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Abstract. A deeper understanding of the processes underlying the distribution of animals in space is
crucial for both basic and applied ecology. The Common buzzard (Buteo buteo) is a highly aggressive,
territorial bird of prey that interacts strongly with its intra- and interspecific competitors. We propose
and use random matrix theory to quantify the strength and range of repulsion as a function of the
buzzard population density, thus providing a novel approach to model density dependence. As an
indicator of territorial behaviour, we perform a large-scale analysis of the distribution of buzzard nests
in an area of 300 square kilometres around the Teutoburger Wald, Germany, as gathered over a period
of 20 years. The nearest and next-to-nearest neighbour spacing distribution between nests is compared
to the two-dimensional Poisson distribution, originating from uncorrelated random variables, to the
complex eigenvalues of random matrices, which are strongly correlated, and to a two-dimensional
Coulomb gas interpolating between these two. A one-parameter fit to a time-moving average reveals
a significant increase of repulsion between neighbouring nests, as a function of the observed increase
in absolute population density over the monitored period of time, thereby proving an unexpected yet
simple model for density-dependent spacing of predator territories. A similar effect is obtained for
next-to-nearest neighbours, albeit with weaker repulsion, indicating a short-range interaction. Our
results show that random matrix theory might be useful in the context of population ecology.

1. Introduction

It is one of the major goals of population ecology, and indeed one of the oldest goals of ecology as a
whole, to understand the processes that govern the distribution of animals in space and time [24]. This
is not only an important academic question, but has crucial implications for conservation planning
and management [21, 31]. Birds of prey, or raptors, are often apex predators, are among the most-
threatened groups of birds globally [23], and their abundance and diversity is a key indicator of the
state of the ecosystem as a whole [35]. Birds of prey have been used as model systems in other such
contexts, for example vultures, including the interaction with humans [14], or even as an indicator for
the well-being of entire ecosystems [21, 31]. Their charismatic nature, conspicuousness and relatively
high vulnerability due to their trophic position increases their conservation value [35] and hence the
recording of their population dynamics has attracted a lot of attention for centuries [30]. In this
article, we focus on the behaviour of such a territorial bird of prey, the common buzzard, and model
a change in its population density over 20 years. As we shall see, their territoriality, measured by the
repulsion among their nests, increases significantly with population size.

In many animal and plant populations, reproductive success decreases with increasing population
density. This density dependence of reproduction has been known since the dawn of modern animal
ecology [24]. Although density dependence has been examined in different taxa [37], it is rather
easily studied in large, territorial species. One particularly prominent group used for disentangling
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hypotheses about density-dependent processes have been birds of prey [21, 22]. Their predatory
habit could amplify the occurrence of strong density dependence and make them especially suited
for studies of the underlying mechanisms [11]. Territoriality allows density effects to be examined
in detail, while this possibility could be impaired in classically colonial species. Birds of prey also
offer the advantage of being very site-faithful: once they have occupied a territory, they rarely move
and they are highly aggressive against intruders and hence territorial aggression can be fatal. The
study of mechanisms that could explain the spatial clustering of bird of prey territories is therefore
of theoretical as well as applied value.

Here, the locations of buzzard nests collected over the 20 years 2000−2019 in the Teutoburger
Wald around Bielefeld, Germany, are investigated. We are in the comfortable position to have about
100−200 nests per year available in this approximately two dimensional (2D) landscape, over a period
of 20 years; see Section 2 for details. Given such a data set, it is tempting to model the emergence
and behaviour in space and time from an ecological angle. However, this would require to make
many assumptions and to introduce even more parameters, which bears the danger of overfitting.
Indeed, a less biased approach would begin by extracting structural properties from the data, such as
distribution patterns, distance preferences, or any kinds of correlations in space and time. Although
the inference point of view from point process theory would be natural, compare [19], the data set does
not seem to be large enough for such an endeavour. Consequently, the goal of this initial approach is
rather modest in the sense that we primarily look at the spacing distribution between neighbouring
points, that is, the nest locations, in order to test whether a model with one parameter and no a
priori biological assumptions could still explain the change in territorial spacing over time.

