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ABSTRACT 

The Hubbard Hamiltonian, while not one of the most successful models for 
T electrons in benzene, has been extensively investigated in the literature. As 
part of our general study of that model, we have computed all the energy 
levels for all values of the repulsion parameter-a task that has not been under- 
taken before. After extracting all the symmetry of the model we found, to our 
great surprise, many instances of permanent degeneracy of levels with different 
symmetry and also crossing of levels of the same symmetry. We can also 
demonstrate that there is no hidden symmetry to account for these effects. Since 
these results run counter to one of the oldest folk theorems in quantum 
chemistry, our otherwise uninspiring graphs may be of general interest. 

I. THE MODEL 

The system to be considered consists of 2m electrons distributed among 2n 
identical, orthogonal orbitals that are regarded as localized at the vertices of a 
regular 2n-sided polygon. These electrons may be considered to be the n- 
electrons in certain cyclic compounds, primarily benzene,l, 2 or as the electrons 
in a ring of 2n hydrogen atoms using only the ls-orbitals,s~4 or if n is large, 
as the conduction electrons in a one-dimensional metal.6 
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The Hamiltonian to be used will be a rather simplified one with only two 
terms: a one-electron interaction between orbitals at neighboring sites and a two- 
electron interaction between electrons on the same site.6.6 Such a Hamiltonian 
is known as the Hubbard Hamiltonian6 and is one of the few points of contact 
between quantum chemistry and the many-body problem in solid-state physics. 
For large m and n, the ground state and low-lying excited states of the one- 
dimensional model have recently been solved exactly.? In an attempt to eluci- 
date the nature of the higher states, especially their dependence on the two- 
electron repulsion parameter, we undertook a complete numerical study of the 
six-electron Benzene problem. 

Numbering the orbitals around the polygon from 0 to 211-1, and using c : ~  
and cjU for the creation and annihilation operators of an electron with spin u 
in orbital number j, the Hamiltonian is 

H = T + U  

2 n - I  

2n - 1 
u = u  2 C f r  C j t  cf.1 cj.1 

j = O  
(4) 

Integers should be reduced modulo 2n into the interval [0, 2n--11. 
There has been some debate in the literature whether the Hamiltonian (EQ. 1 ) 

adequately represents benzene. Linderberg and Ohm's calculations63 8 seemed to 
be affirmative, but not entirely so. Not only do some of the singlet states come out 
with symmetry assignments different from the generally accepted ones, but the 
purported agreement of the two triplet levels 3E1, and 3Bzn with experiment 
is questionable inasmuch as the experimental data are quoted from K e a r n ~ , ~  
who states clearly that they are only guesses partially supported by theory. 
Kouteckylo was perhaps the first to challenge the appropriateness of H; the 
rejoinderllv 12 was that disagreements between theory and experiment were likely 
due to inadequate approximations and not to an inadequate Hamiltonian. Our 
detailed calculations of the energy levels (cf. section IV) suggest that both the 
Hamiltonian and the approximations are deficient. [Calculations using better 
Hamiltonians, in which all configurations in the configurational interaction are 
included, have indeed been carried out for benzene.13] 

Although our original intention in undertaking these calculations was to 
investigate the Hubbard Hamiltonian in general and benzene in particular 
(2m = 2n = 6), our main conclusions now transcend our original interests. 
The surprising fact is that after the assignment of symmetry quantum numbers 
to all levels there are numerous cases of degeneracy of levels of different sym- 
metry and, at the same time, cases of crossing of levels of like symmetry. A 
tentative explanation of these facts might be that there is additional symmetry 
that we have overlooked, but we can show this is not the case, at least if we 
understand symmetry operators in the generally accepted sense as being inde- 
pendent of the repulsion parameter, U. Since these results violate venerable 
dicta of quantum mechanicsl4-21 we feel that a detailed presentation of our 
calculation may be of general interest. 
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11. THE SYMMETRY 

Normally, the first step towards diagonalking a Hamiltonian is to find and 
use a sufficient amount of symmetry to reduce the matrices to be diagonalized 
to manageable proportions. It is not always necessary, and often not even de- 
sirable, to use all the symmetry, On the other hand, if one wants to disprove 
the noncrossing rule, it is necessary to know all the symmetry and to be able 
to make correct symmetry assignments to all the eigenvalues. To be certain that 
one has found all the symmetry seems difficult, but it is not impossible. In this 
section we shall content ourseltres with finding most of the symmetry and defer 
the final resolution to section V. 

All the symmetry operators will be written in terms of creation and annihila- 
tion operators and will turn out to have relatively simple representations in this 
notation; the necessary computation will therefore not be too complicated. 
The following definitions will be needed: 

2n - 1 

n = n t + n J  (7) 

nju is the number operator  at counts the number of electrons at site j with 
spin u. Jja;kT interchanges the orbitals (ju) and (k7). 

The symmetries are of three kinds: the symmetry of the polygon, the sym- 
metry connected with the spin-coordinates, and symmetries associated with 
special features of the Hubbard Hamiltonian. 

