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Chaotic synchronization between atomic clocks
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We predict synchronization of the chaotic dynamics of two atomic ensembles coupled to a heavily damped
optical cavity mode. The atoms are dissipated collectively through this mode and pumped incoherently to achieve
a macroscopic population of the cavity photons. Even though the dynamics of each ensemble are chaotic, their
motions repeat one another. In our system, chaos first emerges via quasiperiodicity and then synchronizes. We
identify the signatures of synchronized chaos, chaos, and quasiperiodicity in the experimentally observable
power spectra of the light emitted by the cavity.
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I. INTRODUCTION

It is generally challenging to predict the long-term behav-
ior of a chaotic system, e.g., weather, due to its sensitive
dependence on initial conditions. However, there are special
chaotic systems where the dynamics of one part are locked or
synchronized with those of the other part or parts [1,2]. As a
result, the asymptotic behavior of certain dynamical variables
is fully predictable in spite of the overall chaotic nature.
Different mechanisms of obtaining chaotic synchronization
have been studied in, for example, electrical circuits [3,4],
coupled lasers [5–7], oscillators in laboratory plasma [8],
population dynamics [9], and earthquake models [10]. In this
paper, we report chaotic synchronization in a novel physical
system, namely, between two mutually coupled ensembles
of atoms in a driven-dissipative experimental setup. This
is unlike most other examples of chaotic synchronization,
where the coupling between the two parts is unidirectional.
In the chaotic synchronized phase, our system has potential
applications in secure communication [1–5].

We consider two spatially separated ensembles of, e.g.,
87Rb atoms inside a bad (leaky) optical cavity, see Fig. 1. The
atoms are collectively dissipated through a Rabi coupling to
a heavily damped cavity mode and pumped with a transverse
laser to achieve a macroscopic population of the cavity pho-
tons [11]. A single atomic ensemble coupled to a bad cavity
has been proposed as a source of ultracoherent radiation for an
atomic clock [12]. The two ensembles in our setup, therefore,
represent two interacting atomic clocks [13]. Previous work
obtained main nonequilibrium phases of this system [13,14],
see the inset in Fig. 2.

In this paper, we study a finite region of the phase
diagram—the orange (nonsynchronized chaos) and red (syn-
chronized chaos) points in region III of Fig. 1—where the
light radiated by the cavity behaves chaotically. Here chaos
appears via quasiperiodicity [15–17]. Initially, chaotic trajec-
tories fill up extended regions in the configuration space, see
Fig. 3(e). We discover a subregion inside the chaotic phase
where dynamics are confined to a flat hypersurface [Fig. 3(h)],
called the synchronization manifold. Essentially, the time
dependence of one ensemble follows that of the other. We also

study signatures of these novel behaviors in the power spectra
of the radiated light. Unlike the quasiperiodic power spectrum
[Fig. 3(c)], which consists of discrete peaks, the chaotic one
[Fig. 3(f)] is a continuum. The chaotic synchronized spec-
trum [Fig. 3(i)] additionally has a reflection symmetry about
zero and no peak at zero frequency, see the insets in Figs. 3(f)
and Fig. 3(i).

II. NONCHAOTIC PHASES

We model our system (cf. Fig. 2) with the following master
equation for the density matrix ρ:

ρ̇ = −ı[Ĥ , ρ] + κL[a]ρ + W
∑

τ=A,B

N∑
j=1

L
[
σ̂ τ

j+
]
ρ, (1a)

Ĥ = ω0â†â +
∑

τ=A,B

[
ωτ Ŝz

τ + �

2

(
â†Ŝ−

τ + âŜ+
τ

)]
. (1b)