A popular approach to spacing distributions is based on random matrix ensembles. They allow
to analytically quantify the repulsion among data points, without making further assumptions. In
particular, the spacing distributions of the classical random matrix ensembles in one (1D) and two
dimensions (2D) are parameter free. For some details on random matrices, we refer to Appen-
dix A. Their history started independently in multivariate statistics [39], inspired from agriculture
by Wishart, and in a statistical theory of energy levels of complex quantum systems by Dyson [12],
motivated by Wigner and ideas of Bohr about the compound nucleus; see [17] for a historic account
and various modern applications. Further examples without quantum mechanical background re-
peatedly show the signature of random matrix statistics, such as the spacing between subsequent
buses in Cuernavaca (Mexico) [20], and parked cars [32, 1] or birds on a power line [34]. While most
comparisons are made for data in 1D, comparing with the statistics of real eigenvalues of symmet-
ric or Hermitian random matrices, few examples exist in 2D. Here, one is comparing with complex
eigenvalues of random matrices without symmetries, with applications ranging from quantum chaotic
systems with dissipation [16, 2] over quantum field theory with chemical potential [28] to the spacing
between chief towns of departments or districts [27] and Swedish pine trees [26]. Data sets similar to
the latter two have been modelled by so-called determinantal point processes [25], for which random
matrices provide a particular example. A novel feature we propose here is to track the time evolution
of the repulsion strength, in this case as a function of the population density. This allows us to draw
biologically more relevant conclusions, compared to the static distribution of birds on a power line.

In order to apply such ideas to the distribution of nests, we employ recent progress on the univer-
sality of certain distributions in random matrix theory. In Section 3, we start with a comparison to
the distribution from a uniform Poisson process in 2D, which describes the distribution of uncorre-
lated points, and to the distribution of the complex Ginibre ensemble of random matrices [15], which
displays a rather strong repulsion. The repulsive nature is also easily detectable from the diffuse
scattering components in the diffraction image of random point sets in 2D [5]. We stress again that
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both distributions are parameter free, after fixing the normalisation and first moment to unity. As
we shall see, the nest locations are indeed not adequately described by a Poisson process, in line with
the known and frequently observed territorial repulsion of the buzzards.

In this first step, it also becomes clear that the repulsion in the Ginibre process is too strong, which
is perhaps not too surprising either, as the ecological system should show some repulsion on a shorter
scale (visual range), but not a long-range one. To deal with this situation, we embark on a simple
one-parameter interpolation between Poisson and Ginibre statistics, which we derive from a known
2D Coulomb gas ensemble at variable temperature (being a non-determinantal, general Gibbs point
process [13, 36]). Since the underlying model has no direct meaning in the biological system, the
parameter β (proportional to the inverse temperature) is just taken as an effective phenomenological
quantity and then determined by a simple fitting procedure. It directly measures the power of local
repulsion of two points at distance s, which is proportional to sβ+1.

It turns out that the employed one-parameter family of spacing distributions works well for the
data. Moreover, our effective parameter proves sensitive to population density dependent properties
in time, which indicates its suitability for our initial step in the data analysis. In Section 3, we explain
how we analyse our data in moving time averages, with further details provided in Appendix C. Our
conclusions and open questions are summarised in Section 4.

2. Object of Study, Density Dependence, and Territoriality

The Common buzzard (Buteo buteo L.) is a medium-sized bird of prey (50−57 cm body length,
525−1364 g body weight) and breeds across the Palaearctic [10]. Its main prey consists of microtine
rodents. A Common buzzard population comprising between 63 and 266 breeding pairs per year was
monitored from 2000 to 2019 in an investigation area in Germany. The 300 km2 area (8◦25’E and
52◦6’N) is located in Eastern Westphalia and consists of two 125 km2 grid squares and 50 km2 edge
areas. The main habitat is the Teutoburger Wald, a low mountain region reaching a height of 315 m
above sea level. Ridges are covered by Norway Spruce Picea abies and Beech Fagus sylvatica, with
Oak Quercus robur and Q. petrea forests at lower altitudes. The second main habitat is a cultivated
landscape to the north and south. In the north, forests are composed mainly of Beech and Oak,
whereas Scots Pine Pinus sylvestris dominates in the south. The size of forest patches varies from
rows of trees to large patches of more than 10 km2 in size, and about 17% of the study site is forested.
Most forests are less than 100 years old and the spruce forests are atypical of this region. This study
site has been intensively monitored for Common buzzard and the resulting spatial data have been
used extensively before [21, 9, 29]. We use the very same data of the nest locations for our analysis,
completed by the most recent years.