The spatial symmetry group, Czn, v, can be generated by the operators CZn and 
u, which, respectively, rotate the polygon through and reflect it in a line 
through vertices 0 and n. They can be written as 

The symmetry of the spin coordinates can be found by using the operators S2 
and S,: 

S , = ? h ( n t - n & ) ,  (12) 
2 n - 1  

s+ = c C;? C 1 $ ,  s- = s* + '  j = o  
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We shall also need the operator 
2 n - 1  

J(') = J k ,  ;k3. 
k = O  

which interchanges spin directions. Using EQ. 8, J(s) can be written 

From the definition of J ( S )  one easily gets 

These imply that if 9s,M is some eigenstate of S2 and S, with total spin S and z- 
component M, then 

J(e) *s,y = q ' s ,  -M , (21) 

cf. APPENDIX (A.4). Expanding exp(-iTS,) in powers of S, and using EQ. 14, 
we see that J(s )  does not mix different eigenstates of S* with the same eigen- 
value of S,, and hence 

(22) 
where cs,, is a constant that, for a fixed number, 2m, of electrons, depends 
only on S, and which, from (18), can be seen to be either 1 or -1. A trial qs, 
can be constructed as follows: An eigenstate of S2 with S = M and 2m electrons 
is 

J(') *S,O = C8.m *S,O 

The corresponding state with M = 0 is 

Acting on this state with J(8)  gives: 
2s S + m  

j=1 j=2s  + 1 
J ( s ) q ~ , ~  = (S+)  '( n ct,> ( n cjr  c l t )  I O >  

m--8 S+m 

j=1 

= (-1)m (-1)s q s , o  9 

which determines the value of cgam in EQ. 22. 
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W e  turn next to the special symmetry of the Hubbard Hamiitonian. Most of 
this is pointed out in Lieb and W U . ~  First, we define the operator JU(O), which 
changes the sign of the wave function for electrons of spin u on odd sites. 
Likewise, Ju(e) does the same thing for even sites. 

n-1 

Ju'O) = n (1 - 2n2k + 1, u )  
k=O 

The operator Ju(h), which interchanges holes and particles for the spin direction 
u, is: 

2n - 1 

Using the commutation relations for the creation and annihilation operators, 
one can prove the following: 

By ta ing suitable combinations of J,(O), J,fe), and Ju(h), one gets the follow- 

(33) 

(34) 

(35) 

(36) 

(37) 
Z, H + H Z ,  =UnJZ,  (38) 

EQUATIONS 37 and 38 are among the types of generalized commutation rela- 
tions treated in the APPENDIX. If I 2m,M > be a state with 2m electrons and 
eigenvalue of S, equal to M then one has: 

I(0) I2m,M > = I2(2n - m), -M > , (39) 

Z t  1 2 m , M > = ) 2 ( n - M ) ,  n - m > .  (40) 

ing operators: 
J(0) = J, ( 0 )  Jr ( 0 ) )  J(e) = J,  (e) JJ (e) 

J(h) = J t ( h ) J J  (h) , 
I(0) = J(0)  J(h) = Z, Zs. , I ( e )  = J(e) J(h)  , 
Z, = J J ( o ) J t ( h ) ,  ZJ = J r ( O ) J J  (h) . 

I(o)H - H J . ( O )  = U(2n - n)I(O) , 
These operators satisfy: 
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From the results of the APPENDIX (see also Kouteckylo. 22,23 and Lieb and WU,~)  
one concludes that if the states are eigenstates of H with energies E(2m,M), 
then 

E(2m,M) = E(2(2n - m), -M) - U(2n - 2m), (41) 

E(2m,M) = --E(2(n - M), n - m) + U(m - M). (42) 

EQUATIONS 40 and 42 tell us that the energy levels for M = 0, but arbitrary 
(even) electron number, 2m, can be obtained from those for m = n only, pro- 
vided these are known for all M. Correspondingly, the solutions for an odd 
electron number and M = 1/2 can be obtained from those with m = n - 1/2 
and all M. From the theory of angular momentum, on the other hand, we know 
that for a fixed number of electrons the knowledge of all eigenvalues and eigen- 
states for one value of M is sufficient to find the eigenvalues and eigenstates for 
any numerically larger value of M. Consequently, solving the problem for m = n 
and M = 0 immediately gives the solution for any even number of electrons, and 
solving the problem for m = n - 1/2 and M = 1 /2 ,  gives the solution for any 
odd number of electrons. 

Finally, we shall investigate commutation relations between the symmetry 
operators we previously found and I(0) and Z, to see whether the use of the 
mapping (A.14) with I ( O )  for C or the mapping (A.20) with Z, for D implies 
any new symmetry. We find: 

I ( O ) v  = UI(0) (43) 

I ( o ) d  = d I ( e )  =,'I(o) ( - 1 ) n  (44) 

I(O)S, = - S J ( O )  (45) 

I(O)S2 = S21(0, (46) 

I(0) J(S)  = J(#)I (o)  (47) 

z, = (-1)n-lCrZ t (48) 

(49) 

(50)  

z,  d = ( - 1 ) W Z  , (-1)nJ 

Z,S,Z, = (2n - n) 

i = o  
z,s+z, = 9, = -2 (-.1)jCj,Cj* 

2n - 1 

A - *  s- =s+ (53) 

A 

Obviously, we have found an additional symmetry operator, S2. 
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590 Annals New York Academy of Sciences 

111. THE DUGONALIWTION 

In order to utilize the symmetry, we change to a new set of basic one-electron 
functions by introducing the momentum space creation and annihilation opera- 
tors d!a and dpa for p = 0, 1, . . . , 2n-1: 

, 20-1 

I 2 n - 1  

Next, we introduce a vector notation for the basic 2m-electron wave function 
with p spins up and v spins down: 

I r > = I p;q > = d t  . . . dip?  d;,$. . . dLVr l o > ,  (60) 

together with the following standard convention of ordering the components : 

PI t 

In vectors with components that are not in the interval [0, 2n-11, such com- 
ponents should be reduced modulo 2n into this interval. If the components of a 
vector are not in the standard order (EQ. 61), they should be permuted to obtain 
this ordering, and the wave function should be multiplied by -1 if the permuta- 
tion is odd. 