The Hamiltonian Ĥ describes two atomic ensembles, A
and B, Rabi coupled (with frequency �) to the cavity mode
ω0, where â†(â) create (annihilate) cavity photons. Each
ensemble contains a large number of atoms, e.g., N ≈ 106

of 87Rb atoms [11,13]. We focus on the lasing transition
between two atomic levels. Consequently, we describe indi-
vidual atoms with Pauli matrices and the atomic ensembles
with collective spin operators ŜA,B

z = 1
2

∑N
j=1 σ̂ A,B

jz and ŜA,B
± =∑N

j=1 σ̂
(A,B)
j± . Experimentally, the level-spacings ωτ are con-

trolled with two distinct Raman dressing lasers [11]. We
model the energy-nonconserving processes [decay of the bad
cavity mode with a rate κ (� 1), and incoherent pumping by
external lasers at an effective repump rate W ] by Lindblad
superoperators,

L[Ô]ρ ≡ 1
2 (2ÔρÔ† − Ô†Ôρ − ρÔ†Ô). (2)

Using the adiabatic approximation [18], which is exact in the
limit κ → ∞, we eliminate the cavity mode replacing â →
ı�
κ

∑
τ Ŝ−

τ . Finally, in the rotating frame, where frequencies
are shifted by the mean level-spacing (it is equal to the
clock transition frequency, which is ≈6.8 GHz for 87Rb), we
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FIG. 1. Cartoon depicting the driven-dissipative experimental
setup with two atomic ensembles inside a bad cavity. In ensembles
A and B, the solid arrows denote individual atoms. The thick
double-headed arrows correspond to the Rabi coupling between the
ensembles and the cavity mode (dashed line). The rate of loss of
photons from the cavity is κ .

derive semiclassical evolution equations using the mean-field
approximation, 〈Ô1Ô2〉 ≈ 〈Ô1〉〈Ô2〉,

ṡτ
± =

(
±ıωτ − W

2

)
sτ
± + 1

2
sτ

z l±, (3a)

ṡτ
z = W

(
1 − sτ

z

) − 1

4
sτ
+l− − 1

4
sτ
−l+, (3b)

where τ = A, B, sτ
± = 2

N (〈Ŝτ
x 〉 ± i〈Ŝτ

y 〉), sτ
z = 2

N 〈Ŝτ
z 〉, l =

2
N (〈ŜA〉 + 〈ŜB〉) is the total classical spin, ωA = δ/2, and ωB =
−δ/2. In Eq. (3) and from now on, we express the detuning δ

and the repump rate W in the units of the collective decay rate
N	c ≡ N�2

κ
(≈1.4 kHz for a typical experimental setup [11])

and replace (N	c)t → t .
The mean-field equations of motion possess two symme-

tries: (1) Axial symmetry sτ → R(φ) · sτ , where R(φ) is a ro-
tation by an angle φ around the z axis. Indeed, the replacement
sτ
± → sτ

±e±ıφ leaves Eq. (3) unchanged. (2) Z2 symmetry
sτ → Σ ◦ R(φ0) · sτ which involves a rotation around the z
axis by a fixed angle φ0 followed by an interchange,

Σ :
(
sA
±, sA

z , sB
±, sB

z

) −→ (
sB
∓, sB

z , sA
∓, sA

z

)
, (4)

of ensembles A and B while flipping the sign of sy. The
Z2 symmetric solutions obey sτ = Σ ◦ R(φ0) · sτ , where the
value of φ0 depends on the initial condition. This constraint
defines a 4D Z2-symmetric submanifold. All attractors in
Fig. 1, except the normal phase, spontaneously break the axial
symmetry. This implies that for each (δ,W ) point there is a
family of attractors related by a rotation R(φ) around the z
axis, where φ depends on the initial condition.