All forest patches were visited in late winter to look for breeding pairs and all nests of four raptor
species (Common buzzard, Goshawk Accipiter gentilis, Red Kite Milvus milvus and Honey Buzzard
Pernis apivorus) were recorded in either large-scale maps or GPS devices to examine spatial distribu-
tion and interspecific competition. When an incubating Common buzzard was observed on the nest
in both March and April, that pair was classified as breeding (in contrast to non-breeders which did
not occupy a nest). An illustration is shown in the left panel of Figure 1.

Figure 1 shows the nest locations for a single year 2019, where the population density is among the
highest over the observed period. The effect of towns and smaller cities appears to be visible as holes
in the data set. The statistics on the potential edge effects is too small to draw conclusions. We thus
chose to treat all the data points as being part of a bulk, without considering edge effects. Notice that,
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Figure 1. Visual comparison of nest locations of the Common buzzard with a typical
snapshot of random matrix eigenvalues.
Left: Map showing the locations of 251 observed buzzard nests from the year 2019
north-west of Bielefeld. Note how smaller cities like Halle and Werther coincide with
holes in the data. There are more nests outside the cluster shown here, but the
positions of these have not been recorded.
Right: Points distributed according to the 2D Poisson distribution (bottom, red
crosses) and eigenvalues of a large complex Ginibre matrix (top, blue circles). Both
ensembles consist of 300 points, the Poisson variables are generated uniformly on
the unit disk, while the Ginibre variables are the eigenvalues of a complex Gaussian
random matrix normalised to the unit disk. Only the top/bottom half disk is shown for
an easier comparison. Notice how the Poisson points tend to cluster, whereas points
from the Ginibre ensemble are more evenly spaced. This is reflected in the nearest
neighbour spacing distributions (A.1) and (A.4), which we compare quantitatively to
the buzzard nests below.

within the Ginibre ensemble of random matrices, the statistics at the edge of the spectrum (unit disk)
differs from that of the bulk points. There, the transition from edge to bulk is very rapid though,
within a distance of order 1/

√
N from the edge for N points; compare [38] for the mathematical

discussion of this class of random matrices.

3. Territorial Behaviour of Common Buzzards

Ideally, we wish to investigate the territorial behaviour over the years. Unfortunately, the individual
years have too few data points for comparison, as typically of the order of 1000 data points would
be needed to make a good fit; see Figure 2 (left) and Figure 4 (left) in Appendix C. We therefore
group the nests in ensembles of 5 years (2000−2004, 2002−2005, ...) as follows. For each year,
the spacings are determined individually and then put into an ensemble. After unfolding the data



TERRITORIAL BEHAVIOUR OF BUZZARDS VERSUS RANDOM MATRIX SPACING DISTRIBUTIONS 5

2019 alone 2015-2019 All Years

N
e
a
re

st
N
e
ig
h
b
o
u
r

N
e
x
t-
to

-N
e
a
re

st

Figure 2. Comparison of distances between nests to those of a 2D Coulomb gas
(A.3) with a Kolmogorov fit, both nearest neighbour (NN, top row) and next-to-
nearest neighbour (NNN, bottom row), where the repulsion β is treated as a fitting
parameter. We have also added the curves corresponding to the analytic expressions
for Poisson and Ginibre variables; see Eqs. (A.1) and (A.4) for the top row, and
Eqs. (A.2) and (A.5) for the bottom row. To illustrate our grouping of several years
explained in the main text, we provide the fit of a single year (left column), of 5 years
(middle column), and of all 20 years (right column). Using one year, the fit quality is
rather poor, but when using all years, we lose the temporal information. We therefore
make the compromise of moving averages of 5 years. The result is shown in Figure 3.
See also Figure 4 in Appendix C for the effects of different group sizes.

points as explained in Appendix B, we fit the nearest and next-to-nearest neighbour spacings of
every ensemble to a Coulomb gas, with β as the fitting parameter describing the local repulsion; see
Figures 2 and 3. Notably, these fits to NN and NNN do not give the same value for β within the same
ensemble. Let us first compare the β-dependence within each ensemble. Initially, the next-to-nearest
neighbour spacing gives a significantly lower value for β, which is about half of that of the nearest
neighbour β-value. At first, it is close to the Poisson process at β = 0. This suggests that the
correlation length is relatively small: the buzzards are aware of their direct neighbours, but do not
have long-range interactions. This differs from the long-range interaction of the Coulomb force.