The wave functions (EQ. 60) are obviously already diagonal in n and Sz, 
with eigenvalues 2m = p + v and M = M (p  - v). In general, no confusion 
should arise by just using the notation I r > and assuming p and v to be given 
by the context. 

The Hamiltonian can now be stated in matrix notation, which is necessary 
for computations: 

We have used the following notation: 
2m 
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2m 

P = rk (modulo 2n) , 
k=l  

A(p, p‘) = p if p = p’ 
= ~(p,p’) if the sets {p,} and {p;} have p - 1 

= 0 otherwise. (65) 

In EQ. 65, E = (-l)d, with d being the lexicographical distance between the 
component that occurs only in p and the component which occurs only in p’. 
EQUATION 62 follows easily from EQ. 1-4, 58, 59. 

The transformation EQ. 56, EQ. 57 makes‘ Can diagonal. Since the effect of 
C2, is to change c:,, to c;+ 

(66) 

members in common 

one easily gets 

C2,, d i, ,, CZi = eiaPIn di ,  ,, 

and, therefore, 

Similarly, one finds: 

where -r means that the components of r are multiplied by -1; 

where +ne denotes adding n to each component of r, and li means that p and q 
are changed to the vectors consisting of the integers from 0 to 2n-1, which 
are not represented in p, respectively q. 

By using EQ. 68, 69, and 70, it is fairly easy to find linear combinations of 
the basic wave functions I r > , which are also diagonal under u, J@) and I ( O ) ,  

as long as this does not destroy the already obtained diagonalhation with respect 
to S, and C2,. In any case, I(0) can, of course, be used only if m = n, since I(O) 
otherwise does not commute with H, according to EQ. 37. 

The other restrictions imposed are that u can be used only for P = 0 and 
P = n and that J(*) and I(0) can be used only for M = 0 ( p  = v). J@)I(O) can, 
however, be used for all values of M. We shall use the symbols u, J@),  and I@) 
to designate the respective eigenvalues of u, J ( S ) ,  and I(0). 

The treatment of S2 will be different. With the eigenvalues of S2 equal to 
S(S + l ) ,  one has S A I M I , so that for a given m and M it is possible to 
recognize which eigenvalues of H belong to a certain eigenvalue of S simply 
by diagonalizing H for all higher values of 1 M I. This is a particularly useful 
approach for an even number of electrons with M = 0, since in this case J(’) 

can be used to distinguish between even and odd values of S (as shown above), 
an<, consequently, we can avoid diagonalizing the case M = 1. 

S2 can, of course, be treated in the same manner as S2. As we are interested in 
(M = 0, m = n) in this paper, however, it is much easier to make use of Z t. If 
U/2n be subtracted from the diagonal of H: 
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H’ = H -%nu, (71) 
then the relation EQ. 38 is changed to an anticommutation relation for m = n 
and M = 0, since in this special case Z, does not change m and M according 
EQ. 40: 

H’Z, + Z,H‘ = 0 .  (72) 
From EQ. 52 and A.4 we then have that if qe,,*,~ is an eigenstate of H‘ with 
eigenvalue d, an eigenstaie of S2 with eigenvalue S(S + l) ,  and an eigenstate 
of $2 with eigenvalue &S + 1)) then Z , q c , , n , c  is also an eigen_t$e of these 
thcee operators, with the respective eigenvalues equal to -6, S(S + l ) ,  ,and 
8(S + 1 ) . The assignment of the different values of the quantum number S to 
the different eigenvalues of H’ therefore follows immediately from the assign- 
ment of S to the eigenvalues of H’. 

Z ,  can, however, be used further to facilitate the diagonalization of H’ in 
the case m = n, M = 0. When the symmetry (Can, u, J ( a ) ,  and I(0)) has been 
used to make H’ block diagonal, application of the unitary transformation 

H’+Z, H’Z, (73) 
will transform each of these diagonal blocks of H’ either into minus one times 
itself or into minus one times some other block. In the latter case it is obviously 
sufficient to diagonalize one of the two blocks. 

The change in the eigenvalues of Can, u, J(”, and I ( O )  caused by the trans- 
formation (EQ. 73) can be found from EQ. 48, 49, 54, and 55. They are listed 
in TABLE I. 

*The changes in the eigenvalues of G, u, J(s), and I(0) under the transformation 
given in EQUATION (73) for m = n and M = 0. 