The limit cycle (periodically modulated superradiance) in
the green region of Fig. 1 possesses Z2 symmetry, which
breaks spontaneously across the black dashed line. In the
absence of any symmetry, the interaction between the two
spins introduces additional frequencies. The ratio of two such
frequencies being irrational causes quasiperiodicity, which
eventually gives way to chaos. At its inception, the chaotic
attractor is completely asymmetric. As we decrease δ while

FIG. 2. Nonequilibrium phase diagram for two atomic ensem-
bles in a bad optical cavity. W is the repump rate and and δ is the
detuning between the atomic level spacings of the two ensembles
in the units of the collective decay rate N	c. The inset shows the
full phase diagram with phases I (normal, non-superradiant phase),
II (monochromatic superradiance), and III (amplitude-modulated
superradiance). The main picture is a blowup of the region near
the origin. Green points correspond to Z2-symmetric (with respect
to the interchange of the two ensembles) collective oscillations
(limit cycle). The Z2 symmetry breaks spontaneously across the
black dashed line. In the yellow region to the left of this line, the
attractor is a symmetry-broken limit cycle. Dark blue, orange, and
red points indicate quasiperiodicity, chaos, and synchronized chaos,
respectively.

keeping W fixed, one spin gets locked to the other. We
interpret this synchronized chaotic phase as spontaneous
restoration of the Z2 symmetry. In this phase, the conditional
Lyapunov exponent becomes negative, while the maximum
Lyapunov exponent remains positive [1,2] as shown in Fig. 4.
As we cross over to region II, chaos disappears altogether. One
is left with monochromatic superradiance, which is a fixed
point of Eq. (3) [14]. Separately, we also note that dynamics
of a single atomic ensemble coupled to a bad cavity show
no chaos or quasiperiodicity. In fact, this case corresponds to
δ = 0 in Eq. (3), i.e., to the vertical axis of the phase diagram
in Fig. 1, where only phases I and II are present [14].

III. SYNCHRONIZATION OF CHAOS

In the rest of this paper, we analyze the evolution from
quasiperiodicity to synchronized chaos with the help of
Poincaré sections, Lyapunov exponents, and power spectra.
We define the maximum Lyapunov exponent λ(t ) as usual,

λ(t ) = lim
d (0)→0

1

t
ln

[
d (t )

d (0)

]
, (5)
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FIG. 3. Three types of dynamics of two coupled atomic clocks, i.e., of two atomic ensembles coupled to a strongly damped cavity mode.
The classical spins sτ representing the two clocks (τ = A and B) obey mean-field equations of motion (3). The three rows of plots from top
to bottom represent quasiperiodic (δ = 0.115,W = 0.055), chaotic (δ = 0.1,W = 0.055), and synchronized chaotic (δ = 0.080,W = 0.055)
attractors, respectively. We marked these three (δ,W ) pairs with crosses on the solid black horizontal arrow in Fig. 1. The three columns of
plots from left to right show sA

z vs time [Figs. 3(a), 3(d), and 3(g)], sA
z vs sB

z [Figs. 3(b), 3(e), and 3(h)], and the power spectra of radiated light
[Figs. 3(c), 3(f), and 3(i)], respectively. In the quasiperiodic spectrum (c), the main peaks are at integer multiples of f1 ≈ 1.6 × 10−2, whereas
the distance between auxiliary peaks is f2 ≈ 3.0 × 10−3. In the insets to plots (f) and (i) we magnified the region near f = 0 to show the
presence or absence of the peak at the origin.

where d (t ) is the distance in the 6D real space of six
components of vectors sA and sB. The conditional Lyapunov
exponent is the maximum Lyapunov exponent for directions
transverse to the synchronization manifold, see Eq. (7). For
both chaotic and synchronized chaotic attractors λ(t ) con-
verges to a positive value (≈10−2 ± 10−5), whereas for the
quasiperiodic attractor it vanishes (±10−5), see the inset in
Fig. 4.

A Poincaré section of an attractor is the set of points
where its trajectory crosses a plane cutting the attractor into
two, counting only the crossings that occur in one direction
[15,19]. To obtain a 2D representation, we show the Poincaré
sections for the A spin only in Fig. 5. Those for the B spin are
qualitatively similar. We cut the trajectory of the A spin with
the plane sA

z = const = 1
t1

∫ t0+t1
t0

sA
z dt parallel to the sA

x − sA
y

plane, where t0 and t1 are sufficiently large.
Poincaré sections of quasiperiodic trajectories appear as