Next, we also compare the growth in population in Figure 3 (right) to the time dependence of
the repulsion measured in β in Figure 3 (left) over the years and find that an increase in population
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Figure 3. Left: Comparison of the NN spacing distribution of all collected nests
2000− 2019 to a Kolmogorov fit for the effective parameter β of the spacing distribu-
tion, obtained from a 2D Coulomb gas (A.3); see Appendix A. The fits to nearest (top
blue data points) and NNN spacing (bottom red data points) are made in groups of
5 years. That is, the first group is 2000 − 2004 and the last is 2015 − 2019; compare
with Figure 4 in Appendix C discussing different groups sizes.
As detailed in Appendix C, the statistical error bars are found by fitting the param-
eter β in the spacing distribution obtained numerically from the Coulomb gas (A.3)
to themselves (bootstrapping), that is, the spread of the β obtained by fitting each
of the 104 realisations to their average distribution. To avoid any influence from the
choice of bin width for our data, we have in fact fitted to the cumulative distribution
of the spacing distributions, using the Kolmogorov distance. A least-squares fit with
a straight line is provided for both spacing distributions, to show the trend.
Right: The averages of the population size over the same groups of 5 years as well as a
fit with a straight line. The errors of the individual years are here assumed Poissonian
and propagated to the averages. Note that the linear increase in size coincides with
the increase in β.

coincides with an increase in repulsion. This is indicated by the linear fits in Figure 3. Note that the
observed area is roughly the same through the years, so the population is proportional to the density.
Surprisingly, beyond a certain critical density, the β-value of both spacings becomes comparable,
indicating an increase in correlation length. For Coulomb gases, the normalised spacing distribution
is invariant under a change in density, but here the added population makes the Common buzzards
more territorial. This suggests that they care only about their closest neighbours, but not about the
overall scale of the environment. In other words, there exists a length scale that is not present in the
global potential of the Coulomb gas.

4. Conclusion and Open Questions

Above, we compared the spacing distributions of the nests of the Common buzzard in an area of
the Teutoburger Wald to a one-parameter family of correlated random variables that includes the
behaviour of Poisson random variables and of complex eigenvalues of random matrices in limiting
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cases. We find that it provides a good effective description of the repulsion among neighbouring nests,
thus quantifying the territorial interaction between the birds. This allows us to isolate population
density effects over time, where we find an increase in repulsion through an increase of absolute
population density, and to also gauge the correlation length of the interactions. We observe that
the Common buzzard seems to care more about nearest neighbours, while next-to-nearest neighbours
only become important beyond a certain population density.

One of the open questions is to come up with a simple phenomenological model that would lead to
similar statistics as the one-parameter family of a 2D Coulomb gas that we found to be effective in our
data analysis. In a more theoretical direction, the explicit data analysis has shown that the theoretical
results from [2] needed to be extended in several directions, to include longer range correlations and to
efficiently deal with small data sets. This will certainly inspire future activities on the mathematical
side as well, for instance to include different charges to model several species.

Acknowledgements: This paper grew out of a collaboration between members of three distinct re-
search groups, all supported by the German Science Foundation (DFG), namely CRC1283 “Taming
uncertainty and profiting from randomness and low regularity in analysis, stochastics and their ap-
plications” (GA and MB), IRTG2235 “Searching for the regular in the irregular: Analysis of singular
and random systems” (AM), and CRC/Transregio 212 “A Novel Synthesis of Individualisation across
Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction (NC)3”
(OK). We thank Ellen Baake for useful discussions and careful comments on the manuscript, as well
as the School of Mathematics and Statistics of the University of Melbourne for hospitality (G.A.).

Appendix A. Spacing Distributions from Poisson, Ginibre and Coulomb Gas

Here, we recall the spacing distributions between nearest and next-to-nearest neighbours of cor-
related and uncorrelated random variables and discuss their relevance, related to the concept of
universality in random matrix theory.