As a final simplification, we observe that EQ. 28 and 29 imply that the unitary 
operator J ( O )  transforms the sign of T and leaves U unaltered: 

J f O )  HJ(0) = J(0 ) (T + U) J(0) = -T + U . (74) 
Consequently, it suffices to diagonalize H‘ for U 2 0 and T < 0. By choosing 
U - T as the energy unit, the following conditions on the parameters U and T 
encompass the entire range: 

T = - ( 1  -U)  (75) 

O < U < l .  (76) 
The rest of the work can be left to the computer. The computations consist of 
four major parts, whose details may be found in REF. 24: 
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1. Using EQ. 68, 69, and 70 to find the desired set of basic wave functions, 
and then using EQ. 62 to find the matrices corresponding to T and to U in this 
representation. 

2. Diagonalizing H' for sufficiently many vslues of U in the interval ( EQ. 76). 
3. Assigning the correct values of S and S to the eigenvalues. 
4. Presenting the results in an appropriate manner. 

IV. THE NUMERICAL RESULTS 

The energy levels for n = m = 3-in other words, the a electron system of 
benzene-are plotted in FIGURES 1-15. The energies, in units of U-4T, are 
those of H' = H - 3.U/2 in order to exhibit clearly the symmetry about zero 
given by EQ. 72 and A.4. In the case of I ( O )  = -1, only the figures for even S 
are shown, since the figures for S = 1 can be generated by inverting the figures 
for S even according to TABLE I. The figures for S = 2 are also not shown, as 
they can be found by inverting the figures for S = 2 according to discussion 
following EQ. 72. For P = 3 the figures for S = 2 and S = 3 are not shown, 
since the levels are simply five energies of -U/2 and one energy of -3U/2. 

Finally, all the figures for P = 0 and P = 3 with uI(0) = - (-1)P have been 
omitted, since it turned out quite unexpectedly that all the energies with 
( c , I ( o ) )  = (-1, (-l)p) were also represented with ( u , I ( O ) )  = ( l , ( - l )p)  and 
the same values of S and P and that all energies with (v, I (O)  ) = ( 1, - ( - 1 ) p, 
were also represented with (u, I (O)  ) = (- 1, - ( - 1 ) p) .  The degeneracy can 
not, of course, be proved numerically, but it was at least within a maximum 
deviation of 10-7, which is to be compared with an estimated computational 
uncertainty of 6 . 10-7. The supposedly degenerate eigenvalues are shown 
with dotted lines. 

As may be seen from the figures, there are many violations of the noncrossing 
rule. This is, of course, the result of an arbitrary decision. When one has cal- 
culated energies as shown by the points of FIGURE 16, one can either choose to 
obey the noncrossing rule, as indicated by - - -, or to make the curves as smooth 
as possible, as indicated by . . . . . Since the above-mentioned unexpected de- 
generacy has already shaken our confidence in the supposed efficacy of sym- 
metry, the authors have not hesitated to prefer the latter possibility as far as 
the noncrossing rule is concerned. 

The corresponding symmetry representation under the spatial symmetry group 
C,, is given in each case in order to facilitate comparison with other calcula- 
tions and experiments. Further, FIGURE 1 7  shows the lowest energy level for 
lA1, lB1, lBz, lEl, lEz, and 3B1. When it is compared with the normally assumed 
ordering of the experimentally found levels,26 

it is seen that the levels lEl and lBl are interchanged for -U/T < 8 and that if 
-U/T exceeds 2, then the level lEz moves from above lBl to the interval 
between lB2 and IE,. 

Finally, TABLE 2 contains a comparison among experimental values, our 
exact calculation with the Hamiltonian (EQ. l), and the approximate calcula- 
tions of Linderberg and Ohm6 using Hamiltonian 1. The choice 

T = -2.869 eV, U = 6.068 eV, (78) 
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FIGURE 1. The eigenvaiues for (P, S, 3, a, I(0)) = (0, 0, 0, 1, l ) ,  lA1, in units of 
U4T as a function of U; - - - represents also the eigenvalues for (P, S, 9, u, I(@) = 
(0, 0, 0, -1, l ) ,  1Aa. 
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Heilmann & Lieb : Hubbard Hamiltonian-Benzene 595 

A 

FIGURE 2. The eigenvalues for (P, S, S, a, I(0)) =-(O, 0, 1, -1, - l) ,  ,1&, in units 
of U-4T as a function of U; - - - represents also the eigenvalues for (P, S, S, U, ICo!) = 
(0,  0, 1, 1, -11, ~ A I .  Upside down the figure shows the eigenvalues for (P, S, S, U, - (0, 1, 0, -1, -11, 3A2; - - -  represents in this case the eigenvalues for (P, S, go) )  , U, I(')) - = (0 ,  1, 0, 1, -l) ,  3A1. 
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FIGURE 3. The eigenvalues for (P, S, 5, u, I(0)) = (0, 1, 1, 1, l ) ,  3Ak in units of 
U-4T as a function of U; - - - represents also the eigenvalues for (P, S, S, u, I(0) ) = 
(0,  1, 1, -1, 11, ‘Ai. 
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\\- 
A 

FIGURE 4. The eigenvalues for (P, S, i, I(0)) = ( 1 ,  0, 1,  l ) ,  I&, in uni of U 4 T  
as a function of U. Upside down the figure shows the eigenvalues for (P, S,%, I(0)) = 
(1, 1,0, 1),3Ei. 
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FIGURE 5,The eigenvalues for (P, S, 5, I(0)) = (1, 0, 0, -l), lE1, in units of U-4T 
as a funchon of U. 
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c 