continuous curves. Consider, e.g., a two-frequency quasiperi-
odic motion. It occurs on a 2D torus in the 6D space of

six components of both classical spins. We expect the full
Poincaré section to be a closed non-self-intersecting 5D curve.
However, when looking only at the A spin, we project this
curve onto a 2D plane. The resulting Poincaré section is still
a continuous curve, but it can now intersect itself as in the
leftmost plot in Fig. 5. The Poincaré section of a chaotic
trajectory appears as a smudge of random points. Finally,
the section of a chaotic synchronized trajectory is a collec-
tion of disjoint segments highlighting both the chaotic and
constricted (to the synchronization manifold) nature of the
dynamics.

An experimentally observable quantity is the power spec-
trum, |E( f )|2, of the light emitted by the cavity [14,20].
Here E( f ) is the Fourier transform of the (complex) radi-
ated electric field and f is the frequency. Within the mean-
field approximation, we find |E( f )|2 ∝ |l−( f )|2, where l− =
lx − ıly and l is the total classical spin. The quasiperiodic
spectrum [Fig. 3(c)] has main peaks at 0,± f1,±2 f1, . . . ,
with auxiliary peaks spaced at f2 bunched around them.
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FIG. 4. Conditional Lyapunov exponents λc(t ) quickly saturate
to zero for quasiperiodic (blue triangles) and chaotic (yellow squares)
attractors. The values of the detuning δ and the repump rate W are
the same as in Fig. 3. For synchronized chaos (green dashed line) λc

is negative. The inset shows the maximum Lyapunov exponent λ(t ).
As expected, for chaos and synchronized chaos λ is positive, whereas
for quasiperiodicity it saturates to zero.

We did not observe more than two-frequency quasiperiod-
icity. While it is generally difficult to differentiate between
chaotic and quasiperiodic spectra [21], in our system the latter
are visibly discrete. Nevertheless, we do not rely on this
feature and use maximum Lyapunov exponents to distinguish
quasiperiodicity and chaos in Fig. 1. Note that although the
chaotic spectrum is continuous, it features distinct peaks
that are independent of the initial conditions [Fig. 3(f)].
In contrast to the spectrum of the synchronized chaotic at-
tractor in Fig. 3(i), both chaotic and quasiperiodic power
spectra have prominent peaks at the origin and no reflection
symmetry.

Near the boundary between phases II and III in Fig. 1 (red
points), we observe synchronized chaos. Since the dynamics
in this subregion restore the Z2 symmetry, the solutions are
confined to the 4D Z2-symmetric submanifold. We write
the two constraint relations (independent of initial condition)

as
(
sA

x

)2 + (
sA

y

)2 = (
sB

x

)2 + (
sB

y

)2
, sA

z = sB
z . (6)

For our purposes, these relations define the synchronization
manifold. Coordinates spanning the “transverse manifold”
(complementary to the synchronization manifold) are

n1 ≡ (
sA

x

)2 + (
sA

y

)2 − (
sB

x

)2 − (
sB

y

)2
,

n2 ≡ sA
z − sB

z . (7)

We derive the evolution equations for the transverse subsys-
tem from Eq. (3) as

ṅ1 = 1

2

(
lz − 2W

)
n1 + 1

2

(
l2
x + l2

y

)
n2, (8a)

ṅ2 = −n1

2
− W n2. (8b)

To compute the conditional Lyapunov exponent for an
attractor, we first determine its lz and l2

x + l2
y with the help of

Eq. (3). These serve as time-dependent coefficients in Eqs. (8).
In principle, we should linearize Eqs. (8) in small deviations
�n1 and �n2. However, since these equations are already
linear, we simply redefine n1 and n2 to be such arbitrary
infinitesimal deviations in transverse directions and numeri-
cally simulate Eqs. (8). The conditional Lyapunov exponent
is the rate of growth of distances in the transverse manifold,
i.e., it is given by Eq. (5), where d =

√
n2

1 + n2
2 is the trans-

verse distance. For chaotic synchronized trajectories λc ≈
−10−2 ± 10−5 for t � 5 × 104, whereas for chaotic ones
λc ≈ ±10−5 (Fig. 4). On the other hand, maximum Lyapunov
exponents λ for both chaos and synchronized chaos behave
similarly.

