0|

u

ˆ̃cu(b̂Ďp,α b̂p,α b̂
Ď
q,β b̂q,β)


v

ˆ̃cĎv |0⟩

=


γ ,γ ′,δ,δ′

(Up)−1
α,γ (U

p∗)−1
α,γ ′(Uq)−1

β,δ(U
q∗)−1

β,δ′

× ⟨0|

u

ˆ̃cu( ˆ̃c
Ď
p,γ ′

ˆ̃cp,γ ˆ̃c
Ď

q,δ′
ˆ̃cq,δ)


v

ˆ̃cĎv |0⟩

=


q+δQ ,p+γQ∈{gr}

|(Up)−1
α,γ |

2
|(Uq)−1

β,δ|
2

+


q+δQ∈{gr}
q+γQ ∉{gr}

(Uq)−1
α,γ (U

q∗)−1
β,γ (U

q)−1
α,δ(U

q∗)−1
β,δ, (B.15)

where {gr} is the set of momenta occupied in the ground state of the pre-quench Hamiltonian.
To construct the Gaussian ensemble, we have to solve the last two equations in (B.6) for σpα,qβ .

Since ⟨N̂p,αN̂q,β⟩0 = ⟨N̂p,α⟩0⟨N̂q,β⟩0 for p ≠ q in the initial state, we set σpα,qβ = 0 for p ≠ q. Then, ρ̂G is
a tensor product over different sectors labeled by p, which ensures [38] ⟨N̂p,αN̂q,β⟩G = ⟨N̂p,α⟩G⟨N̂q,β⟩G.
Thus, we are left with

tr

ρ̂GN̂p,α


tr ρ̂G

= ⟨N̂p,α⟩0,
tr


ρ̂GN̂p,αN̂p,β


tr ρ̂G

= ⟨N̂p,αN̂p,β⟩0,

ρ̂G = exp

−


p,α,β

σpα,pβ N̂p,αN̂p,β


.

(B.16)

There are M(M + 1)/2 nonlinear equations for M(M + 1)/2 unknown σpα,pβ for each of L/M sectors
labeled by p, a total of L(M + 1)/2 equations, to be solved numerically. This is feasible for moderate
M(≤ 12).

Note also that the number of particles in each sector [each sub-Hamiltonian in Eq. (B.3)] is
conserved. Therefore, the number of eigenstates |n⟩ of Hfn involved in the time-evolution in each
sector is CM

m . The infinite time average of an observable Ô in the absence of degeneracies is ⟨Ô⟩∞ =
n |cn|2⟨n|Ô|n⟩, where cn are the coefficients in the decomposition of the initial state into the

eigenstates (diagonal ensemble). We needM(M+1)/2 > CM
m or else the Gaussian ensemble becomes
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Fig. 5. (Color online) Distance D between the eigenvalues E(n)i of the integrals of motion and their expectation values hi in the
initial state compared to the arithmetic mean of |hi| and smallest |hi| for an interaction quench from λin = 0.5 to λfn = 2.0 in
the BCS model with N single-particle levels (spins).

exact as it has enough parameters to match all |cn|2. The smallest M that satisfies this criterion is
M = 6 atm = 3. This dictates our choice ofM = 6 and filling fraction = 1/2.

Finally, we comment on a technical aspect of the computation. Even though we are dealing with
a free-fermion model, a direct computation of three-point correlation functions (unlike two- and
one-point ones) is prohibitive at large L(≥ 120) due to a large number (∝ L3) of nonzero terms in
Eq. (B.9). However, only a small fraction of these terms contributes to the difference between ensemble
and infinite time averages in Eq. (B.12). As discussed above, there is a factor of (L/M)2 reduction in
the number of terms for the Gaussian ensemble and a factor of L/M for GGE. This allows us to go to
much larger L in numerical evaluation of the difference.

Appendix C. Interaction quenches in the BCS model

In the main text, we analyze the accuracy of the Gaussian ensemble and GGE for an interaction
quench in the reduced BCS model

ĤBCS =

N
i=1

2ϵiŜzi − λδ

N
i,j=1

Ŝ+

i Ŝ−

j . (C.1)

Specifically, we take N = 2K , Sz = 0, λin = 0.5, and λfn = 2.0. The single-particle spectrum is
ϵi = 2i/(N − 1)+ ηi, where the only nonzero ηi are ηK = ηK+1 = 0.1. This asymmetry with respect
to the Fermi energy avoids any degeneracy in the Sz = 0 sector due to particle–hole symmetry. For
moderateN , one has to chose λin and λfn judiciously, so that the initial state is not dominated by just a
few eigenstates of ĤBCS(λfn). Otherwise, Gaussian ensemble becomes effectively exact as it has enough
parameters tomatch all |cn|2 in time averages ⟨Ô⟩∞ =


n |cn|2Ônn, where cn are the coefficients in the

decomposition of the initial state into the eigenstates of ĤBCS(λfn). This is not a problem for largeN , but
for N ≤ 12 we need to choose λin and λfn carefully to satisfy this condition. We use exact numerical
diagonalization to construct the Gaussian ensemble, GGE, and determine |cn|2 for N ≤ 16. The main
challenge turns out to be solving for the Gaussian ensemble and GGE parameters, not obtaining the
eigenstates.

Let us also comment on an equal weight generalized microcanonical ensemble as a description of
the BCS quench dynamics. To construct this ensemble, we need eigenstates with eigenvalues E(n)i of
Ĥi sufficiently close to their expectation values hi = ⟨Ĥi⟩0 in the initial state. Consider the minimum
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distance between E(n)i and hi,

D =
1
N

min
n

 N
i=1

E(n)i − hi

, (C.2)

where N−1 ensures D ∝ N for large N , since E(n)i and hi grow as N . We see from Fig. 5 that D is
comparable to the average |hi| = N−1 

i |hi| and by far exceeds the smallest |hi|. Moreover, D/N
does not appreciably decrease with increasing N between N = 12 and 16, even though available
N are too small for a reliable conclusion. Thus, we are unable to obtain a reasonable equal weight
description, at least for these values of N .
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