FIGURE 6. The eigenvalues for (P, S, $, 1'0'3 = (1, 1, 1, -l), SR, in units of U-4T 
as a function of U. 
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> 

F I G W . 7 .  The eigenvalues for (P, S, $, I ( O f )  = (2, 0, 0, l ) ,  I&, in units of U-4T as 
a function of U. 
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Heilmann & Lieb : Hubbard Hamiltonian-Benzene 601 

FIGURE 8. The eigenvalues for (P, S, 6, I@))  = (2 ,  0, 1, - I ) ,  IE,, in unit of U-4T 
as a function of U. Upside down the figure shows the eigenvalues for (P, S, 8, I (0) )  = 
( 2 ,  1,0, - l ) ,  3E2. 
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I 
FIGURE 9. The eigenvalues for (P, S, a, I (@) = (2, 1, 1, l ) ,  ~ E B ,  in units of U-4T 
as a function of U. 
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Heilmann c Lieb : Hubbard Hamiltonian-Benzene 603 

FIGURE 10. The eigenvalues for (P, S, S, U, I(0)) = (3, 0, 1, -1, l), tB, in units 
of U-4T as a function of U; - - - represents also the eigenvalues for (P, S, U, I(0) ) = 
(3,0,  1, 1, l ) ,  lBz. Upside down the figure shows the eigenvalues for (P, S, , u, I(0) ) = 
(3 ,  1, 0, -1, l ) ,  3B1; - - - represents in this case the eigenvalues for (P, S, t u, I(0) ) = 
(3, 1, 0, 1, l ) ,  3B2. 
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A FIGURE 11. The eigenvalues for (P, S, S, u, I (0) )  = (3, 0, 0, 1, - l ) ,  lBz, in units 
of U-4T as a function of U; - - - represents also the eigenvalues for (P, S, $, U, I(0) ) = 
(3 ,  O , O ,  -1, - l) ,  'Bi. 
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Heilmann & Lieb : Hubbard Hamiltonian-Benzene 605 

A 

FIGURE 12. The eigenvalues for (P, S,  S, u, I(0)) = (3, 1, 1, 1, - l ) ,  3B2, in units of 
U-4T as a function of U; - - - represents also the eigenvalues for (P, S, S,  u, I(0) ) = 
(3, 1, 1, -1, - l ) ,  3B1. 
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. 

FIGURE 13.  The eigenvaluesior (P, S) = (0, 2) in units of U-4T as a function of U; 
- cyresponds to (P, S ,  S ,  u, I (0) )  = (0 ,  2, 0, 1, 1 ) ,  6Al, and - - -  corresponds to 
(P, s, S ,  u, I o l =  (0, 2, 1, -1, - l ) ,  6Aa. Upside down t i e  figure shows the eigen- 
values for (P, S )  = (0 2); - corresponds then to (P,S, S, IT, I(0)) = (O,O, 2,1, l) ,  
lA1 and - - -  to (P, S,  5, u, I(0)) = (0, 1, 2, -1, - l ) ,  3Aa. 
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> 

--. -... -------- --- ------------- 
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FIGURE 14. The eigenvalues fo (P, S) = (1, 2) in units of U-4T as a function of U; - corresponds to (P, S, 4, I (0) )  = (1, 2, 1, l ) ,  5E1, and - - -  corresponds to 
(P, # 3, 10) = (1, 2, 0, - l) ,  5E1. Upside down the,figure shows the eigenvalues for 
(P, 1 = (1, 2); - corresponds then to (P, S, S, I(0))  = (1, 1, 2, l ) ,  3&, and 
- - - to (P ,S ,$ , I (o ) )= ( l , 0 ,2 , -1 ) ,1Ei .  
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> 

------------- 

FIGURE 15. The eigenvalues fo (P, S) = (2, 2) in units of U-4T as a function of U, 
orresponds to (P, S, i, I(0) )  =. (2, 2, 0, l ) ,  5Ez, and - - -  corresponds to Kg b, I(0)) = (2, 2, 1, - l ) ,  5Ez. Upside down e figure shows the eigenvalues for 

(P, ) = (2, 2); - corresponds then to (P, S, $ r ( o ) )  = (2 ,  0, 2, l ) ,  lEz, and - - - 
to (P, S, 3, I("))  = (2, 1, 2, - l ) ,  3E2. 
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Heilmann dr Lieb : Hubbard Hamiltonian-Benzene 609 

FIGURE 16. Two alternative graphs that may be drawn from given numerical data (0). 

TABLE 2 
COMPARISON AMONG EXPERIMENTS AND EXACT AND APPROXIMATE CALCULATIONS* 

Exact Exact Approximativ 
Experimental? calculation$ calculation$ calculation 5 

U 6.068 eV 9.597 eV 9.597 eV 
T -2.869 eV -3.647 eV - 3.647 eV 

1A1 0 0 0 0 
1B* 4.72 eV 4.72 eV 5.48 eV 
'B1 6.09 eV 7.64 eV 10.35 eV 4.81 eV 

6.93 eV 7.04 eV 9.58 eV 6.77 eV 
7.33 eV 

3.66 eV 3.66 eV 
4.68 eV 

8.65 eV 
4.06 eV 
5.57 eV 

. - . 