In the Appendix, we explain the emergence of the synchro-
nized chaos in our system via tangent bifurcation intermit-
tency of the Z2-symmetric limit cycle. As a result, synchro-
nized chaotic trajectories spend most of their time in the vicin-
ity of the now unstable Z2-symmetric limit cycle, see Fig. 6
a. Further, we observe in Fig. 7 that the synchronized chaotic

FIG. 5. Poincaré sections of the spin sA trajectory for (a) quasiperiodic (δ = 0.115,W = 0.055), (b) chaotic (δ = 0.1,W = 0.055), and
(c) synchronized chaotic (δ = 0.080,W = 0.055) attractors. These values of δ and W are the same as in Figs. 3 and 4. We section the trajectories
with a plane sA

z = const as explained in the main text. Orbits cross the plane either from below (red circles) or from above (green crosses)
generating two distinct Poincaré sections. The inset in (a) shows an example (δ = 0.24,W = 0.055) of non-self-intersecting Poincaré sections
of a quasiperiodic attractor. The difference between Poincaré sections of chaotic and synchronized chaotic trajectories of spin sA is due to the
restriction of the dynamics to the synchronization manifold in the latter case.
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FIG. 6. Comparison of Z2-symmetric limit cycle (δ = 0.107,W = 0.055) with synchronized chaos (δ = 0.106,W = 0.055). For W =
0.055, the Z2-symmetric limit cycle loses stability in the Z2-symmetric submanifold via tangent bifurcation intermittency between δ = 0.107
and 0.106. However, note that non-Z2-symmetric initial conditions produce quasiperiodicity for both sets of (δ,W ). (a) sA

z (t ) for the same
initial condition. The synchronized chaotic trajectory closely follows the periodic trajectory. (b) Lyapunov exponents λ reveal the chaotic
nature (λ > 0) of the dashed yellow trajectory. (c) The power spectra. For the Z2-symmetric limit cycle the peaks are at ± f0, ±3 f0, ±5 f0, . . . ,
where f0 ≈ 0.0047. In the chaotic spectrum, the prominent peaks are at the same positions as for the limit cycle. Nevertheless, all frequencies
acquire nonzero weights at the advent of chaos in the Z2-symmetric submanifold.

attractor starts off being unstable in the full phase space. Only
close to the boundary of phases II and III (red points) this
attractor becomes sufficiently attractive [22]. The restoration
of the Z2 symmetry explains the reflection symmetric (with
no peak at zero) power spectrum of the synchronized chaotic
attractor, see Figs. 3(i).

In the master equation (1) we neglected the effects of
spontaneous emission and inhomogeneous life time T2. Since
the chaotic synchronization is an asymptotic solution of mean-
field equations (3), one needs to clarify the effects of these
neglected decay processes at large times. To this effect, we
show in Fig. 8 that the system reaches its steady state for
δ = 0.080 and W = 0.055 [same as in Figs. 3(g), 3(h), and
3(i)] in approximately 0.14 s (≈200 time steps). In a typical
experimental setup the timescale related to spontaneous emis-
sion can be pushed to 100 s, whereas T2 can be as large
as 1 s [23]. This comparison of the experimental timescales
with the timescale relevant for the observation of chaotic
synchronization validates the master equation (1).

Another impediment for the observation of chaotic syn-
chronization is the limited efficiency of the atomic traps
that are required to localize the atomic ensembles. Current
experiments [24] are able to observe superradiant emission
for as long as 120 ms. This should be enough to detect the
signature of chaotic synchronization: exponential attenuation

of sA
z − sB

z . For example, in Fig. 8 this is seen between 70 and
140 ms. Loss of atoms from the traps with different rates can
also lead to atom number imbalance between the ensembles,
which in turn breaks the Z2 symmetry. This effect, however,
affects the steady states only perturbatively, see Fig. 9.