Let us begin with the uncorrelated case, the Poisson distribution (Poi). Given a set of uniformly
distributed, uncorrelated points in 2D, the distances between nearest neighbours (NNs) and next-to-
nearest neighbours (NNNs) follow the respective spacing distributions

p
(NN)
Poi (s) =

π

2
s e−πs

2/4,(A.1)

p
(NNN)
Poi (s) =

π2

8
s3 e−πs

2/4,(A.2)

in the limit of large data sets. Here, both the zeroth and first moments are normalised to 1. Note
that in contrast to 1D, where the Poisson distribution for NN is the simple exponential e−s, without
repulsion among NN, uncorrelated points in 2D also seem to repel each other, with the linear factor
stemming from the 2D area measure. The derivation of Eq. (A.1) is standard. Computing the
probability that the NNs of a given point lie in a ring of radius s and thickness ds, with all other
points being outside that ring, leads to (A.1) in the limit of large particle numbers. The computation
of NNN in (A.2) merely uses independence and (A.1), where we refer to Appendix A in [33] for a
derivation in arbitrary dimensions, including higher-order neighbours.

Let us turn to the spatial statistics based on random matrices. They have been conceived as a null
model, for instance in the analysis of multiple time series. In that case, the data matrix with several
measured times series of equal length as rows is replaced by a random matrix with independent
Gaussian entries, with zero mean and unit variance. Taking this matrix times its transposed we
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obtain a positive definite matrix, the Wishart matrix, and precise analytic statements about the
eigenvalues of this matrix can be made [13]. The eigenvalues become strongly coupled, due to the
Jacobi determinant from the transformation that diagonalises the Wishart matrix. In the limit of
large matrix size, these results become universal, that is, they hold for a much larger class of random
matrix entries. In many instances, the majority of eigenvalues obtained from the matrix of time series
is well described by those of the random matrix, after proper rescaling. Further applications of the
universal random matrix predictions to data that are not necessarily eigenvalues of a matrix or an
operator are mentioned in the Introduction.

In order study complex eigenvalues, we consider N ×N complex, non-Hermitian random matrices,
with independent entries drawn from the complex normal distribution, the complex Ginibre (Gin)
ensemble [15]. We directly consider the random matrix now, without multiplying by its Hermitian
conjugate, and thus its eigenvalues are complex. As for the real eigenvalues above, the complex
eigenvalues of such matrices become correlated random variables, due to the Jacobi determinant of
the Schur decomposition. The joint density of complex eigenvalues reads [15]

(A.3) pCou,β(z1, . . . , zN ) ∝ exp

(
β

∑
1≤j<k≤N

log |zk − zj | −
N∑
`=1

|z`|2
)
,

with β = 2. It equals the static gas of N charged particles at the locations of the complex eigenvalues,
repelling each other with respect to the long-range 2D Coulomb (Cou) interaction at a specific inverse
temperature β = (kBT )−1, with kB the Boltzmann constant. The particles (eigenvalues) are kept
together through a confining, quadratic potential V (z) = |z|2, that originates from the Gaussian
distribution of matrix elements in the Ginibre ensemble. Compared to standard conventions for the
Gibbs measure in statistical mechanics, we have rescaled the positions as β|zj |2 → |zj |2, allowing us
to take the limit β → 0 below.

The limiting NN and NNN spacing distributions among complex eigenvalues with joint distribution
(A.3) at β = 2 can be derived explicitly in the large-N limit:

p
(NN)
Gin (s) =

( ∞∏
k=1

Γ(1 + k, s2)

k!

) ∞∑
j=1

2s2j+1e−s
2

Γ(1 + j, s2)
,(A.4)

p
(NNN)
Gin (s) =

( ∞∏
k=1

Γ(1 + k, s2)

k!

) ∞∑
j=1

∞∑
k=1
k 6=j

γ(1 + j, s2)

Γ(1 + j, s2)

2s2k+1e−s
2

Γ(1 + k, s2)
.(A.5)

Here, Γ(1 + k, s2) =
∫∞
s2 t

ke−tdt and γ(1 + k, s2) =
∫ s2

0 tke−tdt are the incomplete Gamma functions.
The exact expressions at finite matrix size, where sums and products are truncated at N−1, converge
very rapidly. The derivation for NN (A.4) from [16] can be sketched as follows. Placing one eigenvalue
by hand at the origin, for instance by setting z1 = 0 in (A.3), the gap probability that all other
eigenvalues are at least at radial distance s is obtained by integrating the joint density (A.3) over all
angles and over all radii larger than s. Algebraic manipulations lead to the gap probability, being
equal to the product in front of the sum in (A.4). A differentiation with respect to s then gives the
spacing distribution. The same idea leads to the NNN expression (A.5) or higher order spacings.
The generating function for the corresponding gap probability was calculated in [3], and a short
computation leads to (A.5).