5.88 eV 
4.18 eV 
5.70 eV 

=a 7.33 eV 7.45 eV 4.70 eV 

*a. FIGURE 17. 
?Quoted from G. Herzberg.26 The symmetry assignment is due to R. Pariser.25 
$EQUA,TION 1. 
§Calculated by Lmderberg and Uhm6 by approximations to EQ. 1. 
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610 Annals New York Academy of Sciences 

FIGURE 17. The lowest eigenvalues for lA1, I&, lEa, lB1, lB., and 3B1 in units of 
U-4T as a function of U. 
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Heilmann ~r Lieb : Hubbard Hamiltonian-Benzene 61 1 

gives values for 3B1 and lB2 in agreement with experiment. It appears that the 
poor agreement between Linderberg and Ohm’s calculations6. and experiment 
is partly due to the inadequacy of the Hubbard Hamiltonian and partly due 
to an inadequate approximation method. 

V. THE NONCROSSING AND NONDEGENERACY RULES 

The noncrossing rule was suggested by Hund14 in 1927, and a “proof” was 
given by von Neumann and Wignerl5 two years later. A simplified version due 
to Teller27 is the one most often quoted in textbooks.16-20 

The rule concerns a Hamiltonian that depends on a real parameter, in our 
case U. All levels may be classified by symmetry quantum numbers, and the 
rule is that levels of the same symmetry can never cross each other as U is varied. 
A concommitant rule, which does not seem to have been stated explicitly but 
which follows from the same reasoning and the same assumptions, is the non- 
degeneracy rule. It states that, while energy levels of different symmetry may 
cross, they cannot be equal to each other for all values of U. 

If these rules are believed, their violation in practice would mean that the 
Hamiltonian possesses a larger symmetry group than at first supposed. 

The rules depend crucially on the interpretation of the word symmetry. The 
conventional meaning is that of a symmetry group independent of U; in this 
case the “proofs” are false. It is not difficult to construct a parameter-dependent 
matrix that has no symmetry yet violates both rules. If, on the other hand, one 
allows symmetry groups that are U-dependent, the “theorems” are mere tau- 
tologies, because it is easy to see (cf. REF. 28 for an explicit proof) that one 
can always invent, post hoc, a U-dependent symmetry group to account for any 
violations. 

One may ask what is wrong with the “proofs” quoted above. The fault lies 
not in the mathematics per se but in the assumptions used to connect the mathe- 
matics with the real world: First, in the natural sciences, two real numbers are 
never equal unless there is a physical reason for it; second, that reason must be 
the existence of a U-independent symmetry group. 

The first assumption has validity, but the second is merely a confession of 
ignorance in which, we hasten to add, we also share. Surely there must be a 
“natural” U-dependent symmetry group to account for the violations we have 
discovered, but we cannot find it. One thing is certain, however; all U-indepen- 
dent symmetry groups have been found in Section I1 except for minor exceptions 
(which are not enough to resuscitate the nondegeneracy rule) mentioned in i)  
and ii) below. 

In order to prove that the Hubbard Hamiltonian provides a quantum me- 
chanical counter example to the rules we will, of course, have to prove that 
there is no hidden symmetry. This can be done by the method described in REP. 
28. The principle of the method is as follows: Finding all the U-independent 
symmetry of the Hamiltonian, H, is equivalent to finding all the U-independent 
invariant subspaces of H. If one can find a representation such that the U-inde- 
pendent invariant subspaces are spanned by the basic vectors for the represen- 
tation then H becomes block-diagonal in this representation with each diagonal 
block corresponding to an invariant subspace. If the method is applied separately 
to each of the diagonal blocks into which H has already been split by the sym- 
metry operators CZn, u, I(0) and J ( 5 )  then one can use the simple version of the 
method designed for the non-degenerate case, since none of the blocks shows 
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612 

permanent degeneracy. In this case, an appropriate choice of basic vectors are 
the eigenvectors for any value of U for which no crossing occurs. The method 
entails diagonalization of H and is, consequently, numerical. The results seem, 
however, to indicate very strongly that there is no important hidden symmetry. 
The known symmetry corresponding to the unused symmetry operators S2 and 
S 2  revealed itself even with very low numerical cutoff levels (Cutoff 
level refers to the criterion for declaring an off-diagonal element to be zero). 
Nothing else of interest showed up even with the cut-off level as high as 10-I; 
several values of U were tried. 

There is, indeed, some U-independent symmetry in addition to that given 
in Section 11. Its significance eludes us at present, but in any case it still leaves 
the majority of violations unexplained. The additional U-independent symmetry 
is ( i )  For P = 3, S = 2 there is a fivefold degeneracy with E’ = U/2, and 
for P = 3, S = 2 there is a fivefold degeneracy with E’ = -U/2. For P = 3, 
S = 1, cr = -1, I(0) = 1 there is an E’= -U/2 level, and for P = 3, S = -1, 
(r = -1, I(0) = 1 there is an E’ = U/2 level. These two groups of sixfold 
degenerate levels have the property that the wave functions are U-independent 
and hence all U-independent unitary transformations in these subspaces commute 
with H. (ii) For S = 2 or 3 = 2, every wave function belonging to I ( O )  = -1 is 
U-independent. The eigenvalues have no degeneracy. If one wishes, any Abelian 
group of operators that commutes with this subspace of H will be a U-indepen- 
dent symmetry group. 