IV. CONCLUSION

In conclusion, we have predicted chaotic synchronization
of the dynamics of two atomic ensembles collectively cou-
pled to a heavily damped cavity mode. Synchronized chaos
emerges from quasiperiodicity by way of (asymmetric) chaos.
Its origin is in the tangent bifurcation intermittency of the
Z2-symmetric limit cycle (see Appendix). We distinguish the
three phases theoretically, by analyzing the Poincaré sections
and maximum and conditional Lyapunov exponents. Open
questions include the effects of coupling to multiple cavity
modes and of quantum fluctuations. A quantum analog to our
system, where the overall system is chaotic, but a subsector
is not, is known [25]. It would also be interesting to explore
prospects of realizing a viable steganography [1–5] (instead of
hiding the meaning of transmitted message, hide the existence
of the message itself) protocol with our system. In particular,
it is not apparent how to send a message over a long distance.
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FIG. 7. Onset of chaos via tangent bifurcation intermittency in
the dynamics confined to the Z2-symmetric submanifold. Initial
conditions lying in this submanifold lead to (synchronized) chaos
to the left of the dot-dashed line. We superimposed this line onto
Fig. 1. Notice that at its birth the synchronized chaotic attractor
is unstable, since only the red points in the immediate vicinity of
the II–III boundary produce synchronized chaos for generic initial
conditions in the full phase space.
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APPENDIX: TANGENT BIFURCATION INTERMITTENCY
IN THE Z2-SYMMETRIC SUBMANIFOLD

Recall that the synchronized chaotic attractor sponta-
neously restores the Z2 symmetry between the two ensembles
of atoms. Therefore, to gain further insight into it, we investi-
gate Z2-symmetric dynamics in this section.

After a rotation around the z axis by an angle φ0, which
depends on the initial condition, Z2-symmetric dynamics are
invariant with respect to the replacement (4), i.e.,

sB
x = sA

x , sB
y = −sA

y , sB
z = sA

z . (A1)

This implies lx = 2sA
x = 2sB

x , ly = 0 and the mean-field equa-
tions of motion (3) for the spin sA become

ṡx = − δ

2
sy − W

2
sx + szsx, (A2a)

ṡy = δ

2
sx − W

2
sy, (A2b)

ṡz = W (1 − sz ) − s2
x , (A2c)

where we dropped the superscript A for simplicity. The spin
sB is related to sA by Eq. (A1).

Note that Eq. (A2) is very different from the mean-field
equations of motion for a single atomic ensemble coupled
to a bad cavity. We obtain the latter from the two-ensemble
equations (3) by setting one of the spins, say sB, to zero.
Then, by going into a frame uniformly rotating with frequency

FIG. 8. Onset of synchronized chaos. The plot of sA
z − sB

z vs time,
for δ = 0.080 and W = 0.055 shows that the synchronization of
chaos is attained in approximately 200(N	c )−1 ≈ 0.14 s.

ωA = δ/2, we eliminate δ from the one-ensemble equations
of motion. Thus, single ensemble (one spin) equations cor-
respond to setting δ = 0 in Eq. (3). Indeed, summing Eq.
(3) for δ = 0 over τ and rescaling l → 2l , W → 2W , and
2t → t we obtain the one-ensemble equations of motion in
the rotating frame. This implies that the nonequilibrium phase
diagram for a single ensemble is just the vertical, δ = 0 axis of
the two-ensemble phase diagram in Fig. 1 with the rescaling
2W → W . It consists of two fixed points (normal phase and
monochromatic superradiance), see Ref. [14] for details. In
contrast, Eq. (A2) depends on two dimensionless parameters δ

and W in an essential way and, consequently, has much richer
dynamics as we now discuss.

While solutions of Eq. (A2) are consistent with the full
mean-field equations (3), their stability in the full phase space
is not guaranteed. The three types of solutions of Eq. (A2)
are fixed points, periodic (Z2 symmetric limit cycle), and
chaotic (synchronized chaos). In the parentheses we mention
the equivalent solutions of Eq. (3).