Let us discuss some properties of the spacing distributions in (A.4) and (A.5). It is not difficult
to see that, for small arguments, the repulsion is much stronger in the Ginibre ensemble, being
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proportional to s3 for NN in (A.4), and to s5 for NNN in (A.5), compared to (A.1) and (A.2) in the
Poisson case, respectively; compare Figure 2. For simplicity, we have not yet rescaled the expressions
in (A.4) and (A.5) by the respective first moments, as it is done in Figure 2 for comparison to data.
Both distributions for NN and NNN in the Ginibre ensemble are universal, in the sense that they
hold beyond independent Gaussian distributions for the matrix elements; see [4, 38] for the precise
statements of the theorems for different generalisations. Moreover, for all three Ginibre ensembles
with real, complex, or quaternion matrix elements, the spacing distributions in the bulk all agree
[2, 7], which is why we display a single distribution for the Ginibre ensemble in Figure 2. This is in
sharp contrast to Hermitian random matrices with real, complex or quaternionic matrix elements,
which lead to three different spacing distributions among the respective real eigenvalues [17].

The point process interpolating between Poisson and Ginibre ensemble is now simply given by the
joint distribution (A.3), when allowing β to vary between β = 0 for Poisson and β = 2 for Ginibre.
In this sense, the 2D Coulomb gas (A.3) provides a one-parameter family that interpolates between
uncorrelated and random matrix behaviour of random variables in 2D. In the large-N limit, the global
density of particles converges, for all β > 0, to a constant function on the unit disk (the so-called
circular law), with height 1/π in our conventions for the area measure; see the top right panel of
Figure 1. For local correlations such as the spacing distributions, the universality of the 2D Coulomb
gas for arbitrary 0 < β 6= 2 is an open problem; see [36] for a detailed account.

Since no closed formula is known for the spacing for general 0 < β 6= 2, we compute the spac-
ing distributions for NN and NNN numerically, with an importance sampling Metropolis–Hastings
algorithm; see for instance [18, 8]. We have generated a library of distributions in steps of 0.1 for
β ∈ (0, 2) for our fits; see [2] for further details for NN. Perturbatively, it is clear from (A.3) that the

repulsion of NN for general β increases polynomially, that is, we have p
(NN)
Cou,β(s) ∝ sβ+1 as s→ 0; see

the top row of Figure 2 for an illustration of the different behaviour at the origin.

Appendix B. Unfolding of the Spectrum

Unfolding is a procedure to remove system-specific properties from spectral data, in order to
extract local correlations that have a chance to be universal. For 1D, there is a unique, standard way
to unfold, described for example in [17, Sec. 3.2.1]. In 2D, uniqueness is lost; see [28] for the criteria
unfolding has to satisfy. Here, we will follow the approach established and successfully tested for NN
in [2] in the case of 2D data.

The general problem in D dimensions can be stated as follows. The average spacing between two
points close to a reference point z0 is proportional to the inverse D-th root of the density at that

point, ρ(z0)−1/D. Unfolding is a map that normalises the density (and thus the spacing distribution).
It allows to remove the effect of the average (av) or mean spectral density ρav(z), which is typically
system-specific, and to separate it from the fluctuations (fl) around this density,

(B.1) ρ(z) = ρav(z) + ρfl(z).

These fluctuations can often be described by simple, universal models, such as the predictions from
Appendix A. In our 2D case, unfolding consists of a map of complex coordinates

z = x+ iy 7−→ z′ = x′ + iy′

to new coordinates, in which the new density is normalised, ρav(x′, y′) = 1. Following [2], we first
approximate the average density ρav(x, y) by a sum of smooth Gaussian distributions, as given in
(B.2). Unfolding is then obtained by multiplying the distance of the NNs (or NNNs) to each point zi
by the factor

√
ρav(xi, yi) in 2D. The resulting N unfolded spacings are collected, their density and
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first moment normalised to 1, and then compared to the correspondingly normalised distributions
from Appendix A; see Figures 2 and 3. Notice that for points generated according to the Poisson,
Ginibre, or Coulomb gas point process, the mean density is already flat for the values of N considered,
see Figure 1 (right), and thus no unfolding is necessary here.