From the numerical point of view, the degeneracy is more interesting than 
the crossing: First, degeneracy definitely establishes the crossing, at least in some 
cases, because there are many instances where degenerate groups of levels of 
different symmetry cross a level of the same symmetry as one in the group. 
Since all levels are continuous in U, there can be no numerical ambiguity about 
the crossings. Second, the degeneracy is much better supported by the numerical 
data, as the levels are calculated for many values of U, not just one. 

Even though the results of the numerical calculations render both the existence 
of degeneracy and the absence of hidden symmetry very probable, it would be 
preferrable to have a rigorous proof. It is merely a question of work to prove 
the degeneracy, since this can be done by evaluating the characteristic poly- 
nomials for the respective matrices in closed form and then prove one poly- 
nomial to be a factor in the other. To prove the nonexistence of additional sym- 
metry one would in general need a complicated error analysis. However, it is 
very fortunately the case that if one choses the subspaces (P = 3, S even, (r = 1, 
I ( O )  = 1) and (P = 3, S even, cr = -1, I ( O )  = 1) then it is possible to apply 
the general method of REF. 28 in such a manner that one has to diagonalize 
only 2 X 2 matrices. The submatrices of H that correspond to the two chosen 
subspaces are shown in TABLES 3 and 4. 

For (r = 1 (TABLE 3 ) ,  there are no problems. ,,States no. 2 and no. 3 with 
eigenvalues U/2 and -U/2 correspond to ( S ,  S )  equal tol(O, 2) and (2, 
0), respectively. The remaining two levels correspond to (S, S) = (0, 0) with 
energies 

(79) 
For cr = -1 (TABLE 4), we apply the method of REF. 28 to find the symmetry. 
By choosing U = 0 we can use the fact that the T-part is already diagonal. 

The energy levels 6T, 3T, 2T, -2T, -3T, and -6T are all nondegenerate, and 
the only freedom left concerns the choice of basic vectors for the eigenspace 

Annals New York Academy of Sciences 

E’ = +- (9T2 + %U2) x. 
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Heilmann & Lieb : Hubbard Hamiltonian-Benzene 613 

TABLE 3* 
 ON^ SUBMATRIX OF H 

Wave 
Function T- 

No. Part u-Part 
1 -3 0 0 0 3  
2 0 0 3 0 0  
3 0 0 0 - 3  0 
4 3 3 0 0 0  

*The T-part and U-part of the submatrix of H that corresponds to P = 3, S even, 
u = 1, and I(0) = 1. The numbering of the wave functions is arbitrary. Since the 
T-part is diagonal, only the diagonal is shown. The U-part should be multiplied by 
1/6. 

corresponding to the fourfold degenerate level 0. These vectors are fixed such 
that the U-part becomes block-diagonal as far as possible. 

TABLE 4 
ONE SUBMATRIX OF H 

Wave 
Function T- 

No. Part U-Part 

1 -6 0 0 1 -1 dT8-<2-d2 0 -1 0 
2 -2 0 0 -1 1 q3 d3 g 2  0 0 -1 
3 0 1 -1 1 0 - 4 2  fi 0-<2 -1 1 
4 0 -1 1 0 - 1 - d T  0 d3 d2 -1 1 
5 -3 d 3  d/Z-dZ--.\r2 0 2 -2 - 3  0 0 

7 0 -dT  d T  0 dx -2  0 1 2 -d2 d3 
8 3 0 0.-* dz - 3  2 2 0 fiqs 
9 2 -1 0 -1 -1 0 d?--dZ d 2  0 0 

6 0 -d? \r2 <8 0 2 -1 0 2 43 -v'3 

10 6 0 -1 1 1 0 -d2 43 dT8 0 0 

*The T-part and U-part of the submatrix of H that corresponds to P = 3, S even, 
u = -1, and I(0) = 1. The numbering of the wave functions is arbitrary. Since the 
T-part is diagonal, only the diagonal is shown. The U-part should be multiplied by 
1/6. 

According to the method, we start by diagonalizing the submatrix of the 
U-part that involves only the four states with zero eigenvalue of T. The sub- 
matrix is: 

(The number of the respective wave functions are listed at the left.) Transfor- 
mation to the new basic set: 
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obviously makes EQ. 80 diagonal. The new matrix for c = -1 is given in 
TABLE 5 and FIGURE 18. The functions 3A and 4A can still be rotated, since 
3A and 4A have the same diagonal element after the diagonalization of EQ. 80. 
Next, we consider the intersection between state 1 and states 3A and 4A, 

and we see that the matrix (EQ. 82) is already in a form with as many zeros as 
possible and that no further rotation of 3A, 4A will produce more zeroes. By a 
similar argument, we find that 6A, 7A should also not be rotated further. The 
graph that represents the connectedness of the matrix is shown in Fig. 18. 