Consider the portion of the phase diagram to the left of
the Z2-symmetry-breaking line (black dashed line) in Fig. 6.
Although the Z2-symmetric limit cycle loses stability in the

FIG. 9. Perturbative effect on synchronized chaos of imbalanced
atom number between the two ensembles. We plot asymptotic sB

z

vs sA
z for the same δ and W as in Fig. 3(h), but NA/Nav = 0.95 as

opposed to NA/Nav = 1 in Fig. 3(h). Here Nav = (NA + NA)/2.
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full phase space, it is still stable on the Z2-symmetric sub-
manifold. As we move toward the phase II–III boundary,
the periodic solution eventually loses stability on the dot-
dashed line in Fig. 6 even on the Z2-symmetric submanifold,
giving rise to chaos. We determine this line by computing
the maximum Lyapunov exponent λ with the help of Eqs.
(A3) and (A2). To the left of the dot-dashed line λ > 0, see,
e.g., Fig. 7(b). Additionally, we prove the loss of stability
employing a Floquet analysis of Eq. (A2).

The abrupt transition, and the proximity of the periodic
and chaotic attractors suggest tangent bifurcation intermit-
tency [15]. To illustrate this closeness we compare a chaotic
spectrum with an adjacent periodic one in Fig. 7(c). Below,
we provide the final proof in support of this claim by studying
the evolution of the Floquet multipliers.

Floquet analysis. Our goal is to analyze the stability of the
periodic solutions of the reduced equations (A2). To that end,
we first summarize the Floquet analysis. Write the solution
of Eq. (A2) as s + �s, where s is the periodic solution with
period T , and �s is a perturbation. Linearizing Eq. (A2) with
respect to the perturbation, we obtain a set of linear equations
with time-dependent coefficients

d�sx

dt
=

(
sz − W

2

)
�sx − δ

2
�sy + sx�sz, (A3a)

d�sy

dt
= δ

2
�sx − W

2
�sy, (A3b)

d�sy

dt
= −2sx�sx − W �sz. (A3c)

The next step is to determine the monodromy matrix M =
[S(0)]−1S(T ) for Eq. (A3). Here S(t ) is a 3 × 3 matrix.
Its columns are any three linearly independent solutions of
Eq. (A3), which we obtain numerically. The eigenvalues

of the monodromy matrix ρi ≡ eκiT are known as Floquet
multipliers and κi are the corresponding Floquet exponents.
By Floquet’s theorem, the general solution of Eq. (A3) is

�s(t ) =
3∑

i=1

Cie
κit pi(t ), ρi ≡ eκiT , (A4)

where Ci are constants and pi(t ) are linearly independent and
periodic with period T vectors. The limit cycle loses stability
when the absolute value of one of the Floquet multipliers
becomes greater than one.

Further, notice that �s = ṡ is a purely periodic with period
T solution of Eq. (A3). This implies that one of the Floquet
multipliers is identically equal to one, so that Eq. (A4) takes
the form

�s(t ) = C1ṡ(t ) + C2eκ2t p2(t ) + C3eκ3t p3(t ). (A5)

Near the dot-dashed line in Fig. 6, the remaining Floquet
multipliers ρ2 and ρ3 are both real. As we approach this
line from the right, |ρ2| tends to one from below, while |ρ3|
remains less than one across criticality.

This behavior of the Floquet multipliers implies (by def-
inition) a tangent bifurcation intermittency route to chaos
[15]. A key feature of this route to chaos is that the chaotic
attractor right after the bifurcation remains close to the now
unstable limit cycle for most of the time, which we indeed
observe in Figs. 7(a) and 7(c). Further, the power spectrum
of the Z2-symmetric limit cycle is known to have reflection
symmetry and no peak at zero frequency [14]. The power
spectrum of the synchronized chaotic attractor in Fig. 7(c)
reproduces these features due to the proximity of its trajectory
to the limit cycle.
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