The approximate mean density ρav(x, y) is obtained by a sum of Gaussian distributions centred
around each of the N data points zj ,

(B.2) ρav(x, y) ≈ 1

2πσ2N

N∑
j=1

exp

(
− |z − zj |

2

2σ2

)
,

where σ is the width, which is initially a free parameter to be chosen appropriately. In order to arrive
at a smooth density ρav(x, y), σ should be larger than the mean spacing s̄ between points. In [2], we
tested this approximation for NN for examples of random matrix ensembles where the mean density
is not flat and the local spacing distribution is known to follow (A.4). There, the choice σ = 4.5s̄ gave
very good results, which is why we use the same value for the approximation (B.2), after determining
the mean spacing s̄ for our data points for each individual year. The unfolded spacings for each
year are then obtained by multiplication with the corresponding mean density

√
ρav(xi, yi) at each

data point zj . These unfolded spacings are then put together in moving windows of ensembles of 5
consecutive years, which are chosen large enough to have sufficiently many spacings (of the order of
1000) for a meaningful fit of the parameter β of the Coulomb gas (A.3).

Let us emphasise that the unfolding removes the trivial effect through the increase of the global
population density observed in the period 2000–2019, and that the correlations among the unfolded
points represent local properties that characterise the presence (or absence) of repulsion among data
points.

Appendix C. Fitting Approach

We compare two distributions f and g with the Kolmogorov distance

(C.1) DKS(F,G) := ‖F −G‖∞ = sup
x
|F (x)−G(x)| ≤ 1 ,

where F and G are the cumulative distributions of f and g, respectively. This has the advantage of
being unbinned and takes into account that the distributions are normalised.

To estimate the error and to then make the linear fit of the population size and the repulsion
strength β, we do the following. For the population size, we assume the numbers are Poisson dis-
tributed, where the width is the square root of the mean. The uncertainty on the average populations
in the right plot of Figure 3 is found through error propagation, though these are merely there to
guide the eye. As the grouped average population sizes are correlated, the linear fit is made with
the individual years and plotted on top; see [6] for more on error estimation and statistics. For the
Coulomb gas fit, this is non-trivial as the Kolmogorov fit does not give a clear connection to the
uncertainty the same way a least-squares fit does. Because of the overlapping years in the moving
average, the points are also correlated, and error propagation is not clear here.

We therefore employ a method called bootstrapping. We generate a number of Coulomb gas real-
isations with a true β = β0 and make overlapping groups of 5 realisations the same way as we do
with the moving average of the nests. By fitting the β of these realisations, we can estimate the
error of the fitting method. The errors given in Figure 3 are the standard deviations of the fitted β
for the corresponding β0. Because we group the realisations, we also have some information about
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Figure 4. The effects of different group sizes. Plotted is a comparison of the NN
and the NNN spacing of all collected nests 2000−2019 with a Kolmogorov fit for the
effective parameter β of the spacing distribution, obtained from a 2D Coulomb gas
(A.3) in the same way as in Figure 3, but with different numbers of years per group.
Left: No grouping, that is, each year is fitted on its own. The fluctuations that arise
without grouping the years become apparent.
Right: Groups of 10 years. While the fluctuations are dampened, so is the change in
β for next-to-nearest neighbour spacing for later years. Parts of the temporal structure
is lost in this way. For this reason, we choose 5 years per group as a compromise.

the cross-correlation between the years. We extract this information by an average over groups of

distance k between the midpoint for a given β0 and use V β0
k to denote the correlation found here. We

do not represent the nests completely with this method, because we only group realisations of the
same β0, but going into the individual β0 of each year would defeat the purpose of grouping. Instead,
to compare two groups with different β0 and β1, we use the heuristic combination

(C.2) V β0,β1
k =

√√√√(V β0
k

)2
+
(
V β1
k

)2

2
.

Here, the sum of squares reflects the structure of the least-squares error, and the 2 in the denominator

ensures that V β0,β0
k = V β0

k . From here, we may construct the full covariance matrix of the grouped
years in the left panel of Figure 3. The off-diagonal elements turn out to be small compared to the
diagonal elements, so the diagonal part illustrated as error bars in Figure 3 gives a reasonable idea
about the uncertainty, but should not be taken as a quantitative statement. The off-diagonal elements
are, however, still included in the linear fit.

How many years are included in each group of course influences the results. We have chosen groups
of 5, because this is a compromise where fluctuations are relatively small, but the temporal structure
still is visible. See Figure 4 for the effect of different choices of group size.
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