The states 3A and 7A with energies U/2 and -U/2 correspond to S, 5 
equal to (0,2) and to (2,0), respectively. The other eight states are connected in 
the graph, and, according to REF. 28, there can be no further symmetry. 

t 

\ 
FIGURE 18. The graph of the matrix given in TABLE 5. 
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TABLE 5* 
ONE SUBMATRIX OF H 

Wave 
Function T- 
No. Part U-Part 
1 -6  
2 -2 
5 - 3  
3A 0 
6A 0 
I A  0 
4A 0 
8 3 
9 2 

10 6 

o &  
0 -vlT 
0 -<6 
3 0  
0 - 3  
0 0  
0 0  
0 -fi 
0 -q3 
0 q3 

0 -1 
0 0  

-3  0 
0 0  

0 0  
-d5 -d3 

The submatrix of H that corresponds to P = 3, S even, u = -1 and I(0) = 1 after 
the transformation given in EQ. 81. Again, the U-part should be multiplied by 116. 

By using a computer it is possible to evaluate the characteristic polynomial of 
the matrix in TABLE 5 in closed form. Eliminating the two known roots, U/2 
and -U/2, one gets the following eighth-order polynomial (U’ = U/6) ; 

~8 + (-49T2 - 108 UQ) XS + (504T4 + 21 15 U’2 T2 + 2430 U’4) x4 
+(-1296T* - 10368U”T‘ - 15795 U’4 T2 - 20412U”) x2 + 1 1664U’z T8 - 40824U’4 T4 + 6561U” T2 + 59049U”, (83) 

x2 - (9T2 + 9U”) (84) 

is a factor in the eighth-2rder polynomial, we will have shown that the eigen- 
values for P = 3, S = 0, S = 0, u = 1, I(0) = 1 as given by EQ. 79 are in fact 
also eigenvalues for P = 3, S = 0, 9 = 0, u = -1, Ic0) = -1. This can be 
shown to be true by synthetic division by the polynomial (EQ. 84), thereby 
concluding the proof of the degeneracy. 

By showing that the polynomial 

APPENDIX: IMPLICATIONS OF CERTAIN KINDS OF “PSEUDOSYMMETRY” 

Here we gather together some important but far from novel formulas that are 

It is well known that symmetry of a Hermitian operator, H, corresponds to 

A j H - H A , = 0 , ( j = 1 , 2 , - -  - ) .  (A.1) 
The implication of EQ. A.l is the possibility of diagonalizing A, and H simul- 
taneously, and, if some of the AJ’s do not commute, this might imply degeneracy 
of the eigenvalues of H. We shall now study the implications of other equations 
that formally resemble (A. l ) .  

needed in the text. 

the existence of unitary operators, A,, A2 - - - , which commute with H: 

The first of these is the anticommutation relation 

B H + H B = O ,  (A.2) 
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with B nonsingular. If V is an eigenstate of H with eigenvalue E ,  then 

H'P=&. ('4.3) 

HB'P = -EBV (A.4) 

and the nonzero eigenvalues of H occur in pairs with opposite sign. If EQ. A.1 
and A.2 are taken together, one gets 

(B-'AjB)H - H(B-1AjB) = 0 ( A.5 1 

EQUATION A.2 implies that BW is an eigenstate of H with eigenvalue --E: 

which implies that the mapping: 

A j j B - 1  Aj B 

is a 1:l  mapping of the set of all operators that commute with H onto itself. 
Furthermore, the mapping 

A j 4 B  Aj (A.7) 

is a 1: 1 mapping of the set of all operators that commute with H onto the set 
of all operators, which anticommute with H. Conclusion: To find the entire set 
of anticommuting operators it is necessary to know only one of them, together 
with the entire set of commuting operators. 

Next we shall consider a generalized commutation relation: 

C H - H  C = C  K (-4.8) 

with the following constraint on K: 
H K  - K H = O  

If W is simultaneously an eigenstate of H with eigenvalue E and of K with eigen- 
value K (this is possible according to EQ. A.9), then one has 

H c T=(E-K)C 'P . (A.lO) 

If, further, C and K anticommute: 
C K + K  C = O ,  (A.11) 

then we have EQ. A.4 again: 
K c * = - K  c * .  (A.12) 

Another trivial consequence of EQ. A.8, A.9, and A.l l  is that 

C2 H - H  C 2 = 0 .  (A.13) 

Actually, the conditions A.13 and A.11 are equivalent when A.8 and A.9 obtain. 

Aj+C-' Aj C (A.14) 

will be a 1 : 1 mapping of the set of operators that commute with both K and H 
onto itself. 

If, in addition, C is nonsingular, the mapping 

Finally, we shall consider a generalized anticommutator relation: 

D H + H  D = D  L 
H L - L H = O  . 

(A.15) 
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Heilmann & Lieb : Hubbard Hamiltonian-Benzene 617 

If W is simultaneously an eigenstate of H with eigenvalue E and of L with eigen- 
value A, then one has 

H D W=(A-E)D W . (A.16) 
If, further, D and L commute: 

D L - L  D=O (A.17) 
then one has: 

L D W = A D W  (A.18) 
and 

D2 H - H  D 2 = 0 .  

If D is nonsingular, the mapping 

Aj+'D-' Aj D 

(A.19) 

(A.20) 

is a 1:l map of the set of operators, which commute with both L and H, onto 
itself. 
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